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Localizing and Segmenting Text in
Images and Videos

Rainer Lienhart, Member, IEEE, and Axel Wernicke

Abstract—Many images—especially those used for page design
on web pages—as well as videos contain visible text. If these text
occurrences could be detected, segmented, and recognized auto-
matically, they would be a valuable source of high-level seman-
tics for indexing and retrieval. In this paper, we propose a novel
method for localizing and segmenting text in complex images and
videos. Text lines are identified by using a complex-valued multi-
layer feed-forward network trained to detect text at a fixed scale
and position. The network’s output at all scales and positions is in-
tegrated into a single text-saliency map, serving as a starting point
for candidate text lines. In the case of video, these candidate text
lines are refined by exploiting the temporal redundancy of text in
video. Localized text lines are then scaled to a fixed height of 100
pixels and segmented into a binary image with black characters on
white background. For videos, temporal redundancy is exploited to
improve segmentation performance. Input images and videos can
be of any size due to a true multiresolution approach. Moreover,
the system is not only able to locate and segment text occurrences
into large binary images, but is also able to track each text line
with sub-pixel accuracy over the entire occurrence in a video, so
that one text bitmap is created for all instances of that text line.
Therefore, our text segmentation results can also be used for ob-
ject-based video encoding such as that enabled by MPEG-4.

Index Terms—MPEG-4 object encoding, object detection, ob-
ject segmentation, text detection, text extraction, text segmenta-
tion, video indexing, video OCR, video processing.

I. INTRODUCTION

I NFORMATION is becoming increasingly enriched by
multimedia components. Libraries that were originally pure

text are continuously adding images, videos, and audio clips to
their repositories, and large digital image and video libraries
are emerging as well. They all need an automatic means to
efficiently index and retrieve multimedia components.

Text in images—especially in images which are part of web
pages and in videos—is one powerful source of high-level se-
mantics. If these text occurrences could be detected, segmented,
and recognized automatically, they would be a valuable source
of high-level semantics for indexing and retrieval. For instance,
in the Informedia Project at Carnegie Mellon University, text oc-
currences in videos are one important source of information to
provide full-content search and discovery of their terabyte dig-
ital video library of newscasts and documentaries [26]. Detec-
tion and recognition of characteristic text occurrences may also
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be used to record the broadcast time and date of commercials,
helping the people to check whether their client’s commercials
have been broadcast at the arranged time on the arranged tele-
vision channel [8].

Detecting, segmenting, and recognizing text in images which
are part of web pages is also a very important issue, since more
and more web pages present text in images. Existing text-seg-
mentation and text-recognition algorithms cannot extract the
text. Thus, all existing search engines cannot index the content
of image-rich web pages properly [13]. Automatic text-segmen-
tation and text-recognition also helps in automatic conversion
of web pages designed for large monitors to small liquid crystal
displays (LCDs) of appliances, since the textual content in im-
ages can be retrieved.

Our novel method for robust text detection and segmenta-
tion in complex images and videos together with current optical
character recognition (OCR) algorithms and software packages
enables OCR in multimedia components, the fastest growing
media type on the Internet. For video, our novel text-segmen-
tation method is able to not only locate text occurrences and
segment them into large binary images, but also to track each
text line with sub-pixel accuracy over the entire occurrence in a
video, so that one text bitmap is created for all instances of that
text line. Thus, our text-detection and text-segmentation method
can be used for object-based video encoding, which is known
to achieve a much better video quality at a fixed bit rate com-
pared to existing compression technologies. In most cases, how-
ever, the problem of extracting objects automatically is not yet
solved. Our text-localization and text-segmentation algorithms
solve this problem for text occurrences in videos. The rigid text
objects have to be encoded only once, while their motion vector
have to be updated regularly, and the pixels in the background
behind the text have to be colored in such a way that it maxi-
mizes compression of the background video.

The paper is structured as follows. Section II reviews ear-
lier related work, while Section III sketches our new approach.
This is followed by a detailed description of the text-detection
scheme in images (Section IV) and its extension to videos (Sec-
tion V). Section VI elaborates on the text segmentation. Perfor-
mance numbers are reported in Section VII. Section VIII con-
cludes the paper.

II. RELATED WORK

Smith et al. briefly propose a method to detect text in video
frames [21]. They characterize text as a “horizontal rectangular
structure of clustered sharp edges” [21] and exploit this feature
to identify text in individual frames. They do not utilize the mul-
tiple instances of the same text over successive frames to en-
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hance detection performance. The approach is also scale depen-
dent, i.e., only text within a certain font size range is detected,
and does not address its preparation (i.e., text segmentation) for
OCR.

Zhong et al. propose two simple methods to locate text in
complex images [30]. The first approach is mainly based on
finding connected monochrome color regions of a certain size,
while the second locates text based on its specific spatial vari-
ance. Both approaches are combined into a single hybrid ap-
proach. Since their methods were designed primarily to locate
text in scanned color CD cover images, they are not directly
applicable to video frames. Usually, the signal-to-noise ratio
(SNR) is much higher in scanned images, while its low value
in videos is one of the biggest challenges for text segmentation.

In [6], Jain and Yu introduce a method for text localization
that is suitable in a number of applications, including newspaper
advertisements, web pages, and images and video in general.
As in [7], the text-localization algorithm is based on connected
component analysis, and thus requires either text to be mono-
chrome or its background. Visually good results are presented in
[6] for advertisement images, web banner images, scanned mag-
azine pages, and video frames. The authors point out problems
with small text fonts and cases where the image’s 3-D color his-
togram is sparse, and thus no dominant color prototypes exist.
These cases, however, may often occur in videos. No quantita-
tive performance numbers are reported.

