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Data Throughputs Using Multiple-Input
Multiple-Output (MIMO) Techniques in a
Noise-Limited Cellular Environment

Severine Catreux, Peter F. Driessen, and Larry J. Greenbtdiow, IEEE

Abstract—\We present a general framework to quantify the data thereby meet the high-speed requirements of future generations
throughput capabilities of a wireless communication system when of wireless networks.
it combines: 1) multiple transmit signals; 2) adaptive modulation Adaptive array processing at the receiver has long been used

for each signal; and 3) adaptive array processing at the receiver. 0] th tral effici f wirel ¢ b
We assume a noise-limited environment, corresponding to either 'O INCrease the spectral efliciency of wireless systems, by com-

an isolated cell or a multicell system whose out-of-cell interference bating multipath fading [1] or by suppressing interfering signals
is small compared with the thermal noise. We focus on the user data [2]. More recently, the use of multiple antennadaththe re-

throughput, in bits per second/Hertz (bps/Hz), and its average over ceiver and transmitter [forming a multiple-input multiple-output
multipath fading, which we call the user spectral efficiencyFirst, (MIMO) system] has been shown to increase the spectral ef-

an analysis method is developed to find the probability distribution . . oo - .
and mean value of the spectral efficiency over the user positions ficiency further [3], [4]. Specifically, it was stated that with

and shadow fadings, both as a function of user distance from its transmitting antennas and > » receiving antennas, it is pos-
serving base station and averaged over the cell coverage area. Wesible to achieve am-fold increase in link capacity, provided

assume fading conditions and receiver processing that lend them- that the propagation environment results in significant decor-
selves to closed-form analysis. The resulting formulas are simple relation of the complex path gains sampled by the receive array

and straightforward to compute, and they provide a number of . .
valuable ?nsights. Next. we '?un Monte Ca);IcF)) simulations. both to €lements. Numerous studies have extended this central result by

confirm the analysis and to treat cases less amenable to simple anal-investigating MIMO capacity under various propagation condi-
ysis. tions: line-of-sight (LOS) and Ricean channels in [5]; channels
Akey contribution of this paper is a simple formula for the mean  with correlated fading in [6]; and time-varying-channels in [7].
spectral efficiency in terms of the propagation exponent, mean |, 4qdition, several implementation techniques have been pro-
signal-to-noise ratio at the cell boundary, number of antennas, and . . .. . .
type of coding. Under typical propagation conditions, the mean posgd to make practllcal the h'gh_ capacities predicted by infor-
spectral efficiency using three transmit and three receive antennas Mation theory. A realizeable architecture of an advanced system
ranges from 19.2 bps/Hz (uncoded) to 26.8 bps/Hz (ideally coded), is explained in [8]. A simplified approach, called vertical bell
highlighting the potential benefits of multiple transmissions |abs layered space-time (V-BLAST) is thoroughly described in

combined with adaptive techniques. This is much higher than g1 544 compactly presented along with experimental results in
the spectral efficiencies for a link using a single transmitter and [10]

a threefold receive diversity under the same conditions, where ) .
the range is from 8.77 bps/Hz to 11.4 bps/Hz. Moreover, the Adaptive modulation belongs to another class of spectrally
latter results are not nearly as practical to achieve, as they call efficient techniques, referred to as link adaptation, wherein the

for large signal constellations that would be highly vulnerable to  pasic idea is to adapt the transmission parameters (transmitted
Impairments. power, modulation rate, coding rate, spreading factor, etc.) to
Index Terms—Adaptive modulation, antenna arrays, fading take the fullest advantage of prevailing channel conditions. The
channels, land mobile radio cellular systems, multiple-input advantage of adaptive modulation combined with a power con-
multiple-output. trol scheme has been presented in various contexts, e.g., the
single-user case in [11], the multiuser case in [12]. We also note
|. INTRODUCTION that current proposals for third-generation wireless systems in-
. . . clude link adaptation [13], [14].
ULTIP.LE trangmlt antennas, adaptive modulation, anol We assume adaptive modulation is used in conjunction with
adaptive receiver arrays are all targets of current rg-

h. A svstem that bi th three techni ; fhe MIMO technique, i.e., each transmit signal uses a separately
search. /A system that combines these ree techniques ogef rptive modulation, matched to the instantaneous channel con-
can provide for very spectrally efficient data transmission, al

ion. This is in contrast to V-BLAST, which imposes the same
data rate on all transmitters. Our goal is to investigate the theo-
retical performance of such a system, via both analysis and sim-
Manuscript received March 16, 2000; revised December 19, 2000; accepl[ﬂgtion and to compare it with more conventional approaches
May 7, 2001. The editor coordinating the review of this paper and approvingtﬁ ’ ive-di . | di . L Th .
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Fig. 1. Model of digital communication system with multiple transmitting and receiving antennas.

