
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 3, APRIL 1999 467

Concurrent Push—A Scheduling Algorithm
for Push-Based Parallel Video Servers

Jack Y. B. Lee

Abstract—Most existing commercial video servers are designed
for a single server. Consequently, the capacity of the system
in terms of maximum sustainable concurrent sessions is limited
by the performance of the video server hardware. This paper
proposes and analyzes the performance of a novel parallel video
server architecture where video data are striped across an array
of autonomous servers. The architecture allows one to build in-
crementally scalable video servers without video data replication.
The proposed concurrent-push scheduling algorithm allows the
system to integrate with quality of service guarantees provided
by today’s switching networks. In this paper, the striping policy,
the service model, and the concurrent-push scheduling algo-
rithm are presented. A system model is constructed to quantify
three performance metrics, namely, server buffer requirement,
client buffer requirement, and system response time. Results
show that a simple extension of the server-push service model
does not perform well under the parallel video server archi-
tecture. To improve system performance, a novel extension of
the grouped sweeping scheme called the asynchronous grouped
sweeping scheme (AGSS) is introduced. To further increase the
scalability of the architecture, a new subschedule striping scheme
(SSS) is introduced. With the proposed AGSS and SSS, our
parallel video server architecture can be scaled up to more than
10 000 concurrent users.

Index Terms—Concurrent push, grouped sweeping scheme
(GSS), parallel video server, performance analysis, scheduling
algorithm, server push, server striping, video on demand.

I. INTRODUCTION

ONE common architecture shared by most existing video-
on-demand (VoD) systems is that they are based on a

single server. The video server can range from a standard PC
for small-scale systems [1], [2] to massively parallel supercom-
puters with thousands of processors for large-scale systems [3],
[4]. However, the price/performance ratio escalates quickly
for high-end hardware, and ultimately the capacity of a single
server is still limited. When the demand exceeds the server’s
capacity, one may need to replicate data to a new server for
more capacity, albeit doubling the storage requirement of the
system. As high-quality digital video requires a vast amount of
storage, this approach is expensive. A second approach is to
partition the video titles into disjoint subsets and store each
subset in a different video server. This approach does not
require extra storage but suffers from load-balancing problems.
Empirical studies [5], [6] have shown that video retrievals are

Manuscript received January 4, 1998; revised August 4, 1998. This paper
was recommended by Associate Editor F. Pereira.

The author is with the Department of Computer Science, Hong Kong
University of Science and Technology, Clear Water Bay, N.T., Hong Kong
(e-mail: jacklee@computer.org).

Publisher Item Identifier S 1051-8215(99)02959-6.

highly skewed,i.e., some videos are more popular than others.
Furthermore, the skewness changes with time (e.g., when most
users have seen the video). Hence, under partition, some video
servers might be overloaded by a popular title even though
other servers might be underutilized.

In this paper, we study a parallel server architecture for
designing scalable VoD systems. Unlike replication, we use
striping to achieve load sharing across multiple servers without
increasing the storage requirement. Furthermore, by striping
using a small unit size, the system is insensitive to skewness in
video retrievals. This architecture allows one to incrementally
scale up the system capacity to more concurrent users by
adding (rather than replacing) more servers and redistributing
(rather than duplicating) video data among them.

The main contributions of this paper are as follows.

• We propose and analyze quantitatively a novel
concurrent-push scheduling algorithm for scheduling
disk retrieval and network transmission in parallel video
servers.

• We show that a simple extension of the server-push
service model for parallel video servers does not per-
form well, and we propose a new asynchronous grouped
sweeping scheme (AGSS) to substantially improve the
system performance.

• We propose a new subschedule striping scheme (SSS) to
increase the scalability of the architecture even further.

Using numerical results with realistic assumptions, we show
that the resultant architecture can be scaled up to more than
10 000 concurrent users.

The rest of this paper is organized as follows. Section II
presents the parallel video server architecture and the
concurrent-push scheduling algorithm. Section III analyzes
the performance of the architecture under the concurrent
push algorithm. Section IV presents and analyzes the AGSS.
Section V presents the SSS scheme. Section VI evaluates the
system performance using numerical results and uses examples
to discuss the scalability of the architecture. Section VII
reviews some related works and compares them with our
approach. Section VIII draws conclusions.

