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Abstract—Coring is a well-known technique for removing noise
from images. The mechanism of coring consists of transforming
a noise-degraded image into a frequency-domain representation,
followed by a reduction of the image transform coefficients by a
(nonlinear) coring function. After inverse transforming the cored
coefficients, the noise-reduced image is obtained. In this paper, we
show that coring can be embedded into MPEG encoders with rela-
tively little additional complexity. We exploit statistical properties
of the DCT coefficients to find the optimal Bayesian coring func-
tion for each of the DCT coefficients. Experimental results show
the effectiveness of the MPEG-embedded coring function on com-
pressing noisy image sequences.

Index Terms—Bayesian optimization, coring, DCT coefficient
quantization, MPEG, noise filtering, noise reduction, video
compression, wavelets.

I. INTRODUCTION

REMOVING noise from digital image sequences is not only
important for improving the visual quality of these se-

quences, but also for increasing the efficiency of MPEG video
encoders. A property of (white) noise is that the noise energy
spreads out evenly over all the DCT coefficients in an MPEG
encoder. Therefore, the presence of noise in an image sequence
leads to fewer DCT coefficients that are zero, decreasing the
efficiency of zero-runlength encoding of quantized DCT coef-
ficients. Furthermore, on the average, the amplitudes of the re-
maining DCT coefficients are larger than in the noise-free case,
which also leads to a loss of compression efficiency.

In recent years, the technique ofcoringhas gained great pop-
ularity for denoising degraded signals, and in particular for de-
noising 2-D images [1]–[4]. Coring is a (nonlinear) noise re-
duction technique in which each frequency component of an
observed noisy signal is adjusted according to a certain char-
acteristic: thecoring function. Originally, coring was developed
as a heuristic technique for crisping television pictures [5]. In
the early 1980s, coring was first applied in the digital domain
for noise reduction [3], [4], [6]. The technique of coring re-
ceived a great deal of attention after Donoho and Johnstone ap-
plied it successfully in the wavelet transform domain in 1994
[1], [2]. The transformation to the wavelet domain is especially
useful to separate locally concentrated signal energy and the
(white) noise contributions because, unlike the Fourier trans-

Manuscript received October 19, 2000; revised December 14, 2001. This
paper was recommended by Associate Editor S. Chen.

P. M. B. van Roosmalen was with the Information and Communication
Theory Group, Department of Mediamatics, Faculty of Information Technology
and Systems, Delft University of Technology, 2628 CD Delft, The Netherlands.

R. L. Lagendijk and J. Biemond are with the Information and Communication
Theory Group, Department of Mediamatics, Faculty of Information Technology
and Systems, Delft University of Technology, 2628 CD Delft, The Netherlands
(e-mail: R.L.Lagendijk@its.tudelft.nl; J.Biemond@its.tudelft.nl).

Publisher Item Identifier S 1051-8215(02)02812-4.

Fig. 1. Coring functionsg( : ) whereZ(!) is the noisy signal (wavelet, DCT,
Fourier) coefficient. (a) Soft thresholding. (b) Hard thresholding. (c) Piecewise
linear coring.

form, scale-space representations allow local signal character-
istics at different scales to be taken into account. In more recent
work, coring has also been applied to video sequences, for in-
stance, in the 3-D wavelet domain [7], [8].

In general, coring functions leave transform coefficients with
high amplitudes unaltered, and coefficients with low amplitudes
are shrunk toward zero. Coefficients with large amplitudes are
reliable and should not be altered because they are not signifi-
cantly influenced by noise. Coefficients with small amplitudes
carry relatively little information and are easily influenced by
noise. Therefore, these coefficients are unreliable, and their con-
tribution to the observed data should be reduced.

Following these intuitive guidelines, three well-known coring
or thresholdingfunctions have been proposed (see Fig. 1).

1) Soft-thresholding[1], [3], illustrated in Fig. 1(a)

if

otherwise.
(1)

Here, is one of the (Fourier, wavelet, DCT) trans-
form coefficients of the noisy signal , where and
represent 2-D spatial coordinates and 2-D frequency coor-
dinates, respectively. Further, is the cored (noise-re-
duced) transform coefficient, andis a coring threshold
that depends on the amount of the noise in the signal.

2) Hard-thresholding[1], [3], illustrated in Fig. 1(b)

if

otherwise.
(2)

3) Piecewise linear coring[3], illustrated in Fig. 1(c)

if

if

otherwise.

(3)
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Fig. 2. MPEG encoding of noisy image sequences.