Wu et al. propose a four-step system that automatically de-
tects and extracts text from images [27]. First, text is treated
as a distinctive texture. Potential text locations are found by
using three second-order derivatives of Gaussians on three dif-
ferent scales. Second, vertical strokes emerging from horizon-
tally aligned text regions are extracted. Based on several heuris-
tics, strokes are grouped into tight rectangular bounding boxes.
These two steps are applied to the input image at all scales in
order to detect text over a wide range of font sizes. The boxes
are then fused at the original resolution. Third, the background
is cleaned up and binarized. Finally, text boxes are refined by
repeating steps 2 and 3 with the text boxes detected thus far.
By failing to provide any mechanism to infer the text color, two
binary images are produced for each text box. These binary im-
ages are passed on to standard OCR software for evaluation. Wu
et al. report a recognition rate of 84% for 35 images. Unfortu-
nately, the algorithms were designed to deal with scanned im-
ages, which usually have a better SNR than video frames and,
therefore, may not work best on video frames. In addition, the
algorithms do not exploit the temporal information available in
video streams.

Recently, Sato et al. developed a system for segmenting and
recognizing static low-resolution caption text in newscasts [19].
They use the method proposed in [21] to detect caption text.
Detected text blocks are then magnified by a factor of 4 and
integrated over time by means of a time-based minimum pixel
value search. This multiframe integration approach assumes that
on average captions are brighter than their background pixels.
While these restrictions may be acceptable for newscasts, they
are too strict for general artificial text occurrences in video. Sato
et al. also present a new character extraction filter and an inte-
grated approach of text recognition and segmentation. However,

it is very tailored to their application domain (newscasts) and
video format (MPEG-1) [19]. They report a character recogni-
tion rate of 83.5% and a word recognition rate of 70.1% with re-
spect to the 89.6% correctly detected text locations, i.e., a char-
acter recognition rate of 74.8% and a word recognition rate of
62.8% with respect to the ground truth. Word recognition was
improved by using the Oxford dictionary and a closed caption
dictionary.

Two systems for detecting, segmenting and recognizing
text in video have been developed by Lienhart et al. [7], [9].
Both systems are based on image segmentation exploiting
the monochromaticity, the high contrast with its background
and the simple texture of text in video. The first system uses
a color-based split-and-merge algorithm [7], while the latter
system counts on anisotropic diffusion [9]. The system in [7]
tracks text only short-term in order to rule out nontext regions.
Text, however, is segmented and recognized on a frame basis
and not associated over time. An iterative text-recognition
algorithm is applied to transcribe the text into ASCII. In [9],
text is tracked over its life time, and multiple text occurrences
are integrated over time. The commercial Recognita OCR
engine is used for text recognition. Recognition rates between
41%–76% are reported.

Li et al. use a neural feed-forward network to locate text in
videos [10], [11]. The high-frequency wavelet coefficients of a
frame are the input to the network. The trained neural network
monitors a video for text occurrences, proceeding each time by a
certain number of frames if no text was found. If text was found,
it is tracked coarsely against a simple background by using plain
block matching [10], [11]. Although Li’s approach is partially
similar to ours, their system has many shortcomings.

1) Their method is restricted to video only.
2) It detects text only at the block level. A text block is de-

fined as text lines which are close to each other. This can
cause severe problems if the text lines do not move ho-
mogeneously.

3) I does not achieve sub-pixel accurate tracking since
their system is not able to determine the text color.
Consequently, it cannot remove the background during
the search for the actual text location.

A. Contributions

The main contributions of this paper are the following.

• A truly multiresolution approach. Our novel text localiza-
tion and text segmentation algorithms work successfully
for small and large images as well as from MPEG-1 video
sequences up to HDTV MPEG-2 video sequences (1980
1280) without any parameter adjustment. Character sizes
can vary between 8 pixels and half the image height. Only
[10] and [27], [28] address the problem of multiresolu-
tion. However, our approach uses more scales than their
approaches.

• A truly multimedia text detector and text segmenter. The
proposed system can localize and segment text in images
(especially complex images in web pages) and videos.
None of the systems in the related work section except
[10], [27], and [28] are capable of doing this. Wu et al.
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show results of text detected in web pages, maps, ads, im-
ages, and static video frames, but do not take the temporal
redundancy of video into account. Reference [10] claims
that their approach works on images and videos, however
they only report data for videos.

• A novel way to estimate the text color reliably by using
vector quantization. None of the existing work is capable
of doing this. For instance, [19] and [20] assume that, on
average, over time the text color is brighter than its back-
ground. For applications where this in not true, Sato et al.
propose to try out the results for normal and inverse text.
Although Hori proposes a scheme to estimate the character
intensity distribution by means of intensity mean estima-
tion of high-intensity pixels, his method also depends on
the assumption that characters are brighter than their back-
ground [5]. In detail, he assumes that the intensity values
of all character pixels are equal or larger than ,
while all background pixels have lower intensity with
denoting the estimated mean of the high-intensity pixels
in the text box and their standard deviation.

• A new scheme to register moving text lines perfectly over
time.This allows use of the temporal segmentation scheme
first proposed by [19] and [20]. Overall, previous work
that reports text tracking such as [7], [9]–[11] do it more
on a qualitative basis in order to identify false alarms.
Tracking text is not pixel-accurate.

• Unlike all existing work, detected text lines are scaled
to an aspect-ratio preserving fixed height of 100 pixels
during text segmentation. This scaling improves segmen-
tation for text of smaller font sizes as well as saves time
for text of font sizes larger than 100 pixels.