II. SYSTEM ARCHITECTURE

A parallel video server is composed of multiple independent
servers connected by an interconnection network (Fig. 1).
Each server has a separate CPU, memory, disk storage, and
network interface. Thisshare-nothingapproach ensures that
the scalability of the system will not be limited by resource

1051–8215/99$10.00 1999 IEEE

468 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 3, APRIL 1999

Fig. 1. Architecture of a (five-server) parallel video server.

contention. The interconnection network can be implemented
using off-the-shelf packet switches like FastEthernet or asyn-
chronous transfer mode (ATM) switches. We denote the num-
ber of servers in the system by and the number of clients
by . Hence the client-server ratio, denoted by, is .
The following sections present the server striping algorithm,
the service model, and the scheduling algorithm employed in
the parallel video server studied in this paper.

A. Server Striping

The principle behind the parallel video server architecture is
the striping of a video stream across all servers in the system.
A server’s storage space is divided into fixed-size stripe units
of bytes each. Each video title is then striped into blocks of

bytes and stored into the servers in a round-robin manner,
as shown in Fig. 1. This fixed-size block-striping algorithm
is called space striping [7], as opposed to striping in units of
video frames, called time striping.

Space striping significantly simplifies the process of striping
video streams encoded using interframe compression algo-
rithms (e.g., MPEG), where frame size varies considerably
for different frame types. Since a stripe unit in space striping
is significantly smaller than a video title (kilobytes versus
megabytes), this enables fine-grain load sharing (as opposed
to course-grain load sharing in data partition) among servers.
Moreover, the loads are evenly distributed over all servers
independent of the skewness in video retrievals.

B. Service Model

Service model refers to the way video data are scheduled
and delivered to the client. There are two service models in
common use:client pull and server push. In the client-pull
model, a client periodically sends a request to a server to
retrieve video data. In this model, the data flow is driven by
the client. In the server-push model, the server schedules the
periodic retrieval and transmission of video data once a video
session is started.

The server-push model is common among studies on single-
server VoD systems [1]–[4], [8]. This model allows one to
design periodic schedulers [8] to optimize disk and network
utilization. In the next section, we present an extension of this
service model for use in parallel video servers.

C. Scheduling Algorithm

In this paper, we propose aconcurrent-pushalgorithm for
scheduling disk retrievals and network transmissions at the
servers. The principle behind the concurrent-push algorithm is
to let all servers continuously transmit data to a client concur-
rently. We assume that the average video rate is homogenous
for all clients and is denoted by . Since there are a total of

servers, each server only needs to transmit at a reduced
rate of to maintain an aggregate data rate of .

Fig. 2 depicts the scheduling algorithm for disk retrievals
and network transmissions at each server in the system.
For each video session, one block of-bytes video data is
retrieved into a disk buffer in each disk service round. To
reduce seek overhead, requests within a service round can be
served using the SCAN or the C-SCAN disk-arm scheduling
algorithms [9]. The retrieved video block is then passed to a
network buffer for transmission in the next round.1 Therefore,
if the disk service round is shorter than one transmission
round, a video block will always be ready for transmission. We
analyze the performance of the system under this scheduling
algorithm in the next section.

III. A NALYSIS OF THE CONCURRENT-PUSH ALGORITHM

In general, the internal clock of each autonomous server
in the system is not precisely synchronized. Therefore, the
scheduling algorithm must take this server asynchrony into
account and compensate accordingly. We defineclock jitter
as the difference between the internal real-time clocks of two
servers. Many algorithms for controlling clock jitter between
distributed computers have been studied [10], [11] and hence
will not be pursued further here. We simply assume that the
maximum clock jitter between any two servers in the system
is bounded and is denoted by. For simplicity, we ignore
network delay jitter in this paper. Assuming that network delay
jitter is bounded [which is true in ATM networks with quality
of service (QoS) guarantees], it is easy to see that the effect of
network delay jitter can be incorporated into our performance
model in the same way as clock jitter, and the same derivations
are still valid.

1To avoid data-copying overhead, in practice a disk buffer is just passed
to the network subsystem for transmission, while network buffers finishing
transmission will be recycled as disk buffers for retrieving new data from the
disk.

LEE: CONCURRENT-PUSH SCHEDULING ALGORITHM 469

Fig. 2. Scheduling disk retrieval and network transmission at server.

Fig. 3. Service-round misalignment between different servers.

In the following sections, we derive three key performance
metrics for evaluating the parallel video server architecture,
namely, server buffer requirement, client buffer requirement,
and system response time.