Here, and are noise-dependent thresholds. Piece-
wise linear coring is a compromise between hard and
soft thresholding. It attempts to reduce the ringing arti-
facts from hard thresholding, while avoiding the loss of
low-contrast picture detail common to soft-thresholding.

In the case of video sequences, noise reduction is often car-
ried out as a preprocessing step prior to MPEG compression. If a
coring technique is to be used, the noise-reduction preprocessor
must carry out a forward and an inverse signal transform, such
as a wavelet or DCT transform. This is rather inefficient since
internally in the MPEG compression algorithm a similar (DCT)
transform is carried out. Embedding the noise reduction step
into the MPEG compression algorithm may therefore greatly re-
duce the complexity and processing delay of the overall system.

In this paper, we consider the embedding of the coring
functionality into the MPEG video-encoding algorithm. Fur-
thermore, instead of using one of the three coring functions
shown in Fig. 1, we will derive Bayesian optimal coring
functions for the DCT coefficients. In Section II, we first
describe the problem of coring DCT coefficients, and describe
the formal solution to this problem. Then, in Section III, we
consider how to apply coring to the three different picture
types that exist within MPEG, namely I, P, and B frames. In
Section IV, we find the optimal Bayesian coring functions for
the DCT coefficients using a model for the probability density
function of the DCT coefficients. Then, in Section V, we
evaluate the proposed MPEG encoder with embedded coring.
Conclusions are drawn in Section VI.

II. CORING AND QUANTIZATION OF DCT COEFFICIENTS

We consider a broadcasting environment in which noisy
image sequences are digitally broadcasted after passing through
an MPEG compression system. Fig. 2 establishes the notational
conventions. MPEG compression systems try to minimize
the quantization errors between input frame and output
frame for a given bit rate. However, in the case of noisy
video sequences, what they should be doing is minimizing the
quantization errors between the original noise-free frame
and the compressed frame . When the encoder does so, it
can be considered a device for simultaneous noise reduction
and video compression.

Let denote the overall error between and . This
error consists of the sum of the quantization noise resulting
from the compression of the DCT coefficients and the (reduced)
amount of noise present in . The variance of this overall
error can be expressed in terms of original and quantized DCT
coefficients

(4)

Here, and (with ) represent the 64
original and quantized DCT coefficients, respectively, of each
8 8 DCT block within a video frame. The column, row, and
frame numbering of the DCT blocks is indicated in shorthand
by . Clearly, an optimaljoint noise-reduction and quantization
strategyminimizes (4). Since we assume that the DCT coeffi-
cients are mutually uncorrelated, we confine ourselves toscalar
estimation of in the remainder of this paper.

Two approaches can be followed to minimize equation (4),
although it was already shown in [9] that these approaches
yield the same result. The first approach directly minimizes

for each of the DCT coefficients individually.
Essentially, this approach determines optimal (nonuniform)
quantizers for the DCT coefficients of anoisy signal. With
proper knowledge of the signal and noise distributions, it is
not difficult to find the relations that the quantizer represen-
tation and decision levels should satisfy. In fact, the resulting
expressions are highly akin to the ones found for Lloyd–Max
quantizers [8], [10].

The second approach splits the minimization of the overall
error variance (4) into two successive minimizations. Thefirst
step is the noise reduction step, which for a moment ignores
the subsequent quantization of the DCT coefficients. This step,
therefore, consists of the minimization of

(5)

If the minimization of (5) is done per DCT coefficient (i.e., we
derive a scalar estimator), this leads to the following well-known
estimation result:

(6)

The noise-reduced DCT coefficients are found as the con-
ditional expectation of the true DCT coefficient, given the
observed noisy DCT coefficient. Note that (6) assumes that
the probability density function of the observed noisy DCT
coefficients is known. Thesecond stepnow simply consists
of designing a scalar quantizer that is optimal for the original
noise-free DCT coefficients. Notice that in this step, we can
ignore that the DCT coefficients to be quantized are in fact
noise-reduced coefficients.

In the particular case of an MPEG encoder, the advantage of
the second approach is that the quantizer in the MPEG encoder
is already optimized for encoding noise-free DCT coefficients.
It is, therefore, not necessary to redesign new quantization ta-
bles as is required for the first approach. In the second approach,
all that needs to be done is to core the DCT coefficients prior to
the usual DCT coefficient quantization. In fact, MPEG encoders
implicitly core noisy DCT coefficients to some extent by incor-
porating a dead zone in the quantizers for the DCT coefficients
of the nonintra-coded frames [11], [12]. As a result of the dead
zone, DCT coefficients with small magnitudes are mapped to
zero. We note, however, that the use of dead zones is suboptimal
for noise reduction because quantizers with dead zones are not
applied to all frames, and because they do not address the noise
on DCT coefficients with larger amplitudes.
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Fig. 3. Coring of the DCT coefficients of I frames in an MPEG-2 encoder.

