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Concurrent Push—A Scheduling Algorithm
for Push-Based Parallel Video Servers

Jack Y. B. Lee

Abstract—Most existing commercial video servers are designed highly skewedi.e., some videos are more popular than others.
for a single server. Consequently, the capacity of the system Fyrthermore, the skewness changes with time (e.g., when most
in terms of maximum sustainable concurrent sessions is limited users have seen the video). Hence, under partition, some video

by the performance of the video server hardware. This paper iaht b loaded b lar tit th h
proposes and analyzes the performance of a novel parallel video Servers mig _e overioade y a popular litle even thoug
other servers might be underutilized.

server architecture where video data are striped across an array \ )
In this paper, we study a parallel server architecture for

of autonomous servers. The architecture allows one to build in-

crementally scalable video servers without video data replication. designing scalable VoD systems. Unlike replication, we use
The proposed concurrent-push scheduling algorithm allows the gyining to achieve load sharing across multiple servers without
system to integrate with quality of service guarantees provided . ing the st . t Furth by stripi
by today’s switching networks. In this paper, the striping policy, lnqreaSIng e sorgge reqUIremen " ur (.er.more, y s rlpln.g
the service model, and the concurrent-push scheduling algo- USing a small unit size, the system is insensitive to skewness in
rithm are presented. A system model is constructed to quantify video retrievals. This architecture allows one to incrementally
three performance metrics, namely, server buffer requirement, scale up the system capacity to more concurrent users by
client buffer requirement, and system response time. Results o4qing (rather than replacing) more servers and redistributing

show that a simple extension of the server-push service model ther than duplicati ideo dat th
does not perform well under the parallel video server archi- (rather than duplicating) video data among them.

tecture. To improve system performance, a novel extension of
the grouped sweeping scheme called the asynchronous grouped
sweeping scheme (AGSS) is introduced. To further increase the
scalability of the architecture, a new subschedule striping scheme
(SSS) is introduced. With the proposed AGSS and SSS, our
parallel video server architecture can be scaled up to more than

The main contributions of this paper are as follows.

« We propose and analyze quantitatively a novel
concurrent-push scheduling algorithm for scheduling
disk retrieval and network transmission in parallel video
servers.

10000 concurrent users. « We show that a simple extension of the server-push

service model for parallel video servers does not per-
form well, and we propose a new asynchronous grouped
sweeping scheme (AGSS) to substantially improve the
system performance.

We propose a new subschedule striping scheme (SSS) to
NE common architecture shared by most existing video- increase the scalability of the architecture even further.

on-demand (VoD) systems is that they are based onuging numerical results with realistic assumptions, we show
single server. The video server can range from a standard fAgt the resultant architecture can be scaled up to more than
for small-scale systems [1], [2] to massively parallel supercome 000 concurrent users.
puters with thousands of processors for large-scale systems [3]rhe rest of this paper is organized as follows. Section Il
[4]. However, the price/performance ratio escalates quickptesents the parallel video server architecture and the
for high-end hardware, and ultimately the capacity of a singi®ncurrent-push scheduling algorithm. Section Ill analyzes
server is still limited. When the demand exceeds the serveﬂ’f‘e performance of the architecture under the concurrent
capacity, one may need to replicate data to a new server f@fsh algorithm. Section IV presents and analyzes the AGSS.
more capacity, albeit doubling the storage requirement of thgction V presents the SSS scheme. Section VI evaluates the
system. As high-quality digital video requires a vast amount gfstem performance using numerical results and uses examples
storage, this approach is expensive. A second approach isdodiscuss the scalability of the architecture. Section VII

partition the video titles into disjoint subsets and store eaﬁé\/iews some related works and compares them with our
subset in a different video server. This approach does ngiproach. Section VIII draws conclusions.

require extra storage but suffers from load-balancing problems.
Empirical studies [5], [6] have shown that video retrievals are

Index Terms—Concurrent push, grouped sweeping scheme
(GSS), parallel video server, performance analysis, scheduling
algorithm, server push, server striping, video on demand.
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Il. SYSTEM ARCHITECTURE
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Fig. 1. Architecture of a (five-server) parallel video server.