A. Server Scheduling

Under concurrent push, the client will be receiving video
blocks simultaneously at an aggregate rate of. The average
filling time, defined as the time to completely transmit a video
block of bytes, is given by

(1)

On the other hand, each server will be serving at most
concurrent video sessions. Under the SCAN disk scheduler,

video blocks will be retrieved in each service round for
transmission at a rate of per video stream. Hence
the duration of a service round is equal to in (1), and
two buffers are needed for each video stream for a total of

-bytes buffers at each server.
As server clocks are not synchronous, the service round

of the servers may not be aligned (see Fig. 3). Without loss
of generality, we assume that a video title is striped with
block zero storing at server zero. Let be the time server

starts transmitting the th block of a
video stream. Then we can formally definetransmission jitter
as follows:

(2)

It may appear that the maximum clock jitteralso bounds
the transmission jitter. However, it turns out that the trans-
mission jitter depends not only on the clock jitter but also on
the arrival time of a new video session request, as depicted in
Fig. 4. We derive the upper bound for the transmission jitter
in Theorem 1 below.

Theorem 1: Assume that new-session requests arrive at all
servers at the same time; then the transmission jitter is bounded
by

(3)

Proof: Please refer to the Appendix.
This bound on transmission jitter will be used in

Sections III-C and III-D to derive the amount of buffer
required at the client to prevent buffer underflow and
overflow, respectively.

B. Video Block Consumption Model

Many studies on VoD systems assume that video data are
consumed periodically by the video decoder. However, our
experience in programming some off-the-shelf hardware and
software video decoders reveals that the decoder consumes
fixed-size data blocks only quasi-periodically.

Given the average video data rate and block size , the
average time for a video decoder to consume a single block is

(4)

470 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 3, APRIL 1999

Fig. 4. Transmission jitter depends on both clock jitter and request arrival time.

To quantify the randomness of video block consumption
time, we first define a few notations.

Definition 1: Let be the time the video decoder starts
decoding theth video block; then the decoding-time deviation
of video block is defined as

(5)

and decoding is late if and early if .
The maximum lag in decoding and maximum advance

in decoding are defined as

(6)

(7)

The peak-to-peak decoding-time deviation is defined as

(8)

Assume that the bounds and are known. The time
between the consumption of two video blocksand
will be bounded by

(9)

We use buffers at the client to absorb these variations to
prevent buffer underflow and overflow during playback. Let
there be buffers (each bytes) at the client,
organized as a circular buffer. The client starts video playback
once the first buffers are completely filled with video data.
We prefill buffers before playback to avoid buffer underflow,
and reserve the last buffers for incoming data to avoid buffer
overflow.

C. Buffer Needed to Prevent Underflow

Since all servers transmit data to a client concurrently,
the client will be receiving video blocks simultaneously.
Hence must be a multiple of . We let and
consider groups of buffers in the follow derivations (i.e.,

group zero consists of blocks zero to , group one
consists of blocks to , and so on).

Among the servers, let the earliest transmission for the
first round start at time ; then the last transmission for the
first round must start at time . Therefore, the time for
video block group to be completely filled, denoted by ,
is bounded by

(10)

where and are used to model
the maximum transmission-time deviation due to randomness
in the system, including transmission rate deviation, CPU
scheduling, bus contention, etc.

Since the client starts playing video after filling the first
groups of buffers, the playback time for video block group 0 is
simply . From Section III-B, setting ,
then the playback time for video block group, denoted by

, is bounded by

(11)

To guarantee video playback continuity, we must ensure that
a video block group arrives before the playback deadline. In
the worst case, the latest filling time must be smaller than the
earliest playback time, i.e.,

(12)

Now, for the left-hand side, noting that [see
(1) and (4)], we then have

(13)

Using the upper bound for from Theorem 1, we obtain

(14)

LEE: CONCURRENT-PUSH SCHEDULING ALGORITHM 471

Similarly, the right-hand side is

(15)

Merging (14) and (15), we then have

(16)

Rearranging, we can then obtain

(17)

Knowing the number of groups required, we can then obtain
from

(18)

D. Buffer Needed to Prevent Overflow

On the other hand, to guarantee that the client buffer will
not be overflowed by incoming video data, we need to ensure
that the th video block group starts playback before the

th video block group is completely received, where
. This is because the client buffers are organized as

a circular buffer, and we must have at least one group of
free buffers available for video blocks arriving simultaneously
from servers. Therefore, we need to ensure that the earliest
filling time for group must be larger than the latest
playback time for group

(19)

Using derivations similar to the previous section, we can obtain
the number of buffers needed to prevent buffer overflow as

(20)

E. System Response Time

Response time is defined as the time from the user’s request
for a new video session to the time actual video playback starts.
This delay comprises two components:scheduling delay, and
prefill delay. Scheduling delay is the time from a client’s
sending a new-session request to the time transmission starts
at the server. It is easy to see that the worst case scheduling
delay is two service rounds (see Fig. 2)