III. STRATEGY AND OVERVIEW

A top-down approach is taken in our text localization and
text segmentation system. In a first step, potential text lines in
images, video frames or web pages are localized (Section IV).
These potential text lines are refined in the case of video by ex-
ploiting its temporal redundancy (Section V). In a second step,
localized text lines/objects are segmented into binary images
with black characters on white background and a fixed height
of 100 pixels (Section VI). Again, in the case of video, tem-
poral redundancy is used to improve segmentation. The output
of the text segmentation is passed on to a standard OCR soft-
ware package.

Three basic decisions preceded the development of our new
text localization scheme.

1) Only horizontal text is considered, since it accounts for
more than 99% of all artificial text occurrences. The ex-
periences with our old systems [7], [9], which considered
any writing direction, suggest that taking the missing 1%
of text occurrences into account must be paid off by a
much higher false alarm rate. As long as a performance
of 90% and higher of correctly segmented text in videos
and complex images is still a challenge, nonhorizontal
text can be neglected.

2) Non-text regions are much more likely than text regions.
Therefore, we decided to train the raw text detector as

narrowly as possible, i.e., it is trained to detect text at a
fixed position and scale. Scale and position independence
is achieved by applying the raw text detector to all posi-
tions at all scales.

3) Text occurrences only matter if they consist of at least two
letters and/or digits.

IV. TEXT LOCALIZATION IN IMAGES

The input to the text localization step may be complex im-
ages, images embedded in web pages or videos. It is the task of
the text localization to locate and circumscribe text occurrences
in all these kinds of multimedia data by tight rectangular boxes.
Each so-called text bounding box is supposed to circumscribe
only a single text line.

Fig. 1 gives an overview of our text localization scheme. It
visualizes the various processing steps and will become clear
while we step through in the remainder of this chapter.

A. Image Features

Artificial text occurrences have been commonly char-
acterized in the research community as regions of high
contrast and high frequencies [9], [19]. There are many
different ways to amplify this feature. In this work, we
choose to use the gradient image of the RGB input image

in order to calculate
the complex-values edge orientation image .
is defined as follows:

maps all edge orientations between 0 and 90 , and thus dis-
tinguishes only between horizontal, diagonal and vertical orien-
tations. serves as our feature for text localization.

B. Fixed Scale Text Detector

Given a 20 10 pixel region in an edge orientation image
, the fixed scale text detector is supposed to classify whether

the region contains text of a certain size. Many different tech-
niques exist for developing a classifier [14]. For our work, we
compared the performance of a real-valued and complex-valued
neural feed-forward network [15]. Due to its superior perfor-
mance, we decided on the complex-valued neural network with
hyperbolic tangent activation function. At a comparable hit rate
(90%), its false hits (0.07%) on the validation set were more
than twice as low as with a comparable real-valued network.
Network Architecture: 200 complex-valued neurons were

fed by a 20 10 edge orientation region in (one link from
each complex-valued edge pixel to each complex-valued input
neuron). This size of the receptive field exhibits a good tradeoff
between performance and computational complexity. An input
layer of 30 15 neurons did not achieve better classification
results and was computationally more expensive. On the other
hand, using an input layer with fewer than ten rows resulted in
substantially worse results. Note that the number of rows of the
receptive field determines the size of the font being detected
since all training text patterns are scaled such that the font
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Fig. 1. Scale- and position-invariant text localization.

size is equal to the number of rows. The input layer in turn
is fully connected to a hidden layer of two complex-valued
neurons using hyperbolic tangent activation functions. Again,
using more hidden neurons did not result in any performance
improvements, while using only one increased the false alarm
rate by a factor of three. The hidden layer is aggregated into
one real-valued output neuron of range [ 1, 1].
Network Training: The composition of the training set seri-

ously affects a network’s performance. We collected a represen-
tative set of 30 180 text patterns and 140 436 nontext patterns.
Initially 6000 text patterns and 5000 nontext patterns were se-
lected randomly for training. Only the nontext pattern set was
allowed to grow by another 3000 patterns collected by means
of the so-called “bootstrap” method. This method, proposed
by Sung [22], starts with an initial set of nontext patterns to
train the neural network. Then, the trained network is evalu-
ated using a validation set distinct from the training set (all pat-
terns minus the training set). Some of the falsely classified pat-
terns of the validation set are randomly added to the training
set and a new—hopefully enhanced—neural network is trained
with this extended and improved training set. The resulting net-
work is evaluated with the validation set again and additional
falsely classified nontext patterns are added to the training set.
This cycle of training and adding new patterns is repeated until
the number of falsely classified patterns in the validation set
does not decrease anymore or, as in our case, 3000 nontext pat-
terns (and only nontext patterns) have been added. This iterative
training process guarantees a diverse training pattern set.

Given a properly trained neural network, a 20 10 pixel
window slides over the edge orientation image and is eval-
uated at each position. The network’s response is stored in a
so-called response image by filling the associated 20 10 re-
gion in the response image with the networks output value if
and only if it exceeds . Since a step size of one
is computationally prohibitive for large images or HDTV video

sequences, we use a step factor of 3 and 2 in the and direc-
tion, respectively. We proved experimentally that the subsam-
pling does not cause any decrease in accuracy but a speed-up of
6 .