i

contention. The interconnection network can be implementéd Scheduling Algorithm

using off-the-shelf packet switche§ like FastEthernet or asyn-| this paper, we propose @ncurrent-pustalgorithm for
chronous transfer mode (ATM) switches. We denote the nugheqyling disk retrievals and network transmissions at the
ber of servers in the system bys and the number of clients ggyers. The principle behind the concurrent-push algorithm is
by N¢. Heqce the c_Ilent-server ratio, denoted/b_y; NC/NS; to let all servers continuously transmit data to a client concur-
The following sections present the server striping aIgonthern“y_ We assume that the average video rate is homogenous
the service model, and the scheduling algorithm employed g} o)) clients and is denoted by-. Since there are a total of
the parallel video server studied in this paper. Ng servers, each server only needs to transmit at a reduced
rate of Ry /N to maintain an aggregate data ratefof.

Fig. 2 depicts the scheduling algorithm for disk retrievals
and network transmissions at each server in the system.

The principle behind the parallel video server architecture iy each video session, one block ©@fbytes video data is
the striping of a video stream across all servers in the systei@rieved into a disk buffer in each disk service round. To
A server’s storage space is divided into fixed-size stripe uniisqyce seek overhead, requests within a service round can be
of @ bytes each. Each video title is then striped into blocks @gped using the SCAN or the C-SCAN disk-arm scheduling
(@ bytes and stored into the servers in a round-robin manngfgorithms [9]. The retrieved video block is then passed to a
as shown in Fig. 1. This fixed-size block-striping algorithmyetwork buffer for transmission in the next rouh@herefore,
is called space striping [7], as opposed to striping in units gf the disk service round is shorter than one transmission
video frames, called time striping. round, a video block will always be ready for transmission. We

Space striping significantly simplifies the process of stripingnalyze the performance of the system under this scheduling
video streams encoded using interframe compression alggyorithm in the next section.

rithms (e.g., MPEG), where frame size varies considerably
for different frame types. Since a stripe unit in space striping
is significantly smaller than a video title (kilobytes versus Ill. ANALYSIS OF THE CONCURRENFPUSH ALGORITHM

megabytes), this enables fine-grain load sharing (as opposegh general, the internal clock of each autonomous server
to course-grain load sharing in data partition) among servef$.the system is not precisely synchronized. Therefore, the
Moreover, the loads are evenly distributed over all serveggheduling algorithm must take this server asynchrony into
independent of the skewness in video retrievals. account and compensate accordingly. We defiluek jitter
as the difference between the internal real-time clocks of two
servers. Many algorithms for controlling clock jitter between
distributed computers have been studied [10], [11] and hence
Service model refers to the way video data are schedulgdll not be pursued further here. We simply assume that the
and delivered to the client. There are two service models fRaximum clock jitter between any two servers in the system
common useclient pull and server pushin the client-pull is bounded and is denoted by For simplicity, we ignore
model, a client periodically sends a request to a server dgtwork delay jitter in this paper. Assuming that network delay
retrieve video data. In this model, the data flow is driven bjjtter is bounded [which is true in ATM networks with quality
the client. In the server-push model, the server schedules #igervice (QoS) guarantees], it is easy to see that the effect of
periodic retrieval and transmission of video data once a vidgatwork delay jitter can be incorporated into our performance
session is started. model in the same way as clock jitter, and the same derivations
The server-push model is common among studies on singdge still valid.
server VoD systems [1]-[4], [8]. This model allows one to
design periodic schedulers [8] to optimize disk and networkTo avoid data-copying overhead, in practice a disk buffer is just passed
utilization. In the next section, we present an extension of tHisthe network subsystem for transmission, while network buffers finishing

service model for use in parallel video servers. tdris;rllsmlssmn will be recycled as disk buffers for retrieving new data from the

A. Server Striping

B. Service Model
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In the following sections, we derive three key performance It may appear that the maximum clock jitteralso bounds
metrics for evaluating the parallel video server architecturthe transmission jitter. However, it turns out that the trans-
namely, server buffer requirement, client buffer requirememhission jitter depends not only on the clock jitter but also on

and system response time. the arrival time of a new video session request, as depicted in
Fig. 4. We derive the upper bound for the transmission jitter
A. Server Scheduling in Theorem 1 below.