Fig. 4. (a) Coring function applied to DCT of frame differences. (b) Alternative configuration in which B and P frames can be cored similar to I frames. Note
that the predicted frame is extracted from a coded frame that has already been noise reduced and need not be cored again.

III. CORING OF THEMPEG I, P,AND B FRAMES

In this section, we first consider the case of coring MPEG I
frames. This solution is then extended to MPEG P and B frames.

A. Coring of I Frames

MPEG I frames are compressed by dividing the frames in
8 8 blocks, applying the DCT transform to each of the blocks,
and quantizing the DCT coefficients. Two approaches can be
followed toward coring the DCT coefficients of I frames. The
first approach is to estimate the probability density function
(PDF) for each of the DCT coefficient from the observed data
for each frame. Given the estimated PDFs, the conditional ex-
pectation of each DCT coefficient can be computed according
to (6). Finally, the noise reduction can take place by replacing
the observed DCT coefficients with their conditional expecta-
tions. Computing the optimal coring functions foreach I frame
of a video sequence is, however, difficult to realize in real-time
MPEG encoders.

The second approach does not optimize the coring functions
for each frame. Instead, fixed sets of coring functions are com-
puted and stored in the MPEG encoder as lookup tables (Fig. 3).
These coring functions are computedoff-line from a large set of
frames, so that on average, the encoder gives the best results that
can possibly be achieved under the condition of static lookup
tables. A different set of coring functions is computed for a
number of noise levels. Upon MPEG compression of a video
sequence, only the noise level has to be estimated (possibly per
frame), after which the proper coring function lookup table can

be selected. In Section IV, we will discuss how the DCT coring
functions for MPEG I-frames can be determined.

B. Coring of B and P Frames

MPEG B and P frames are (bi-directionally) predicted from
frames coded previously. The frame differences between the
predicted and current frames are encoded like I frames, i.e.,
by applying the DCT transform and scalar quantization. This
process is illustrated in Fig. 4(a). Finding the optimal coring co-
efficients is, however, more difficult for B and P frames because
the PDFs of the frame differences and the noise are much harder
to find than in the case of I-frames. This is because the PDFs
now depend on the nonlinear coring and quantization of the ref-
erence frames, and because the PDFs are highly dependent on
the quality of the motion estimator used for the prediction of the
B and P frames.

We, therefore, propose using the alternative strategy shown
in Fig. 4(b). Instead of coring the DCT coefficients of frame
differences, the DCT transform and coring are performedprior
to subtracting the current frame from its (motion-compensated)
prediction. Note that the coring functions in Fig. 4(a) and (b)
are different because they are applied on signals with entirely
different statistical properties. Furthermore, the results obtained
by the two different approaches are generally not identical.

Two aspects of the scheme in Fig. 4(b) are noteworthy. First,
thepredictedframes have already been compressed and hence
they have already been noise-reduced earlier. Therefore, it is
not necessary to core these predicted frames again. Second, the
optimal coring characteristics are identical to those computed
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Fig. 5. (a) Shape parameters and (b) standard deviations estimated for the DCT coefficient. Numbering of DCT coefficient is according to (c).

before for the I frames. Therefore, only one set of lookup tables
is required for the I, P, and B frames.

IV. BAYESIAN CORING FUNCTIONS FORNOISY DCT
COEFFICIENTS

This sections deals with computing the coring functions for
the I, P, and B frames. As indicated in the previous section,
the coring functions are computed from a large set of video se-
quences, so that the encoder gives the best results that can be
achieved on average with static lookup tables. Computing the
coring functions consists of two steps. First, the PDFs of the
intensities of the frames and the noise have to be determined.
Next, the coring functions can be computed using (6).

The noise corrupting the DCT coefficients of the video se-
quences is assumed to be additive white zero-mean Gaussian
noise with known variance . Therefore, the noise variance
does not depend on the index of the DCT coefficient. As the
amount of noise may be time-variant, its variance has to be es-
timated per frame.