C. Scale Integration

The raw fixed-scale text detector is applied to all scales
using a scale down factor of 1.5. In order to recover initial text
bounding boxes, the response images at the various scales must
be integrated into one saliency map of text. As you can observe
from Fig. 1 column 4, text locations stick out as correct hits at
multiple scales, while false alarms appear less consistently over
multiple scales. Similar results have been observed by Rowley
et al. for their neural network-based face detector [18] and by
Itti in his work on models of saliency-based visual attention
[3]. Therefore, a text salience map is created by projecting the
confidence of being text (here: the activation level of the neural
network output) back to the original scale of the image. Hereto,
the salience map is initialized by zero. Then, for each 20
10 pixel window at each scale, its confidence value for text
is added to the saliency map over the size of the bounding
box at the original image scale if and only if the window
was classified as text. Fig. 1 column 5 shows an example.
Confidence in text locations is encoded by brightness.

D. Extraction of Text Bounding Boxes

1) Initial Text Bounding Boxes: To create an initial set of
text bounding boxes, a special kind of region-growing algo-
rithm is employed, where each rectangular region is only al-
lowed to grow by one complete row or column of the rectangle
and the seed position is required to meet a minimal amount
of text saliency. The merge decision is based on the average
saliency of the candidate row/column.
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In detail, the algorithm starts to search for the next pixel
which has not yet been processed in the saliency map with a
value larger then a pre-specified threshold . The choice
of the threshold’s value is determined by the goal of avoiding
the creation of text boxes for nontext regions. Nontext regions
should be less salient than text regions. For our classifier

worked fine, however, it may have to be adjusted
if a new neural network is trained. Semantically, this threshold
means that the sum of all text probabilities of the tested win-
dows overlapping with the respective pixel add up to at least
5.0. Once a pixel in the saliency map with
is found (henceforth called a core pixel), it is taken as a seed
for a new text box of height and width 1. This new text box is
then expanded iteratively based on the average pixel value of
the row above the box in the saliency map : if the average
value exceeds , the row is added to the text box.

is chosen to be slightly smaller than in order
to create a text box encompassing all parts of the characters
and not only their middle part. The same criterion is used to
expand the box to the left, bottom, and right. This iterative
box expansion repeats until the text box stops growing. One
example of the initial text bounding boxes created by this
algorithm is given in Fig. 4(a).
2) Refined Text Bounding Boxes: As shown in Fig. 4(a), the

initial bounding boxes circumscribe the text in the image, how-
ever, in a sub-optimal fashion: some boxes span more than one
line and/or column of text, others contain no text, while in many
the background makes up a large portion of the pixels. For-
tunately, these shortcomings can be overcome by an iterative
post-processing procedure utilizing the information contained
in so-called projection profiles [20].

A projection profile of an image region is a compact repre-
sentation of the spatial pixel content distribution and has been
successfully employed in document text segmentation [20].
While histograms only capture the frequency distribution of
some image feature such as the pixel intensity (all spatial infor-
mation is lost), intensity projection profiles preserve the rough
spatial distribution at the cost of an even higher aggregation of
the pixel content. A horizontal/vertical projection profile is de-
fined as the vector of the sums of the pixel intensities over each
column/row. Fig. 2 shows an example. Vertical and horizontal
projection profiles are depicted as bar charts along the and

axes of the feature images, and the upper boundaries of text
lines are marked by steep rises in the vertical projection profile
while the lower boundaries are marked by steep falls. Similarly,
the right and left boundaries of text objects are indicated by
steep rises and falls in the horizontal projection profile. These
steep rises and falls can be identified as locations where the
profile graph crosses an adaptively set threshold line.

In detail, the vertical segmentation algorithm applied to each
text box works as follows. First, the box is enlarged at the top
and bottom by 25% or half the maximal possible text height,
whichever is smaller [steps (1) and (2) in Fig. 3(a)]. This en-
largement is necessary, because the correct boundaries may lie
outside the current text box and thus accidentally cut off por-
tions of the text. Some rows outside the current text box must be
taken into consideration, to recover these boundaries correctly,
and half the height of the original text box is a good worst case

Fig. 2. Examples of projection profiles and their usage for determining
individual text lines and words.

estimate. Next, the vertical projection profile over the enlarged
text box in is calculated as well as the maximum and min-
imum values and in the profile. In order
to determine whether a single value in the projection profile be-
longs to a text line (step (4) in Fig. 3), the adaptive threshold

is
calculated. Every line with a vertical profile value exceeding

is classified as containing text. The factor of 0.175
was chosen experimentally.

In steps (6)–(8), the vertical segmentation algorithm [see
Fig. 3(a)] begins to search for the first down–up transition
starting from the top. This row is marked as a potential upper
boundary of a text box (9). Then, the next up–down transition
is searched in the projection profile (13). If found, a new box
with the last upper and lower boundaries is created. The search
for a new pair of down–up and up–down transitions continues
until all elements in the projection profile have been processed.
Finally the original text box is deleted. The original text box is
now split into its text lines [see Fig. 4(b)].

A similar horizontal segmentation algorithm is applied to en-
sure that each box consists of only one line of text [see Fig. 3(b)].
However, there are two minor but important differences.

1) A factor of 0.25, instead of 0.175, is used in the computa-
tion of . Experimentally, this value has proven
to be superior for the horizontal segmentation.

2) The gap parameter has been added to avoid splitting up
characters and words in the “same” column due to the
small gaps between them. Therefore, all newly bounding
boxes created by the horizontal segmentation algorithm
equivalent to the vertical segmentation algorithm are
merged into one wider text box if and only if they are
less than gap pixels apart, otherwise the text boxes are
treated as belonging to separate columns. In the current
system, the gap parameter is set adaptively to the height
of the current text box. The whole algorithm is given in
see Fig. 3(b).

Fig. 4(c) shows the result of the horizontal segmentation algo-
rithm applied to our sample image.
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(a) (b)

Fig. 3. (a) Vertical and (b) horizontal segmentation algorithms.