Theorem 1: Assume that new-session requests arrive at all

nder concurren h, the client will be receiviNg vi . L T
Under concurrent push, the client be receiving video servers at the same time; then the transmission jitter is bounded

blocks simultaneously at an aggregate rat&of The average
filling time, defined as the time to completely transmit a vide%y

block of ¢} bytes, is given by 5§ < Tp. 3)
T = N9 (1) : -
Ry Proof. Please refer to the Appendix. O

) _ This bound on transmission jitter will be wused in
On the other hand, each server will be serving at MdSt  sections 11I-C and 1IIl-D to derive the amount of buffer
concurrent video sessions. Under the SCAN disk schedulgfguired at the client to prevent buffer underflow and
AN video blocks will be retrieved in each service round fogyerfiow, respectively.
transmission at a rate aRy /Ns per video stream. Hence
the duration of a service round is equal ¢ in (1), and B

two buffers are needed for each video stream for a total of _ .
2ANsQ-bytes buffers at each server. Many studies on VoD systems assume that video data are

As server clocks are not synchronous, the service rouf@nsumed periodically by the video decoder. However, our
of the servers may not be aligned (see Fig. 3). Without lo§¥Perience in programming some off-the-shelf hardware and
of generality, we assume that a video title is striped withoftware video decoders reveals that the decoder consumes
block zero storing at server zero. L& ; be the time server fixéd-size data blocks only quasi-periodically.

i (0 < i < Ng) starts transmitting théjNs + i)th block ofa ~ Given the average video data ratg- and block size?, the
video stream. Then we can formally defitransmission jitter average time for a video decoder to consume a single block is
as follows: 0

Tovg = .
6 = max{|T; ; — Ty ;| | Vi, k, j}. ) ®* Ry

Video Block Consumption Model

(4)
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Fig. 4. Transmission jitter depends on both clock jitter and request arrival time.

To quantify the randomness of video block consumptiogroup zero consists of blocks zero f¥s — 1, group one
time, we first define a few notations. consists of blocksVs to 2Ns — 1, and so on).

Definition 1: Let 7; be the time the video decoder starts Among theNg servers, let the earliest transmission for the
decoding theth video block; then the decoding-time deviatiorfirst round start at timeg; then the last transmission for the

of video block: is defined as first round must start at tim&, + 6. Therefore, the time for
. . video block group to be completely filled, denoted ki (%),
Tpv(i) =T, = ila — To (5) is bounded by

and decoding is late @y (i) > 0 and early ifZhy (¢) < 0. (G+D)Trp+to+f) < F(i)
The maximum lag in decodin@;, and maximum advance < W 4t L 6 +) (10
in decodingTr are defined as - ((L+ T +to+6+] ) (10)
where f* (f* > 0) and f~ (f~ < 0) are used to model
Ty, = max{Tpv(2) [ Vi = 0} 6)  the maximum transmission-time deviation due to randomness
Tg = min{Ipv (i) | Vi > 0}. (7) in the system, including transmission rate deviation, CPU
o o ) scheduling, bus contention, etc.

The peak-to-peak decoding-time deviation is defined as  gjnce the client starts playing video after filling the fist
groups of buffers, the playback time for video block group 0 is
simply F'(y — 1). From Section IlI-B, settindo = F(y — 1),

Assume that the boundE; and 7% are known. The time thebn the playback time for video block groudpdenoted by
between the consumption of two video blockandj (j > ) £(%), is bounded by

will be bounded by {(iNs Ty + Fly — 1) + T} < P(i)
max{((j — i)Tan — TDV); 0} S t S ((7 — i)Tan + TDV)' S {iNSTan + F(y — 1) + CTL\‘L
©) (11)

We use buffers at the client to absorb these variations toT0 guarantee video playback continuity, we must ensure that
prevent buffer underflow and overflow during playback. Let video block group arrives before the playback deadline. In
there beLe = (Y + Z) buffers (each) bytes) at the client, the worst case, the latest filling time must be smaller than the
organized as a circular buffer. The client starts video playbagrrliest playback time, i.e.,

nce the fir ffers ar mpletely filled with vi . . . .