of a novel approximation, we are able to bracket the range total transmitted power is independent af; 7 = [n1 . .. 7m]?

this metric over all possible coding approaches, from no codiigthe complex additive white Gaussian noise (AWGN) vector,
to the Shannon limit. Assuming fading conditions and receiveiith statistically independent components of identical power
processing that lend themselves to closed-form analysis, we dg-at each of then receiver branches; anfl is the (n x n)

rive the probability distribution and mean of this metric, firsmatrix of channel coefficients/{;;}, 1 <:<m 1<j<n
across users at a distané&om the cell center, and then acrossvhereh;; is the complex signal path gain from transmitjer

all users in the cell. to receiveri. This gain is modeled by
We consider all links to be noise-limited, meaning either
a single-cell environment or a multicell one in which the _ 1
. ! i hij =\ c—/s- 2 (2
out-of-cell interference is small compared with the thermal dv

noise. We also assume omni-directional antennas, so that the . - o :
: . L . whered is the base-mobile distance in kilometers the path
received signal power is independent of the azimuth of the : . .
. . : . loss exponent; is the median of the mean path gain at a ref-
mobile user (the extension to sectored antennas is straightfor- : . .
g rence distancd = 1 km, s is a log-normal shadow fading
ward), and a form of minimum mean square error (MMS

. . . . riable, where 1Qeg s is a zero-mean Gaussian random vatri-
processing at the receiver. We derive an analytical approa;

s : able (meaning that the median efis one) with standard de-
that offers valuable insights on the influence of key system and .. .
: ; ._viation o, andz;; represents the phasor sum of the multipath
propagation parameters. Then we run Monte Carlo simulations . . )
s%%tter components and is a zero-mean unit-variance complex

both to confirm the analysis and to treat cases less amenabl . . A . X
y GAUssian random variable. The receiver input signal-to-noise

simple analysis. Finally, we summarize our numerical ﬁnding{gdtio (SNR), averaged over multipath fading, is the same for
and discuss possible extensions of the work. ; '

each branch. This quantity is denoté& R, and is a random
variable over the shadow fading at a giveémhe median of this

Il. SYSTEM MODEL random variable when the mobile is at the maximii(the apex
A. The Radio Link of the hexagonal cell) is a chosen parameter in our simulations,

o ) __denoted by. Using (2), we can write the median over shadow
A communication system that employs multiple transmlttmgading of the multipath-averaged received SNR as
and receiving antennas can be described as follows (see Fig. 1).

A user’s bit stream is demultiplexed among several transmitting
antennas, each transmitting an independently modulated signal
simultaneously and on the same carrier frequency. These sig-
nals are received by an antenna array whose sensor outputé"é’f@reD is the radius of the circle that circumscribes the hexag-
processed such that the original data stream can be recover&@al cell.

There arenm radio paths between the transmit antennas We consider two alternative schemes for separatingrthe
and them receive antennas. We assume each is complégnsmitted signals in the receiver. One scheme linearly com-
Gaussian (Rayleigh fading), independent of the others, signes the received signals using a set of weights that yields the
enough to be fixed over a data block, and nondispersive (fI4MSE between the detected data and the true signal samples
fading). Based on these assumptions, the discrete-time dA@VISE scheme). The second scheme, called ordered succes-
model for a MIMO system that usestransmit antennas and sive interference cancellation~-MMSE (OSIC-MMSE) is an im-

receive antennas in a noise-limited environment can be writtBfpved version of MMSE suggested in [9] and [15]. Itis a re-
as follows: cursive procedure that sequentially detects the different signal

components in an optimal order. First, MMSE combining is ap-
r=Hu+n 1) p!ied to the receiyed sign_al vector. Then the s_ubstre_am with the
highest output signal-to-interference-plus-noise ratio (SINR)
wherer = [ry ...7,,]¥ andu = [u; ... u,]* are the received IS detected, and its contribution is subtracted from the total re-

and transmitted signal vectors at a symbol sampling time. Ndi@ived vector signal. The same process is repeated until all

that each transmit antenna conveys a distinct bit SU?Stream S€lhterference refers, throughout the paper, to residual interference from other
arately modulated and encoded of equal powgn, i.e., the substreams.