(a) (b)

(c) (d)

Fig. 4. (a) Initial bounding boxes. (b) One vertical segmentation step. (c) One vertical and horizontal segmentation step. (d) Multiple cycles and clean-up.

Although the vertical and horizontal segmentation achieved
good results on the sample frame in Fig. 4, one pass does not
resolve complex layouts. One such example is shown on the
left side of Fig. 4. Obviously, the vertical segmentation could
not separate the different text lines of “Commodities trading in-

volves risk and is not for everyone” [see Fig. 4(b)]. The reason
for this becomes clear if one imagines what the vertical projec-
tion profile for the respective text box in Fig. 4(a) looks like. The
text box in the left column obviously masks the vertical profiles
of the smaller text to the right which therefore could not be split
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(a) (b)

Fig. 5. (a) Initial text bounding boxes. (b) Completely localized web page.

into two text lines. On the other hand, the gap between these two
text columns is large enough to be split up after the horizontal
segmentation algorithm was applied [see Fig. 4(c)]. Experimen-
tally, it turned out that almost every layout can be divided into its
text rows and columns if a few cycles of vertical and horizontal
segmentations are applied to each text box [see Fig. 4(d)].

However, as a side effect, a few cycles of vertical and
horizontal segmentations may produce some very small boxes
and/or boxes of large width-to-height ratios. Since the text
height in images as well as in video frames is limited, boxes
with

height pt

or

height

are classified as nontext regions and, therefore, discarded. More-
over, since horizontal segmentation assures that text boxes con-
tain text objects like words or text lines, the height of correctly
segmented text boxes must be smaller than their width. Conse-
quently, boxes with are discarded, too. Finally,
text boxes sharing the same upper and lower boundary and being
close enough to touch or overlap each other are joined into one
text box. This reduces complexity and will later enable a more
stable text tracking throughout time. Fig. 5 shows an example
for a web page.
3) Estimating Text Color and Background Color: Estimates

of the text color and background color for each text box are
needed later to determine whether a text bounding box con-
tains normal (i.e., dark text on bright background) or inverse
text (i.e., bright text on dark background). Unfortunately, im-
ages and videos are colorful, and even a visually single-col-
ored region like a character in a video frame consists of pixels
of many different but similar colors. Therefore, the complexity
of the color distribution in each text bounding box is reduced
by quantization to the four most dominating colors using the

fast color vector quantizer proposed by Wu [29]. Two color his-
tograms are derived from the color-quantized text box.

1) A color histogram covering the four center rows of the
text box.

2) A color histogram covering the two rows directly above
and underneath the text box (four rows together).

The latter histogram should describe an image region of little or
no text, while the first histogram should be dominated by the text
color. The maximum value of the difference histogram between
the first and second histogram is very likely to correspond to
the text color and the minimum to the dominating background
color. This methodology has experimentally proven to be very
reliable for homogeneously colored text. Of course, it may fail
for multicolored text which, however, is rare.

Based on the estimated text and most dominant background
color, we estimate whether a text bounding box contains normal
text or inverse text. If the grayscale value of the text color is
lower than the dominant background, we assume normal text;
otherwise, inverse text.

V. TEXT LOCALIZATION IN VIDEOS

Videos differ from images and web pages by temporal redun-
dancy. Each text line appears over several contiguous frames.
This temporal redundancy can be exploited to:

1) increase the chance of localizing text since the same
text may appear under varying conditions from frame to
frame;

2) remove false text alarms in individual frames since they
are usually not stable throughout time;

3) interpolate the locations of “accidentally” missed text
lines in individual frames;

4) enhance text segmentation by bitmap integration over
time.

To exploit the redundancy inherent in video, text boxes of the
same content in contiguous frames must be summarized in one
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Fig. 6. Relationship between video monitoring (stage 1) and text tracking (stage 2).

text object based on the visual contents of the text boxes. A text
object describes a text line over time by its text bitmaps, sizes,
and positions in the various frames, as well as its temporal range
of occurrence.

Text objects are extracted in a two-stage process in order to re-
duce computational complexity. In a first stage, a video is mon-
itored at a coarse temporal resolution (see Fig. 6 and [19], [21]).
For instance, the image-based text localizer of Section IV is only
applied to every 30th frame. If text is detected, the second stage
of text tracking will be entered. In this stage, text lines found in
the monitor stage are tracked backward and forward in time up
to their first and last frame of occurrence. This stage uses a com-
bination of signature-based search of text lines and image-based
text localization in order to reduce computational complexity
even further.

A. Video Monitoring

Video is monitored for text occurrences at a coarse temporal
resolution. For this purpose, the image-based text localizer is
only applied to a temporally evenly spaced frame subset of
the video. The step size is determined by the objective not to
overlook any text line. However, it is completely unimportant
whether text lines are localized at the beginning, at the middle
or at the end of their temporal occurrence. In any case, the text
tracking stage will recover the actual temporal range of each
text line.

The maximum possible step size is given by the assumed min-
imum temporal duration of text line occurrences. It is known
from vision research that humans need between 2 and 3 sec-
onds to process a complex scene [12], [17]. Thus, we should be
on the safe side to assume that text appears clearly for at least
one second. For a 30-fps video, this translates to a step size of
30 frames (see Fig. 6).