\?VeC E:)rtef(iall biiszf/e?sub(eafcsnrz1 Elgyc;bar::lfttiyavo?g bu;fer Sr?ge?ﬁé?/v max{ F(i)} < min{P(i)}. (12)
and reserve the lagt buffers for incoming data to avoid buffer Now, for the left-hand side, noting thdlsTuy, = Tr [see
overflow. (1) and (4)], we then have

max{F (i)} = (i + 1)Tr +to + max{§} + f+. (13)

Ipy =11 — Tk. 8)

C. Buffer Needed to Prevent Underflow

Since all N5 servers transmit data to a client concurrentlyJsing the upper bound faf from Theorem 1, we obtain
the client will be receivingVs video blocks simultaneously.
HenceY must be a multiple ofVs. We lety = Y/Ns and max{F (i)} = (i + )T + to + Tr + f+
consider groups oNg buffers in the follow derivations (i.e., (i+2)Tr +to+ fT. (14)
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Similarly, the right-hand side is IV. ASYNCHRONOUSGROUPED SWEEPING SCHEME
min{P(i)} = iNsTayg + min{F(y — 1)} + Tg The re§u]ts in the previous section re\_/eal an important
— T+ YTy + 1o+ [~ + Tg. (15) characteristic of the concurrent-push algorithm, namely, that

the server buffer requirement, client buffer requirement, and

Merging (14) and (15), we then have response time all increase with the number of servers in the
. n . B system. Therefore, the scalability of the system will be limited
((+2)Tp +to+ [T <+ y)Tr +to+ [~ +Tp. (16) by either the economy of memory buffers or the tolerance

of the system response time by the user. In this section,

Rearranging, we can then obtajn > '
we propose an extension of the grouped sweeping scheme

y>2+ A TE_ 17) (GSS) [12], called asynchronous group sweeping scheme to
; Tr substantially reduce server buffer requirement and scheduling
Knowing the number of groups required, we can then obtaiglay.
Y from
o fm - Tg A. Extending the Grouped Sweeping Scheme
Y=|2+ N, (18) - . . . .
Tr The original GSS algorithm in [12] is designed for sched-

uling retrieval requests in a magnetic disk. The traditional
D. Buffer Needed to Prevent Overflow first-in, first-out scheduling algorithm has poor disk utilization

On the other hand, to guarantee that the client buffer wilt continuous-media applications [8], [9] because in the worst
not be overflowed by incoming video data, we need to ensu@se, the disk arm may need to seek back and forth between
that the ith video block group starts playback before théh€ innermost track and the outermost track, thus wasting
(i + 1 — 2)th video block group is completely received, wheré& lot of time in seekmg. Instead, some resgarchers use the
I = Le/Ns. This is because the client buffers are organized AN scheduling algorithm to reduce seek-time overhead by
a circular buffer, and we must have at least one groupigf Serving requests while the disk arm scans across the disk
free buffers available for video blocks arriving simultaneousf§urface. However, this approach requires two buffers per
from N servers. Therefore, we need to ensure that the earlie§gam because requests may be served out of order, and in the
filling time for group (i -+ — 2) must be larger than the latestVOrst case, two requests for the same stream may be served

playback time for group in a back—to—back manner. _
_ . . The GSS algorithm is designed to strike a balance between
min{F'(i +1 - 2)} > max{P(i)}. (19)  minimizing seek-time overhead and minimizing buffer require-

Using derivations similar to the previous section, we can obta'f?]ent by Serving streams in groups. Streams within a group are
the number of buffers needed to prevent buffer overflow asserved using SCA_N to_reduce seek-time overhead, w_h|le the
groups are served in a fixed order to reduce buffer requirement.
ft-7f +TL—‘N (20) By varying the number of groups, one can trade off disk
Tr o utilization against buffer requirement.
To extend GSS for use in parallel video servers, we propose

E. System Response Time dividing a service round int@? = g/Ns groups, whergy can

Response time is defined as the time from the user’s requeét determined using the single-server model as in [12] to
for a new video session to the time actual video playback staffginimize buffer requirement while still meeting the playout
This delay comprises two componenssheduling delayand requirement. Assume that a single server can serve at most
prefill delay Scheduling delay is the time from a clients) Video sessions; then each group serves upity) video
sending a new-session request to the time transmission st8R§sions. It is easy to see that this holds for two or more

at the server. It is easy to see that the worst case scheduf§§vers as well. Therefore, the number of disk buffers needed
delay is two service rounds (see Fig. 2) is reduced from\ Vg to A, though we still needh Vg network