The PDF of each of the 63 DCT ac coefficients is modeled by
a Laplacian distribution [13], [14]. In practice, thegeneralized
Gaussian PDF is more accurate [15], [16], which includes the
Laplacian as a special case. The DCT dc coefficient is not cored
because it is usually insignificantly influenced by noise.

The generalized Gaussian probability density function is de-
fined as follows:

(7)

with

and (8)

Here, is the gamma function and is the standard devia-
tion of the DCT coefficient under consideration. It can be seen
from (7) and (8) that the generalized Gaussian PDF is com-
pletely determined by the shape parameterand the variance

. An efficient method for estimating the shape parameter
from a set of image sequences based on second-order statistics
is given in [16]. Let denote DCT coefficients with coefficient
number . The mean and the variance of a
set of observed DCT coefficients with coefficient numbercan

be estimated directly from the observed data. Letbe defined
as follows:

(9)

The shape parameter for the PDF of the th DCT coefficient
is then found by solving

(10)

Equation (10) can be solved using numerical methods. Fig. 5
shows the resulting shape parameterand the standard devi-
ation that are estimated from the DCT coefficients obtained
from a set of 18 different video frames [numbering of the DCT
coefficients is according to Fig. 5(c)]. Except for the DCT DC
component, it can be seen that is in the range of 0.4–0.5.
The standard deviation of the DCT coefficients decreases with
increasing frequency, which is consistent with the well-known
fact that natural images contain less energy in high frequencies
than in low frequencies.

We can now proceed to calculate the coring functions using
(6). To this end, we calculate the coring function as
the Bayesian estimator given in (6) as follows:

(11)

In order to solve (11), we need thea posteriori PDF
, i.e., the a posteriori PDF of the th

DCT coefficient given the observed noisy DCT coef-
ficient . Using Bayes’ rule and the fact that the noise

on the th DCT coefficient is additive, we obtain

(12)

where is the PDF of the noise on theth DCT
coefficient. We have assumed that this PDF is Gaussian with
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Fig. 6. Coring function for DCT coefficient 8, computed for noise with
variance 100 corrupting the image.

Fig. 7. Plot of part of the coring functions for all 64 DCT coefficients,
computed for noise with variance 100 corrupting the image.

zero-mean and variance . All terms in (11) and (12) are
now known, so that the coring function for each of
the DCT coefficients can be determined.

As an illustration, Fig. 6 shows the coring function computed
for DCT coefficient number 8 for noise with variance of 100,
i.e., . In this figure, small values are cored toward
zero, whereas larger values are altered less. This agrees with the
intuitive conclusion that data with small amplitudes are noisy
and unreliable, and they should therefore be discarded. Fig. 7
shows the coring functions for all 64 DCT coefficients, again for
noise with variance 100 corrupting the image. The dc coefficient
is not cored, hence the 45-degree line for this DCT coefficient. It
can be seen that coefficients representing higher spatial frequen-
cies are cored toward zero more strongly than coefficients rep-
resenting lower spatial frequencies. This, again, matches well
with the fact that natural images contain less energy in high fre-
quencies than in low frequencies.

The coring functions must clearly depend on the noise vari-
ance. This can be seen from (12), which depends on the PDF,
and therefore variance, of the noise. In a practical MPEG com-
pression system, coring functions can be computed in advance
for different noise variances to avoid computational overhead
during the actual video compression.

V. EXPERIMENTAL RESULTS

We have experimented with the embedded coring functions
within the context of the standardTest Model 5(TM5) MPEG-2
encoder [17]. This section describes two sets of experiments.
The first experiment evaluates the performance of the embedded
coring functions for varying amounts of noise in terms of PSNR.
The second experiment compares the performance of the em-
bedded coring functions with the application of a “standard”
wavelet-based noise-reduction coring prefilter entirely outside
the MPEG encoder [7], [8], [18].

The first experiment evaluates the performance of the MPEG
encoder with embedded coring functions in terms of the PSNR
when applied to video sequences with varying amounts of noise.
Fig. 8 shows the configuration used for measuring the PSNR of
the compressed video sequences. Note that in this simulation,
we measure the PSNR with respect to thenoise-freevideo se-
quence. Of course, in the actual coring or quantization of the
noisy video sequence, no use is made of the original video se-
quence. Fig. 9(a) (test sequencePlane) and Fig. 9(b) [test se-
quenceMobCal(Mobile-Calendar)] show the measured PSNRs
for bit rates ranging from 2 to 15 Mbit/s. The results show that
the PSNRs of the cored and coded sequences are considerably
higher than those of the noisy input sequences. Clearly, MPEG
compression with embedded coring improves the quality of the
video sequences rather than degrading it as in the typical case
with noise-free video sequences.