If the image-based text localizer does not find any text line in
, the monitor process continues with . If, how-

ever, at least one text line is found, the image-based text localizer
will be applied to and . Next, for each text
line in , the algorithm searches for a corresponding text

Fig. 7. Video-monitoring algorithm for text occurrences.

line in and . Correspondence between two
text lines is assumed if their respective bounding boxes at their
original frame locations overlap each other by at least 80%. The
percentage of overlap is defined as

given that and represent the point sets describing the refer-
ence and the second bounding box, respectively. Consequently,
two corresponding boxes cannot differ by more than 20% in size
if they occur at the same position and/or are only allowed to
be slightly shifted with respect to each other if they have the
same size. Small shifts are common for nonstatic text. If corre-
sponding boxes in and are found for a text
box in , a new text object (comprising these text boxes)
is created and marked for tracking in time. A summary of the
video monitoring process is given in Fig. 7.

B. Text Tracking

Each text object must now be extended backward and forward
in time to all frames containing the respective text line. We will
restrict our description to forward tracking only, since backward
tracking is identical to forward tracking, except in the direction
you go through the video.
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Basically, our fast text tracker takes the text line in the current
video frame, calculates a characteristic signature which allows
discrimination of this text line from text lines with other con-
tents, and searches in the next video frame for the image region
of the same dimension which best matches the reference signa-
ture. This signature-based exhaustive search algorithm resem-
bles the block-matching algorithm for motion prediction [1], ex-
cept that the similarity measure is based on a signature derived
from a feature image of the actual image. The vertical and hor-
izontal projection profiles defined in Section IV-D-2 serve as a
compact and characteristic signature, and the center of a signa-
ture is defined as the center of the associated bounding text box.
Similarity between two signatures is measured by signature in-
tersection, i.e., by the sum of the minimum between respective
elements in the signatures [23]. Cases where signatures capture
an object of interest as well as changing background signature
intersection are known to outperform L-norms [23]. All signa-
tures whose centers fall into a search window around the center
of the reference signature are calculated and compared to the
reference signature in order to find the precise position of a text
line in the next frame. If the best match exceeds a minimal re-
quired similarity, the text line is declared to be found and added
to the text object. If the best match does not exceed a minimal
required similarity, a signature-based drop-out is declared. The
size of the search radius depends on the maximal assumed ve-
locity of text. In our experiments, we assumed that text needs at
least 2 s to move from left to right in the video. Given the frame
size and the playback rate of the video, this translates directly
to the search radius in pixels. In principle, we could predict the
location by the information contained in the text object so far to
narrow down the search space; however, there was no computa-
tional need for it.

The signature-based text line search cannot detect a text line
fading out slowly, since the search is based on the signature of
the text line in the previous frame and not on a fixed master/pro-
totype signature. The frame to frame changes are likely to be
too small to be detectable. Further, the signature-based text line
search can track zooming in or zooming out text only over a
very short period of time. To overcome these limitations, the sig-
nature-based search is replaced every th frame by the image-
based text localizer in order to re-calibrate locations and sizes
of the text lines. Heuristically, every fifth frame turned out to be
a good compromise between speed and reliability. Again, the
bounding boxes of corresponding text lines must overlap by at
least 80%.

In addition, continuous detection and tracking (i.e., in every
frame) of text objects is often not possible due to imperfection in
the video signal such as high noise, limited bandwidth, text oc-
clusion, and compression artifacts. Therefore, tracking should
be terminated only if for a certain number of contiguous frames
no corresponding text line could be found. For this, two thresh-
olds and are used. When-
ever a text object cannot be extended to the next frame, the
drop-out counter of the respective localization technique is in-
cremented. The respective counter is reset to zero whenever the
search succeeds. The tracking process is finished as soon as
one of both counters exceeds its threshold
or . In our experiments, the thresholds were set

Fig. 8. Forward text-tracking algorithm of a given text object.

to and . A value of
4 allows for tracking of text lines where signature-based search
is very difficult such as for zooming in or zooming out text. A
summary of the video-monitoring process is given in Fig. 8.

C. Postprocessing

In order to prepare a text object for text segmentation, it is
trimmed down to the part which has been detected with high
confidence: the first and last frame in which the image-based
text localizer detected the text line. Next, all text objects which
occur for less than a second or show a drop-out rate of more than
25% are discarded.

The first condition rests on our observation that text lines are
usually visible for at least one second; shorter text lines are usu-
ally false alarms. The second condition removes text objects
resulting from unstable tracking which cannot be handled by
subsequent processing. Unstable tracking is usually caused by
strong compression artifacts or nontext. Finally, a few attributes
are determined for each text object.

1) Text color: Assuming that the text color of the same text
line does not change over the course of time, a text ob-
ject’s color is determined as the median of the text colors
per frame.

2) Text size: The size of the text bounding boxes may be fixed
or change over time. If they are fixed, we determine the
fixed width and height by means of the median over the
set of widths and heights.

3) Text position: The position of a text line might be static
in one or both coordinates. It is static in the and/or
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Fig. 9. Example of text tracking of located text lines. All text lines except “Dow” could be successfully tracked. The line “Dow” is missed due to its difficult
background (iron gate and face border).

direction if the average movement per frame is less
than 0.75 pixels. The average movement is calculated
based on the difference in location between the first and
last text occurrence of that text line normalized by the
number of frames. If the text line is static, we replace
all text bounding boxes by the median text bounding
box. The median text bounding box is the box whose
left/right/top/bottom border is the median over all left/
right/top/bottom borders. If the position is only fixed in
one direction such as the or axes, the left and right
or the top and bottom are replaced by the median value,
respectively.

Fig. 9 shows the results of text tracking of located text lines
for the sample sequence. All text lines except “Dow” could
be successfully tracked. The line “Dow” is missed due to its
partially difficult background such as the iron gate and face
border. The iron gate’s edge pattern is very similar to text in
general. It also contains individual characters, thus confusing
the image-based text localization system, which in turn renders
tracking impossible.