buffers because a video block is transmitted at a lower data

Z:P—i—

Dg = M (21) rate of Ry /Ns. Under this extended GSS algorithm, the total
Ry amount of server buffer required will be
Prefill delay is the time from when the server starts trans-
mission to when the firsy groups of client buffers are fully Biorver = QN5A<1 + l) (24)
filled with data. Using (10), the worst case prefill delay can G

be obtained from

B. Uneven Group Assignment and Admission Scheduling
Dp =max{F(y — 1)} —to (22) . : . , .
The AGSS algorithm described in the previous section has

or a subtle problem when the servers in the system are not
_ + + clock synchronized. Fig. 5 illustrates the problem using the
Dp =yl + mix{é}f Fr=W+DIr+f arrivals of two new-session requests. As shown in the figure,
- <3+ [H—_Tﬂ)TF + £t (23) While server zero assigns the two new sessions to different
o groups, server one assigns them to the same group. This can
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Fig. 5. Uneven service-round assignments.

occur because each server assigns the new session to a gilaufystem Response Time

according to its own internal clock, which may be different 11,4 scheduling delay under the AGSS algorithm depends on
from other servers due to clock jitter.. Evgntually, the groug,o occupancy of the AGSS groups. Specifically, if a group as
occupancy among servers may deviate in such a way tQajcjated from Theorem 2 is fully occupied, the new video

one server can accept a new video session immediately Whilgssjon must be delayed until the next available group. In the
others have to wait for an available group, thereby increasifig, st case, the transmission of the first video block is delayed

the transmission jitter. for (Ns + Q) groups

To reduce the transmission jitter (which also reduces buffer
requirement at the client), we propose adding an admission Dg = <Ns + [ﬁw + 1)2 (28)
scheduler to handle group assignment for new-session re- Tr Ry

quests. To initiate a new video session, a client will first 4 payer evaluate the scheduling delay, we derive the aver-
send a requgst to the adm_|53|0n scheduler, which mam_tamsél&g scheduling delay under a given system load. Assume that
same clock-jitter bound with the servers. As new Sessions fla sessions start independently and with equal likelihood
assigned solely according to the admission scheduler’s cloglf,any time. Then a video session can be assigned to any one
the scenario depicted in Fig. 5 will not occur. To ensure thg* the G groups with equal probability. Let there heactive

the assigned group has not started in any of the servers Q/Weo sessions and groups; then the number of ways to

to clock jitter, the admission scheduler adds an extra delay 4ribute these: video sessions among groups is a variant

the assignment, stated “T‘ the following theorem. of the urn-occupancy distribution problem and is given by
Theorem 2:1f the admission scheduler delays the start %3] as

a new video session hy

G .
N(n,G,A)zZ(—l)j G G+n—jA+1)—-1 .
TG ; J G-1
Q=27 +1 (25) =0

T (29)
groups, then it guarantees that the assigned group has not0 obtain the probability of having: fully occupied groups,
started in any of theVs servers. we first notice that there ar(efl) possible combinations of
Proof: Please refer to the Appendix. O picking m fully occupied groups among groups. Given that

Note that if the assigned group is full, the admissioHiere aren active video sessions amd fully occupied groups,

scheduler will sequentially check the subsequent groups urftfle number of ways to distribute the remainifig— mA/g)
an available group is found. video sessions among the remain{idg—n) groups with none

of those groups fully occupied can be obtained from (29) as

N(n —mA/g,G —m,(A/g) — 1). Hence the total number

of ways for exactlym of the groups to be fully occupied is
As the admission scheduler already guarantees that a ngiven by

video session will be assigned to the same group in all servers, a A

the scenario in Fig. 5 could not occur, and the transmission Np,(n,m) = < )N(n -m—G—-m,— — 1). (30)

jitter will be the same as the clock jitter. Hence the client g g

C. Client Buffer Requirement

buffer requirement derived in Section Ill becomes The probability of havingn fully occupied groups givem
active video sessions can then be obtained from
T+f+_f__TE—‘ Nean(n, m)
Y = 1 + N 26 Pu = AL A SR . l
[ = s @9 ) = LR @)
Z = [1 +1 b Al +TL—‘NS- (27) Knowing this, we can derive the average scheduling delay
o in the following way. Given thatn out of G groups are
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fully occupied, the probability of the assigned group’s beingnd the corresponding average scheduling delay given a sys-
available (not fully occupied) is given by tem utilization ofn is
G-—m Mayg(n)Q
_ Dg =277 38