(21)

Prefill delay is the time from when the server starts trans-
mission to when the first groups of client buffers are fully
filled with data. Using (10), the worst case prefill delay can
be obtained from

(22)

or

(23)

IV. A SYNCHRONOUSGROUPED SWEEPING SCHEME

The results in the previous section reveal an important
characteristic of the concurrent-push algorithm, namely, that
the server buffer requirement, client buffer requirement, and
response time all increase with the number of servers in the
system. Therefore, the scalability of the system will be limited
by either the economy of memory buffers or the tolerance
of the system response time by the user. In this section,
we propose an extension of the grouped sweeping scheme
(GSS) [12], called asynchronous group sweeping scheme to
substantially reduce server buffer requirement and scheduling
delay.

A. Extending the Grouped Sweeping Scheme

The original GSS algorithm in [12] is designed for sched-
uling retrieval requests in a magnetic disk. The traditional
first-in, first-out scheduling algorithm has poor disk utilization
in continuous-media applications [8], [9] because in the worst
case, the disk arm may need to seek back and forth between
the innermost track and the outermost track, thus wasting
a lot of time in seeking. Instead, some researchers use the
SCAN scheduling algorithm to reduce seek-time overhead by
serving requests while the disk arm scans across the disk
surface. However, this approach requires two buffers per
stream because requests may be served out of order, and in the
worst case, two requests for the same stream may be served
in a back-to-back manner.

The GSS algorithm is designed to strike a balance between
minimizing seek-time overhead and minimizing buffer require-
ment by serving streams in groups. Streams within a group are
served using SCAN to reduce seek-time overhead, while the
groups are served in a fixed order to reduce buffer requirement.
By varying the number of groups, one can trade off disk
utilization against buffer requirement.

To extend GSS for use in parallel video servers, we propose
dividing a service round into groups, where can
be determined using the single-server model as in [12] to
minimize buffer requirement while still meeting the playout
requirement. Assume that a single server can serve at most

video sessions; then each group serves up to video
sessions. It is easy to see that this holds for two or more
servers as well. Therefore, the number of disk buffers needed
is reduced from to , though we still need network
buffers because a video block is transmitted at a lower data
rate of . Under this extended GSS algorithm, the total
amount of server buffer required will be

(24)

B. Uneven Group Assignment and Admission Scheduling

The AGSS algorithm described in the previous section has
a subtle problem when the servers in the system are not
clock synchronized. Fig. 5 illustrates the problem using the
arrivals of two new-session requests. As shown in the figure,
while server zero assigns the two new sessions to different
groups, server one assigns them to the same group. This can

472 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 3, APRIL 1999

Fig. 5. Uneven service-round assignments.

occur because each server assigns the new session to a group
according to its own internal clock, which may be different
from other servers due to clock jitter. Eventually, the group
occupancy among servers may deviate in such a way that
one server can accept a new video session immediately while
others have to wait for an available group, thereby increasing
the transmission jitter.

To reduce the transmission jitter (which also reduces buffer
requirement at the client), we propose adding an admission
scheduler to handle group assignment for new-session re-
quests. To initiate a new video session, a client will first
send a request to the admission scheduler, which maintains the
same clock-jitter bound with the servers. As new sessions are
assigned solely according to the admission scheduler’s clock,
the scenario depicted in Fig. 5 will not occur. To ensure that
the assigned group has not started in any of the servers due
to clock jitter, the admission scheduler adds an extra delay to
the assignment, stated in the following theorem.

Theorem 2: If the admission scheduler delays the start of
a new video session by

(25)

groups, then it guarantees that the assigned group has not
started in any of the servers.

Proof: Please refer to the Appendix.
Note that if the assigned group is full, the admission

scheduler will sequentially check the subsequent groups until
an available group is found.