VI. TEXT SEGMENTATION

A. Resolution Adjustments

All subsequent text segmentation steps are performed on text
box bitmaps rescaled by cubic interpolation to a fixed height of
100 pixels, while preserving the aspect ratio for two reasons.

1) Enhancing the resolution of small font sizes leads to better
segmentation results. The very low resolution of video is
a major source of problems in text segmentation and text
recognition. In MPEG-I encoded videos individual char-
acters often have a height of less than 12 pixels. Although
text is still recognizable for humans at this resolution, it
gives today’s standard OCR systems a hard time. These
OCR systems have been designed to recognize text in
documents, which were scanned at a resolution of at least
200–300 dpi, resulting in a minimal text height of at least
40 pixels. In order to obtain good results with standard
OCR systems, it is necessary to enhance the resolution of
segmented text lines.

Enhancing the visible quality of text bitmaps is another
and even more important reason for up-scaling small text
bitmaps. The higher resolution enables sub-pixel precise
text alignment (with respect to the original resolution) in
Section VI-B-2 and better text segmentation in general.
Similar observations have been made by [19], [10], [11].

2) A text height larger than 100 pixels does not improve
segmentation nor OCR performance. Reducing its size
lowers the computational complexity significantly. Since
our approach is truly multiresolution and also operates on
HDTV video sequences up to 1920 by 1280 pixels, larger
font sizes are very likely.

B. Removing Complex Backgrounds

1) Images andWeb Pages: Text occurrences are supposed to
have enough contrast with their background in order to be easily
readable. This feature is exploited here to remove large parts of
the complex background. The basic idea is to increase a text
bounding box such that no text pixels fall onto the border and
then to take each pixel on the boundary of the text bounding box
as a seed to fill all pixels with the background color which do
not differ more than . The background color is
black for inverse text and white for normal text. Since the pixels
on the boundary do not belong to the text and since the text
contrasts with its background, the seedfill algorithm will never
remove any character pixels. We call this newly constructed
bitmap .

In our experiments, it was necessary to extend each rescaled
text box horizontally by 20% and vertically by 40% to ensure
that all letters were completely contained in the text bounding
box. The Euclidean distance between RGB colors was used as
distance function, and the seed fill-algorithm used a 4-neighbor-
hood [2].

Not all background pixels are deleted by this procedure, since
the sizes of the regions filled by the seedfill algorithm are limited
by the maximum allowed color difference between a pixel and
its border pixel. Therefore, a hypothetical 8-neighborhood seed-
fill algorithm with is applied to each nonback-
ground pixel in in order to determine the dimension of
the region that can hypothetically be filled. Background regions
should be smaller than text character regions. Therefore, all hy-
pothetical regions with a height less than pixels and
a width less than or larger than are deleted,
i.e., set to the background color.
2) Videos: Unlike text objects in images, text objects

in videos consist of many bitmaps of the same text line in
contiguous frames. This redundancy is again exploited here, to
remove the complex background surrounding the characters.
The basic idea works as follows. Suppose the various bitmaps
of a text object are piled up such that the characters are aligned
perfectly with each other. Looking through a specific pixel in
time, you may notice that pixels belonging to text vary only
slightly, while background pixels often change tremendously
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through time. Since a text’s location is static due to its align-
ment, its pixels are not supposed to change. Background pixels
are very likely to change due to motion in the background or
motion of the text line.

Using about 40 temporally evenly spaced bitmaps out of the
pile of perfectly aligned bitmaps, a maximum/minimum oper-
ator applied through time on the grayscale images for normal/in-
verse text is generally able separate text pixels from background
pixels. This temporal maximum/minimum operation was first
proposed by [19] for static text. In our work, however, it is also
applied to moving text since we solved the problem of sub-pixel
accurate text line alignment as follows.

Likewise for images and web pages, all bounding boxes of
a text object are extended horizontally by 20% and vertically
by 40%. Next, all bitmaps are converted to grayscale since
grayscale is less vulnerable to color compression artifacts.
Almost all video compression algorithms represent intensity at
a higher resolution than colors. Let
denote the 40 bitmaps and the representative
bitmap which is to be derived and which is initialized to

. Then, for each bitmap ,
, we search for the best displacement

, which minimizes the difference between
and with respect to the text color, i.e., see

the equation at the bottom of the page.
This partial block-matching search works because only pixels

with text color are considered. A pixel is defined to have text
color if and only if it does not differ more than a certain amount
from the grayscale text color determined for the text object. At
each iteration, is updated to

for normal text

and to

for inverse text.

Note that if in Section IV-D-3, a text object has been identi-
fied to be static, we do not have to search for the best transla-
tions. Instead, the translations between the various bitmaps are
all set to null. Finally, the same segmentation procedure as de-
scribed in Section VI-B-1 is applied to .

C. Binarization

The text bitmap is now prepared for recognition by
standard OCR engines. Here, the grayscale text bitmaps must be
converted to binary bitmaps. From Section IV-D-3, we know the
text color, the dominant background color, and whether we have
to deal with normal text or inverse text. Since most of the back-
ground has been removed, we decided to set the background
color to black for inverse text and to white for normal text. Then,
an intensity value halfway between the intensity of the text color

Fig. 10. Segmentation sample results of tracked text lines. The “J” in “Jones”
and the “f” in “for” were lost since the upper bounds of the text boxes cut through
the “J” and “f,” respectively. The seconds of the time of recording were lost
since they constantly increment and thus change over the course of the video
sequence.

and the background color is a good binarization threshold. Each
pixel in the text bitmap exceeding the binarization threshold is
set to white for normal text and black for inverse text. Each pixel
in the text bitmap which is lower than or equal to the binariza-
tion threshold is set to black for normal text and white for in-
verse text. Finally, it is recommended that the binary bitmap be
cleaned-up by discarding small regions in the same way as de-
scribed Section VI-B-1.