Vo=—5— (32) s Ry (38)
HenceP, = (1 — V;) will be the probability of the assignedAs the admission scheduler reduces the transmission jitter to
group’s being fully occupied. It can be shown that the protgqual the clock jitter, the new prefill delay can be obtained by
ability of a client’s waiting/ additional groups provided thatreplacingé with 7 in (23)

the firstk assigned groups are all fully occupied is b o
Dp= (24| = e e 9

Vi = Pr{(k + 1)th group availablé P} = Z—TZ, Tr
1<k<m (33) V. SUBSCHEDULE STRIPING SCHEME
and the probability that the firétgroups are all fully occupied ~ 1he AGSS algorithm presented in the previous section
is substantially reduces the server buffer requirement as well as
the scheduling delay. However, the client buffer requirement,
M=l ke ml(G — k)! and consequently the prefill delay, are only slightly reduced
by = H < G_i ) = Gl(m — k)’ 1<k<m. (34) asa side effect of the admission scheduler. In this section, we
=0 consider another modification to the concurrent-push algorithm
Hence we can So've for the probabmty Of a C"ent’s having twat can Substantia”y reduce the client buffer requirement and
wait & additional groups, denoted By, from the prefill delay.
Specifically, the analysis in Section Il reveals that the main
Wy = Pr{(k + 1)th group fred P} P reason for the increase in client buffer requirement with the
(G — m)ym(G -k —1)! number of servers stems from the increase in the average
= Glim — ! , 1<k<m. (35) filing time in (1). This suggests that we can reduce the buffer

requirement by using smaller striping sige However, as the
Therefore, given the number of groups that are fully occupiegtrver retrieves data from the disk in unitg@bytes, reducing
m, the average number of groups a client has to wait can te striping size will adversely affect disk-retrieval efficiency.

obtained from To solve this problem, we propose decoupling the transac-
m tion size for disk retrieval and transmission from the striping
Wavg(m) =Y EWy + [ﬁw +1. (36) Size—subschedule stripingn particular, we maintain the disk
Tk transaction size af) bytes but use a striping size (denoted

by U) inversely proportional to the number of servers in the
Similarly, given the number of active video sessionsthe system (Fig. 6)

average number of groups a client has to wait can be obtained

from (31) and (36) as follows: U=(Q/Ns. (40)
G-1 . . Hence the disk will retrievelVs stripe units in a single
Mavg(n) = Wayg(j)Pran(n, j) (37) transaction. Note that the client continues to consume video

.
Il

1 data in blocks of) bytes, and hence the video-block consump-
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Fig. 7. (a) Server buffer requirement versus number of servers. (b) Client buffer requirement versus number of servers.

tion model in Section IlI-B remains valid. However, a video TABLE |
block now contains stripe units transmitted fromzil servers SYSTEM PARAMETERS USED IN PERFORMANCE EVALUATION
(Fig. 6) rather than from a single server as in the origina

algorithm. Consequently, the client buffer sizBsand Z no  Video block size 9 65536 Bytes

|Onger need to be mUltipleS dVS' :/If::riiila:::*eunce in decoding time I;,L l—sl(?”(?r[ziS
SSS requires no modification to the server as the transacti@fximum fag in decoding time 7 ‘ [60ms

size remains the same. Therefore, the server buffer requiremetitnt-Server ratio A 10

as well as the scheduling delay are the same as before. ~ mnsmission lime deviation LS Oms

Scrver clock jitter T 100ms

To model the effect on the client buffer requirement, WE, o parameter . X
note that a-bytes video block comprises fragments from all ’
N5 servers. Hence the filling time for a video block would be
affected by the transmission jitter among servers. Specificalipjned empirically by collecting the video block consumption
the filling time for video blocki of a video stream started attimes of a hardware MPEG-1 decoder.
time ¢y is bounded by
A. Server Buffer Requirement

(G +DTag+to+ f) < f0) Fig. 7(a) plots the per-server buffer requirement versus
< (i 4 D + o+ fT+7). the number of servers in the system. We can observe that
(41) AGSS substantially reduces the buffer requirement. SSS has

no effect on the server buffer requirement. Despite the re-

_ . o ) duction achieved by AGSS, the server buffer requirement still
Using similar derivations, the client buffers needed to prevefi e ages with the number of servers. This poses one limitation

underflow and overflow can be found as on the ultimate scalability of the system (to be discussed in

o Tet Section VI-D). Depending on the relative cost of memory and
Y>1+ < B T) (42) disk bandwidth, one may reduce system cost by trading disk
N Tavg efficiency for smaller server buffer requirement.
—f~+T
z>1+<f s LJ”) 43) , |
Tove B. Client Buffer Requirement