C. Client Buffer Requirement

As the admission scheduler already guarantees that a new
video session will be assigned to the same group in all servers,
the scenario in Fig. 5 could not occur, and the transmission
jitter will be the same as the clock jitter. Hence the client
buffer requirement derived in Section III becomes

(26)

(27)

D. System Response Time

The scheduling delay under the AGSS algorithm depends on
the occupancy of the AGSS groups. Specifically, if a group as
calculated from Theorem 2 is fully occupied, the new video
session must be delayed until the next available group. In the
worst case, the transmission of the first video block is delayed
for groups

(28)

To better evaluate the scheduling delay, we derive the aver-
age scheduling delay under a given system load. Assume that
video sessions start independently and with equal likelihood
at any time. Then a video session can be assigned to any one
of the groups with equal probability. Let there beactive
video sessions and groups; then the number of ways to
distribute these video sessions among groups is a variant
of the urn-occupancy distribution problem and is given by
[13] as

(29)

To obtain the probability of having fully occupied groups,
we first notice that there are possible combinations of
picking fully occupied groups among groups. Given that
there are active video sessions and fully occupied groups,
The number of ways to distribute the remaining
video sessions among the remaining groups with none
of those groups fully occupied can be obtained from (29) as

. Hence the total number
of ways for exactly of the groups to be fully occupied is
given by

(30)

The probability of having fully occupied groups given
active video sessions can then be obtained from

(31)

Knowing this, we can derive the average scheduling delay
in the following way. Given that out of groups are

LEE: CONCURRENT-PUSH SCHEDULING ALGORITHM 473

Fig. 6. Data organization in subschedule striping.

fully occupied, the probability of the assigned group’s being
available (not fully occupied) is given by

(32)

Hence will be the probability of the assigned
group’s being fully occupied. It can be shown that the prob-
ability of a client’s waiting additional groups provided that
the first assigned groups are all fully occupied is

Pr th group available

(33)

and the probability that the firstgroups are all fully occupied
is

(34)

Hence we can solve for the probability of a client’s having to
wait additional groups, denoted by , from

Pr th group free

(35)

Therefore, given the number of groups that are fully occupied
, the average number of groups a client has to wait can be

obtained from

(36)

Similarly, given the number of active video sessions, the
average number of groups a client has to wait can be obtained
from (31) and (36) as follows:

(37)

and the corresponding average scheduling delay given a sys-
tem utilization of is

(38)

As the admission scheduler reduces the transmission jitter to
equal the clock jitter, the new prefill delay can be obtained by
replacing with in (23)

(39)

V. SUBSCHEDULE STRIPING SCHEME

The AGSS algorithm presented in the previous section
substantially reduces the server buffer requirement as well as
the scheduling delay. However, the client buffer requirement,
and consequently the prefill delay, are only slightly reduced
as a side effect of the admission scheduler. In this section, we
consider another modification to the concurrent-push algorithm
that can substantially reduce the client buffer requirement and
the prefill delay.

Specifically, the analysis in Section III reveals that the main
reason for the increase in client buffer requirement with the
number of servers stems from the increase in the average
filling time in (1). This suggests that we can reduce the buffer
requirement by using smaller striping size. However, as the
server retrieves data from the disk in units ofbytes, reducing
the striping size will adversely affect disk-retrieval efficiency.

To solve this problem, we propose decoupling the transac-
tion size for disk retrieval and transmission from the striping
size—subschedule striping. In particular, we maintain the disk
transaction size at bytes but use a striping size (denoted
by) inversely proportional to the number of servers in the
system (Fig. 6)

(40)

Hence the disk will retrieve stripe units in a single
transaction. Note that the client continues to consume video
data in blocks of bytes, and hence the video-block consump-

474 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 3, APRIL 1999

(a) (b)

Fig. 7. (a) Server buffer requirement versus number of servers. (b) Client buffer requirement versus number of servers.

tion model in Section III-B remains valid. However, a video
block now contains stripe units transmitted from all servers
(Fig. 6) rather than from a single server as in the original
algorithm. Consequently, the client buffer sizesand no
longer need to be multiples of .

SSS requires no modification to the server as the transaction
size remains the same. Therefore, the server buffer requirement
as well as the scheduling delay are the same as before.

To model the effect on the client buffer requirement, we
note that a -bytes video block comprises fragments from all

servers. Hence the filling time for a video block would be
affected by the transmission jitter among servers. Specifically,
the filling time for video block of a video stream started at
time is bounded by

(41)

Using similar derivations, the client buffers needed to prevent
underflow and overflow can be found as

(42)

(43)

and the time to prefill the first client buffers is

(44)

Now both the client buffer requirement and prefill delay no
longer depend on the number of servers in the system.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the parallel
video server architecture studied in this paper using numerical
results. Table I lists the values for the key system parameters
used in the calculation. The parameters and are deter-

TABLE I
SYSTEM PARAMETERS USED IN PERFORMANCE EVALUATION

mined empirically by collecting the video block consumption
times of a hardware MPEG-1 decoder.