Fig. 10 shows the segmentation results of the sample video
sequence. The “J” in “Jones” and the “f” in “for” were lost
since the upper bounds of the text boxes cut through the “J” and
“f,” respectively. The seconds of the time of recording were lost
since they constantly increment and thus change over the course
of the video sequence.

VII. EXPERIMENTAL RESULTS

Our text-detection and text-segmentation system has been
tested extensively on a large, diverse, and difficult set of video
sequences. From a video database of tens of hours of home
video, newscasts, title sequences of feature films, and com-
mercials, we selected about 23 short video sequences with the
objective to be as diverse as possible and to cover difficult—as
well as easy—cases for text detection and text segmentation.
These 23 video sequences totaled about 10 min, contained
2187 characters, and had a frame size that varied between 352

240 and 1920 1280. In addition, seven web pages were
added to the test set.
Text Localization: For each frame and web page, the ground

truth for text bounding boxes was created by hand. Two different
types of performance numbers were calculated: pixel-based and
text box-based performance numbers.

Pixel-based performance numbers calculate the hit rate, false
hit rate, and miss rate based on the number of pixels the ground
truth and the detected text bounding boxes have in common, as
follows:
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TABLE I
RESULTS OF TEXT LOCALIZATION

TABLE II
RESULTS OF TEXT SEGMENTATION

where and are the sets
of pixel sets representing the automatically created text boxes
and the ground-truth text boxes of size and ,
respectively, and are the number of pixels in each text
box, and is the set of joint pixels in and .

In contrast, the text box-based hit rate, false hit rate, and miss
rate refer to the number of detected boxes that match with the
ground truth. An automatically created text bounding box was
regarded as matching a ground truth text bounding box if and
only if the two boxes overlapped by at least 80%

where
if
else.

On still images such as individual frames or web pages, the
text-detection system correctly found 69.5% of all text boxes.
The 30.5% that were missed, however, constituted only 13.3%
of all text pixels. In other words, small text was more likely
to be framed incorrectly. Wu et al. similarly observed that the
text detection rate falls off drastically for text heights below 10
points—from around 90% down to 55% [28].

The localization performance could be boosted up to 94.7%
by exploiting the temporal redundancy in video sequences as
mentioned in Section V. Only 5.3% of the text was missed or
falsely framed (see Table I). It took about 0.21 s for color images
of size 352 240 on a Pentium® 4 at 1.7 GHz to localize the
text occurrences.
Text Segmentation: 79.6% of all characters in the test video

set (including the ones lost during text localization) were
binarized correctly. Correctness was determined by manual
visual inspection of all created binary bitmaps. As shown in
Table II, 7.6% of the characters were damaged (e.g., some parts
were missing) but still recognizable by humans. Considering
that 5.3% of the text was not even detected, only 7.2% of the
characters were lost in the segmentation stage.

TABLE III
RESULTS OF TEXT RECOGNITION

For MPEG-1 video (352 240), our text localization and text
segmentation operated at 10.6 fps on a Pentium® 4 at 1.7 GHz.
Text Recognition: We used OmniPagePro 10 from Caere

to evaluate the overall performance of the system. 87.8%
( ) of the correctly segmented characters
were also recognized correctly. Over all stages, i.e., text
localization, text segmentation, and text recognition, 69.9% of
all characters were recognized correctly (see Table III).

Many times, individual characters within words were missing
in the input binary bitmaps. Therefore, a higher recognition rate
could be achieved if a content specific dictionary were used
during the recognition.

Finally, we want to point out that although several threshold
values have to be chosen properly, the whole system was not
very sensitive to their precise choice. Most threshold values
could be chosen from a large range of values without really
changing the overall performance of the system. For instance,
over-detection as well as under-detection of the fixed-scale text
detector was compensated by the text bounding box refinement
procedure.

A very detailed experimental analysis of our system on how
the different processing step affect the hit and false hit rate can
be found in [25].

VIII. CONCLUSION

Text in video is a unique and useful source of information
about its content. Text localization, segmentation, and recogni-
tion in videos allow extraction of this information for semantic
indexing. We have presented a very generic, scale-invariant so-
lution for text localization and text segmentation in images and
videos. On a difficult, real-world test set of video frames and
web pages, 69.5% of all text boxes were located correctly. The
performance rose to 94.7% by exploiting the temporal redun-
dancy in videos. 79.6% of all characters in the test video set
could be segmented properly and 88% of them were recognized
correctly. These performance numbers are above the ones re-
ported for existing systems, albeit the test set has been very chal-
lenging.

In addition, our novel text segmentation method is not only
able to locate and segment text occurrences into binary bitmaps,
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but also to track each text line sub-pixel accurate over the en-
tire occurrence in a video, so that one text bitmap is be cre-
ated for all instance of that text line. Thus, our text-detection
and text-segmentation methods can be used for object-based
video encoding. We have started initial experiments to encode
segmented text as MPEG-4 objects and the reminder as back-
ground. Initial results are very promising, but need further in-
vestigations.

For the future, we also plan to replace the globally adaptive
threshold used in the binarization of the text bounding boxes to a
locally adaptive threshold. Locally adaptive thresholds are well
known to improve segmentation in OCR applications.
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