Fig. 7(b) plots the client buffer requirement versus the
number of servers in the system. The figure shows that AGSS
substantially reduces the client buffer requirement, but it

Dp =Y T+ T+ (44)  still increases linearly with the number of servers. With the
addition of subschedule striping, the client buffer requirement
Now both the client buffer requirement and prefill delay nis constant regardless of the number of servers in the system.
longer depend on the number of servers in the system.  This is a crucial property, as it would be impractical to upgrade
all clients whenever more servers are added to the system in
practice.

From (42) and (43), it is easy to see that the client buffer
In this section, we evaluate the performance of the paraltelquirement is insensitive to the server clock jitter. As an
video server architecture studied in this paper using numeriesdample, for a 16-servers system with AGSS and SSS, the
results. Table | lists the values for the key system parametefient buffer requirement is only 384 KB for a server clock

used in the calculation. The paramet&is and’, are deter- jitter as large as 1000 ms.

and the time to prefill the first” client buffers is

VI. PERFORMANCE EVALUATION
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Fig. 8. (a) Scheduling delay versus number of servers. (b) Prefill delay versus number of servers.
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Fig. 9. System response time versus number of servers.

C. System Response Time subschedule striping, the prefill delay becomes completely

We first plot scheduling delay versus the number of servdpgiependent of the number of servers in the system.

in the system in Fig. 8(a). The case for SSS is not plotted, as “Last, we plot the total system response “”?e n F|g. 9.'
. Clearly, the proposed AGSS and SSS can effectively maintain

has no effect on the scheduling delay. Note that the worst case .

. . . - @ Small system response time (1.8 s f¥ = 16 at 90%
scheduling delay is substantially reduced by AGSS, especially. .. . i

utllization) even if the number of servers is large.

for a large number of servers. Moreover, the average sched-
uling delay with AGSS is even smaller and stays relatively

constant regardless of the number of servers in the system.Scalability
For example, with AGSS striping in a 16-servers system, theThe results in the previous sections have shown that both

average delay is only 1.26 s for system utilization as h'QHe client buffer requirement and the system response time can
as 90%, even though the worst case is 9.18 s. The WORH maintained low irrespective of the number of servers in the
case delay is even larger (13.98 s) without AGSS. Hencg,stem. The server buffer requirement is the only factor that
with AGSS, we can maintain a reasonably low schedulingcreases with more servers. This factor will certainly limit the
delay by operating the system to within, say, 90% of the totgtimate scalability of the system. Nowadays, it is common
capacity. to install 256 MB or more memory in a PC-based server,
Fig. 8(b) plots the prefill delay versus the number of servess the price of memory has dropped substantially. Under our
in the system. The results show that the prefill delay is alsgstem parameters and ignoring operating system overhead, a
reduced by AGSS because the worst case transmission jiz86-MB memory size will limit the scalability of the parallel
T'r is larger than the clock jitter. More important, by using video server architecture to a maximum of 408 servers serving
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a total of 3672 concurrent video sessions at 90% utilization.Bernhardt and Biersack [15] and Biersaekal. [16] have

If 1-GB memory is available, the architecture can be scaledso studied the problem for server-push designs and proposed

up to 14400 concurrent video sessions using a client—seradgorithms to compensate for network delay differences and

ratio of 250 at 90% utilization. clock drifts. Unlike our architecture, their system stripes
A second, more subtle limiting factor is due to the SS#deo data in units of frames rather than in fixed-size blocks.

scheme. Under this scheme, the client must resequence They did not consider variations in video block consumption

incoming data by copyind@/-bytes stripe units into the clienttimes and assumed constant consumption time in [15]. Their

buffer (Fig. 6). Hence the processing overhead will likelgtudy also did not consider scheduling issues at the servers.

increase with smaller striping size. Our previous experienc@air study has revealed the limitations of a straightforward