A. Server Buffer Requirement

Fig. 7(a) plots the per-server buffer requirement versus
the number of servers in the system. We can observe that
AGSS substantially reduces the buffer requirement. SSS has
no effect on the server buffer requirement. Despite the re-
duction achieved by AGSS, the server buffer requirement still
increases with the number of servers. This poses one limitation
on the ultimate scalability of the system (to be discussed in
Section VI-D). Depending on the relative cost of memory and
disk bandwidth, one may reduce system cost by trading disk
efficiency for smaller server buffer requirement.

B. Client Buffer Requirement

Fig. 7(b) plots the client buffer requirement versus the
number of servers in the system. The figure shows that AGSS
substantially reduces the client buffer requirement, but it
still increases linearly with the number of servers. With the
addition of subschedule striping, the client buffer requirement
is constant regardless of the number of servers in the system.
This is a crucial property, as it would be impractical to upgrade
all clients whenever more servers are added to the system in
practice.

From (42) and (43), it is easy to see that the client buffer
requirement is insensitive to the server clock jitter. As an
example, for a 16-servers system with AGSS and SSS, the
client buffer requirement is only 384 KB for a server clock
jitter as large as 1000 ms.

LEE: CONCURRENT-PUSH SCHEDULING ALGORITHM 475

(a) (b)

Fig. 8. (a) Scheduling delay versus number of servers. (b) Prefill delay versus number of servers.

Fig. 9. System response time versus number of servers.

C. System Response Time

We first plot scheduling delay versus the number of servers
in the system in Fig. 8(a). The case for SSS is not plotted, as it
has no effect on the scheduling delay. Note that the worst case
scheduling delay is substantially reduced by AGSS, especially
for a large number of servers. Moreover, the average sched-
uling delay with AGSS is even smaller and stays relatively
constant regardless of the number of servers in the system.
For example, with AGSS striping in a 16-servers system, the
average delay is only 1.26 s for system utilization as high
as 90%, even though the worst case is 9.18 s. The worst
case delay is even larger (13.98 s) without AGSS. Hence,
with AGSS, we can maintain a reasonably low scheduling
delay by operating the system to within, say, 90% of the total
capacity.

Fig. 8(b) plots the prefill delay versus the number of servers
in the system. The results show that the prefill delay is also
reduced by AGSS because the worst case transmission jitter

is larger than the clock jitter . More important, by using

subschedule striping, the prefill delay becomes completely
independent of the number of servers in the system.

Last, we plot the total system response time in Fig. 9.
Clearly, the proposed AGSS and SSS can effectively maintain
a small system response time (1.8 s for at 90%
utilization) even if the number of servers is large.

D. Scalability

The results in the previous sections have shown that both
the client buffer requirement and the system response time can
be maintained low irrespective of the number of servers in the
system. The server buffer requirement is the only factor that
increases with more servers. This factor will certainly limit the
ultimate scalability of the system. Nowadays, it is common
to install 256 MB or more memory in a PC-based server,
as the price of memory has dropped substantially. Under our
system parameters and ignoring operating system overhead, a
256-MB memory size will limit the scalability of the parallel
video server architecture to a maximum of 408 servers serving

476 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 3, APRIL 1999

a total of 3672 concurrent video sessions at 90% utilization.
If 1-GB memory is available, the architecture can be scaled
up to 14 400 concurrent video sessions using a client–server
ratio of 250 at 90% utilization.

A second, more subtle limiting factor is due to the SSS
scheme. Under this scheme, the client must resequence the
incoming data by copying -bytes stripe units into the client
buffer (Fig. 6). Hence the processing overhead will likely
increase with smaller striping size. Our previous experiences
[14] showed that processing overhead remains practical for
software implementations using i486-based PC’s for striping
size as small as 1 KB. This limits to 64. For larger systems,
we can use more powerful server hardware with a larger
client–server ratio to avoid hitting this limit. In the previous
example with 1-GB memory, we increase the client–server
ratio to 250 so that the total number of servers required
stays within 64 () to avoid excessive
processing at the client. Clearly, we will be able to use smaller
striping size to extend this limit as CPU speed improves.

VII. RELATED WORKS

There has been an increasing interest in designing parallel
video servers. Related studies have been conducted by Bern-
hardt and Biersack [15],et al. [16], Buddhikot and Parulkar
[17], Lee and Wong [18], [19], Reddy [20], Tewariet al. [21],
and Wu and Shu [22]. A general introduction to parallel video
servers can be found in [7]. We summarize below the major
differences between the previous works and the approach
proposed in this paper.