The PSNRs of the corrected sequences increase more rapidly
with increasing bit rate at low bit rates than at high bit rates.
Specifically, the curves for test sequences with noise variance
100 and 225 are quite flat over the range from 4 to 15 Mbit/s.
This contrasts with the PSNRs for noise-free sequences, which
increase steadily with increasing bit rate. This implies that there
is an “early” saturation pointfor the bit rate in compressing
noisy video sequences. Encoding with bit rates above this satu-
ration point gives only marginal improvements in coded image
quality.

The second experiment investigates whether the MPEG en-
coder with embedded coring performs better than the standard
MPEG encoder in combination with a prefilter. It could be imag-
ined that even though a highly optimized prefilter outperforms
the embedded coring functions in the MPEG encoder, its supe-
rior quality may be lost due to quantization errors introduced by
the subsequent MPEG encoding. The prefilter used in these ex-
periments is the coring of wavelet coefficients obtained from the
temporally extended version of the 2-D Simoncelli pyramid [18]
that is described in [7] and [8]. This coring technique is called
the3-D pyramid filter. Similar results can be obtained with other
state-of-the-art wavelet and coring-based noise-reduction tech-
niques.

A moderate amount of noise (variance 100) was added to the
Plane and MobCal sequences. Fig. 10 shows the PSNR as a
function of the bit rate of the noisy video sequences after en-
coding by the standard TM5 MPEG encoder with and without
prefiltering by the 3-D pyramid filter. The PSNRs that result
from applying the MPEG coder with embedded coring to the
noisy image sequences are also shown in this figure. For the
purpose of reference, the PSNRs of the compressed original
(noise-free) image sequences are plotted in the same figure.
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Fig. 8. Scheme for measuring the PSNR of cored and coded noisy image sequences.

Fig. 9. Measured PSNRs for (a) Plane and (b) MobCal sequence using an MPEG encoder with embedded coring. The noise variance in the noisy sequences was
25, 100, and 225, which correspond to PSNRs of 33.0, 27.0, and 23.5 dB, respectively.

Fig. 10. (a) PSNR versus bit rate for the original Plane sequence, noisy Plane sequence (noise variance 100), and noise-reduced Plane sequence (filtered by the
3-D pyramid filter) encoded by the standard TM5 MPEG encoder. Also shown is the PSNR of the noisy Plane sequence that was encoded by the MPEG encoder
with embedded coring function. (b) As in (a) but now for the MobCal sequence.

Fig. 10 shows that prefiltering video sequences with a mod-
erate amount of noise prior to encoding with the standard MPEG
encoder gives a PSNR that is maximally 1-dB higher than when
the coring is embedded into the MPEG encoder. It can also
be seen that the standard MPEG encoder (without coring and
without prefilter) already operates as a noise reducer at low bit
rates. At 3 Mbit/s, the PSNR of the coded noisyPlanesequence
is about 3.5-dB higher than that of the noisy original (30.5 dB
compared to 27.0 dB). This figure is 1.5 dB for theMobCalse-
quence (28.5 dB compared to 27.0 dB). The PSNR decreases
at higher bit rates. This behavior is not surprising. The encoder
applies a coarse quantization at low bit rates, removing a lot of
noise energy as a result of the dead zone. Since the encoder is
capable of encoding the signal and therefore also the noise more
accurately at higher bit rates, the noise in the signal is preserved
better, reducing the PSNR with respect to the noise-free original

video sequences. In the limiting case, at very high bit rates, the
noisy sequence is encoded without quantization errors, yielding
a PSNR of 27.0 dB: the PSNR of the noisy sequence.

VI. CONCLUSIONS

In this paper, we have shown that noise reduction can take
place within an MPEG encoder by embedding a coring func-
tion. The coring takes place on each of the DCT coefficients.
Coring modules have to be placed between the DCT transform
and the DCT coefficient quantizers. The additional costs of the
embedded coring functions compared to a standard MPEG en-
coder consist of 63 noise-dependent (switchable) lookup tables
and separate 8 8 DCTs on the B- and P-frames. This is a
cheaper solution than preceding the MPEG encoder with a sep-
arate noise-reduction prefilter, while the performance is quite
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comparable, giving a loss of at most 1 dB over a wide range of
bit rates at a moderate noise level of 27 dB.
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