[14] showed that processing overhead remains practical xtension of the server-push model, and we proposed the

software implementations using i486-based PC'’s for stripifgGSS with admission scheduling and subschedule striping

size as small as 1 KB. This limit¥s to 64. For larger systems, schemes to extend the scalability of the architecture. Last, our

we can use more powerful server hardware with a largstudy has quantitatively analyzed the system response time,

client—server ratio to avoid hitting this limit. In the previouswvhich is a key performance metric in practice.

example with 1-GB memory, we increase the client—server

ratio to 250 so that the total number of servers required

stays within 64 (14400/0.9)/250 = 64) to avoid excessive VIIl. C ONCLUSION

processing at the client. Clearly, we will be able to use smaller

striping size to extend this limit as CPU speed improves. " this paper, we have proposed and analyzed a parallel

video server architecture for designing scalable video-on-
demand systems. The proposed architecture employs fixed-size
VII. RELATED WORKS block striping and the server-push service model. To schedule

. L . I isk retrievals and transmissions, we proposed a concurrent-
There has been an increasing interest in designing paralle . . : .
. . ush scheduling algorithm where video data are continuously
video servers. Related studies have been conducted by Bern- . . . .
; . ransmitted from all servers to a client station. This constant-
hardt and Biersack [15}t al. [16], Buddhikot and Parulkar | . ) .
[17], Lee and Wong [18], [19], Reddy [20], Tewaet al. [21] bit-rate traffic produced by the algorithm enables us to take
' 9 ' ' y : ' ' advantage of the QoS guarantees provided by today’s ATM

and Wu and Shu [22]. A general introduction to parallel VIOIer(1)etworks. To extend the scalability of the architecture, we

servers can be found in [7]. We summarize below the ma]%r%roduced the asynchronous grouped sweeping scheme and

dlrfcf)er:;é:ctjasinbti?;vezn et:]e previous works and the aPProgRil subschedule striping scheme into the architecture. Results
prop paper. showed that the resultant architecture can be scaled up to

The studies by Reddy [20], T.e waeit al. [21], and Wu more than 10000 concurrent users with acceptable buffer
and Shu [22] are based on architectures where one or more

intermediate delivery nodes are used to merge video dé?quwement and system response time.

) : X uilding video-on-demand systems upon parallel server ar-
from multiple servers for delivery to clients. Conversely,, . R )
. . L .“Chitecture not only breaks through the capacity limit of a single
in our architecture, servers transmit video data to a client

Server but also opens the way to fault-tolerant system designs.

without passing through any intermediate node. Our approaﬁn early study [19] has already demonstrated the feasibility

eliminates the extra hardware needed to run the intermediate_~, .~ ° . )
of achieving server-level fault tolerance by introducing data

delivery nodes. redundancy among the servers. We are currently investigatin
Lee and Wong [18], [19] have designed and implementeg y 9 ) y gating

. : ways to integrate fault tolerance into the architecture studied

a parallel video server for local-area networks. Their system™ .
. . in this paper.

employs the client-pull service model rather than the server-

push service model studied in this paper.

The study by Buddhikot and Parulkar [17] also employs

the server-push service model. However, the servers in their APPENDIX

system transmit bursts of data in a staggered manner ratheproof of Theorem 1:Let server zero start the first service

than continuously at a constant rate as our architecture daegind at timet,. Since the server clocks are not exactly

Therefore, their system cannot take advantage of the QoS gugichronized, we lef; be the clock difference between server

antee provided by current ATM hardware, and must rely gnand server zero. Henek = 0 andmax{|d; — d;| | Vi, j} =

a proprietary ATM switch to precisely synchronize the server, and servef will start service round at time(to+d; +;7x).

clocks and merge the data bursts into a single continuous dg ¢,.,, be the time a new-session request arrives at the

stream for delivery to clients. In designing our architecture, wsarvers. Then the request will arrive at servauring roundy;

have deliberately avoided the use of proprietary hardware to

lower the cost of the system. By sending data continuously, our fuew — (fo + di)

architecture can take advantage of QoS guarantees provided by v = {“ew—OZJ (45)

current ATM hardware. Moreover, our architecture is robust to Ty

server clock jitter and hence allows conventional distributed

clock synchronization algorithms to be used for server clo@and the first video block will be retrieved at roufid; + 1)

synchronization. and transmitted at round; +2). Hence the transmission jitter
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