The studies by Reddy [20], Tewariet al. [21], and Wu
and Shu [22] are based on architectures where one or more
intermediate delivery nodes are used to merge video data
from multiple servers for delivery to clients. Conversely,
in our architecture, servers transmit video data to a client
without passing through any intermediate node. Our approach
eliminates the extra hardware needed to run the intermediate
delivery nodes.

Lee and Wong [18], [19] have designed and implemented
a parallel video server for local-area networks. Their system
employs the client-pull service model rather than the server-
push service model studied in this paper.

The study by Buddhikot and Parulkar [17] also employs
the server-push service model. However, the servers in their
system transmit bursts of data in a staggered manner rather
than continuously at a constant rate as our architecture does.
Therefore, their system cannot take advantage of the QoS guar-
antee provided by current ATM hardware, and must rely on
a proprietary ATM switch to precisely synchronize the server
clocks and merge the data bursts into a single continuous data
stream for delivery to clients. In designing our architecture, we
have deliberately avoided the use of proprietary hardware to
lower the cost of the system. By sending data continuously, our
architecture can take advantage of QoS guarantees provided by
current ATM hardware. Moreover, our architecture is robust to
server clock jitter and hence allows conventional distributed
clock synchronization algorithms to be used for server clock
synchronization.

Bernhardt and Biersack [15] and Biersacket al. [16] have
also studied the problem for server-push designs and proposed
algorithms to compensate for network delay differences and
clock drifts. Unlike our architecture, their system stripes
video data in units of frames rather than in fixed-size blocks.
They did not consider variations in video block consumption
times and assumed constant consumption time in [15]. Their
study also did not consider scheduling issues at the servers.
Our study has revealed the limitations of a straightforward
extension of the server-push model, and we proposed the
AGSS with admission scheduling and subschedule striping
schemes to extend the scalability of the architecture. Last, our
study has quantitatively analyzed the system response time,
which is a key performance metric in practice.

VIII. C ONCLUSION

In this paper, we have proposed and analyzed a parallel
video server architecture for designing scalable video-on-
demand systems. The proposed architecture employs fixed-size
block striping and the server-push service model. To schedule
disk retrievals and transmissions, we proposed a concurrent-
push scheduling algorithm where video data are continuously
transmitted from all servers to a client station. This constant-
bit-rate traffic produced by the algorithm enables us to take
advantage of the QoS guarantees provided by today’s ATM
networks. To extend the scalability of the architecture, we
introduced the asynchronous grouped sweeping scheme and
the subschedule striping scheme into the architecture. Results
showed that the resultant architecture can be scaled up to
more than 10 000 concurrent users with acceptable buffer
requirement and system response time.

Building video-on-demand systems upon parallel server ar-
chitecture not only breaks through the capacity limit of a single
server but also opens the way to fault-tolerant system designs.
An early study [19] has already demonstrated the feasibility
of achieving server-level fault tolerance by introducing data
redundancy among the servers. We are currently investigating
ways to integrate fault tolerance into the architecture studied
in this paper.

APPENDIX

Proof of Theorem 1:Let server zero start the first service
round at time . Since the server clocks are not exactly
synchronized, we let be the clock difference between server

and server zero. Hence and
, and server will start service round at time .

Let be the time a new-session request arrives at the
servers. Then the request will arrive at serverduring round

(45)

and the first video block will be retrieved at round
and transmitted at round . Hence the transmission jitter

LEE: CONCURRENT-PUSH SCHEDULING ALGORITHM 477

between server and server for stripe can be expressed as

(46)

Substituting (45) into (46), we have

(47)

Without loss of generality, we can assume and let
. Then we have

(48)

Noting that , we have

(49)

Last, making use of the result that , we can
then obtain

(50)

and the result follows.
Proof of Theorem 2:Let the new-session request arrive at

the admission scheduler at time during group
. Then due to clock jitter, the current group at other

servers can range from to . To
guarantee that the assigned group has not started in any of the
servers implies assigning a group larger than the largest current
group in any of the servers, i.e., .
Applying the inequality , we have

(51)

Substituting into , we have ,
and the result follows.

ACKNOWLEDGMENT

The author would like to thank the reviewers for their
constructive comments in improving this paper for its final
form.

REFERENCES

[1] T. C. Chiueh, C. Venkatramani, and M. Vernick, “Design and implemen-
tation of the stony brook video server,” Computer Science Department,
State University of New York at Stony Brook, Tech. Rep. TR-16, Aug.
1995.

[2] F. A. Tobagi and J. Pang, “StarWorks—A video applications server,” in
Proc. IEEE COMPCON Spring’93, 1993, pp. 4–11.

[3] R. Buck, “The oracle media server for nCube massively parallel sys-
tems,” in Proc. 8th Int. Parallel Processing Symp., 1994, pp. 670–673.

[4] H. Taylor, D. Chin, and S. Knight, “The magic video-on-demand server
and real-time simulation system,”IEEE Parallel Distrib. Syst., vol. 3,
no. 2, pp. 40–51, 1995.

[5] C. Griwodz, M. Bar, and L. C. Wolf, “Long-term movie popularity
models in video-on-demand systems or the life of an on-demand movie,”
in Proc. Multimedia’97, pp. 349–357.

[6] T. D. C. Little and D. Venkatesh, “Popularity-based assignment of
movies to storage devices in a video-on-demand system,”ACM Mul-
timedia Syst., vol. 2, no. 6, pp. 280–287, 1995.

[7] Y. B. Lee, “Parallel video servers—A tutorial,”IEEE Multimedia Mag.,
vol. 5, no. 2, pp. 20–28, 1998.

[8] D. J. Gemmell, H. M. Vin, D. D. Kandlur, P. V. Rangan, and L. A.
Rowe, “Multimedia storage servers: A tutorial,”IEEE Comput. Mag.,
vol. 28, pp. 40–49, May 1995.

[9] A. L. N. Reddy and J. C. Wyllie, “I/O issues in a multimedia system,”
IEEE Comput. Mag., vol. 27, pp. 69–74, Mar. 1994.

[10] D. Mills, “Internet time synchronization: The network time protocol,”
IEEE Trans. Commun., vol. 39, pp. 1482–1493, Oct. 1991.

[11] Z. Yang and T. A. Marsland, Eds.,Global States and Time in Distributed
Systems. Los Alamitos, CA: IEEE Computer Society Press, 1994.

[12] P. S. Yu, M. S. Chen, and D. D. Kandlur, “Grouped sweeping scheduling
for DASD-based multimedia storage management,”ACM Multimedia
Syst., vol. 1, pp. 99–109, 1993.

[13] J. N. Lloyd and K. S. Samuel,Urn Models and Their Application. New
York: Wiley, 1997, pp. 125–126.

[14] Y. B. Lee and P. C. Wong, “VIOLA—Video on local area networks,”
in Proc. 2nd ISMM/IASTED Int. Conf. Multimedia Systems and Appli-
cations, Stanford University, Stanford, CA, Aug. 1995, pp. 101–104.

[15] C. Bernhardt and E. Biersack, “The server array: A scalable video
server architecture,”High-Speed Networks for Multimedia Applications.
Norwell, MA: Kluwer, 1996.

[16] E. Biersack, W. Geyer, and C. Bernhardt, “Intra- and inter-stream
synchronization for stored multimedia streams,” inProc. IEEE Int. Conf.
Multimedia Computing and Systems, Hiroshima, Japan, June 17–23,
1996, pp. 372–381.

[17] M. M. Buddhikot and G. M. Parulkar, “Efficient data layout, scheduling
and playout control in MARS,” inProc. NOSSDAV’95, 1995, pp.
318–329.

[18] Y. B. Lee and P. C. Wong, “A server array approach for video-on-
demand service on local area networks,” inProc. IEEE INFOCOM’96,
San Francisco, CA, Mar. 1996, pp. 27–34.

[19] P. C. Wong and Y. B. Lee, “Redundant array of inexpensive servers
(RAIS) for on-demand multimedia services,” inProc. ICC’97, Montreal,
Canada, June 8–12, 1997, pp. 787–792.

[20] A. Reddy, “Scheduling and data distribution in a multiprocessor video
server,” in Proc. 2nd IEEE Int. Conf. Multimedia Computing and Sys-
tems, 1995, pp. 256–263.

[21] R. Tewari, R. Mukherjee, and D. M. Dias, “Real-time issues for clustered
multimedia servers,” IBM Research Rep. RC20020, June 1995.

[22] M. Wu and W. Shu, “Scheduling for large-scale parallel video servers,”
in Proc. 6th Symp. Frontiers of Massively Parallel Computation, Oct.
1996, pp. 126–133.

Jack Y. B. Lee received the B.Eng. and Ph.D. degrees from the Department
of Information Engineering, Chinese University of Hong Kong (CUHK), in
1993 and 1997, respectively.

He is an Assistant Professor at the Hong Kong University of Science and
Technology (HKUST), Hong Kong. Before joining HKUST in 1998, he was
a Visiting Assistant Professor at CUHK for one year. His research interests
include distributed multimedia systems, fault-tolerant systems, and Internet
computing.