med(SNR) = p<§>w 3)
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constant gap between the Shannon capacity and the spectral ef-
ficiency of M-QAM has also been reported for time-invariant
go channels with intersymbol interference (1SI) and decision-feed-
2 /' back equalization [16], [17], and is further cited in [11], where
é 8 / fmz the spectral efficiency is obtained for a fixed BER.
z Ve tanM Finally, the throughput corresponding to a given user in a
E & | ocnm given block, denoted by, is the sum of the throughputs corre-
a : sponding to its: transmitted substreams. Thus
T4 y -] T 16QAM
= 8QAM n n
A / I e Y =3 7= log, (1 + Zi/K.,). (4)
/ [
p—t—" ST T
- 0 10 20 30

SINR (dB) C. Comments on Our Assumptions and Metrics

Fig.2. Throughput (bps/Hz) versus SINR at the output of the combiner. Figure Qur aim here is to ql.Jantlfy basic throthpUt capabllltlgs m.
shown for a block length of 500 symbolS) ideally coded signals throughput & §|mple way gnd, to this end’ we have made numerous simpli-
given by Shannon capacitlug, (1 + SINR) O uncoded signals throughput fying assumptions. Regarding the channel, we assume indepen-

given bylog, M(1 — BLER(SINR)) « shows the 8-dB shift between the jent, flat Rayleigh fading on alim transmit-receive paths, with

o curves. each path gain varying slowly enough to be constant over a data
block. Regarding processing, we assume equal power far all

substreams are detected. For either scheme, we denote therémsmitted substreams, with each substream choosing its mod-

stantaneous SINR at thgh branch output of the combiner byulation/coding scheme independently based on current channel

Zp, 1 <k <m. conditions, and with no joint detecting of substreams at the re-
ceiver. More optimal choices for power allocation and for trans-
B. Adaptive Modulation mitter and receiver processing are possible, butitis not clear that

Consider a family ofA-QAM signal constellations with the_ henefits would jusirfy the (_:omplexity. Regarding_implgmen—
a symbol periodZ,, where M denotes the number of pointstat'on’ we a}ssume.each recelvgraccu_rately and quickly informs
in each signal constellation; and assume ideal Nyquist ddbe trar?smltter W,h'Ch mgdulaﬂon/chmg 0 US? for each sub-
pulses §inc[t/T;]) for each constellation. Thus, the channﬁitream’ that_rgcelyer weight adaptatlon_ IS |d_eaI, that_data over
bandwidth isW = 1/7, and the bit rate it = (log, M) /T.. ead is _neghglble, and so on. Practical impairments in a!l these
For uncoded)-QAM, the attainable normalized throughpuf‘reas will reduce the actua_l throughput, but our purpose |s_to as-
sess and compare theoretically attainable performance with the

in bit per second/Hertz for théth transmitted substreamI ¢ lexit q ; ficit d i
can be given in terms of the block error raBLER for east complexily and System specilicity, and our assumptions

that purpose.
block lengthL asT(Zy) = log, My - [l — BLER(Z,)] = SV : . o
log, My - [1 — BER(Zy)]". He2re BERIs the bit-error rate The average of” in (4), over multipath fading is the per-user
(BEQR) for an AWGN channel \;vithM-QAM modulation metric which we call the usapectral efficiency’. This quan-

and ideal coherent detection; it can be given as a functiHW is a function of user position (distance from its serving base)
of Z, corresponding to th&th7 transmitted substream Thisand shadow fading, so, we seek its cumulative distribution func-

formula assumes perfect error detection, wherein blocks (CDF) over all users conditioned on a given distasicend

correctly detected if and only if all bit decisions are error-freé€°t€ the average, (d). The average ot (d) over the cell,
qalled themean spectral efficiencys,, is our primary metric.

We assumel. symbols per block, independent of the sign . ) .
y P P g aIn a cell with many user channels, this mean closely approxi-

constellation. An alternative is to keep the numbebité per tes the total inf i te deli din th Il divided b
block fixed, but that would require using different block Iength%}a es he lotalinformation rate delivered in the cell divided by
the total bandwidth.

for different substreams.

Fig. 2 shows a family of curves @f for a given substream (we
omit the subscripk for convenience) as a function of the output
SINR, for a range of finite values ao¥/ such thatM = 27, We now derive an analytical expression for the CDF of the
j = 1,2,...,J wherej is the number of bits per symbol.spectral efficiency for users at a specified distaddeom the
The Shannon capacity;(Z) = log,(1 + %), also plotted on base. We investigate both the ideally coded case (upperbounded
Fig. 2, represents an upper bound on the throughput attainatyethe Shannon limit) and the uncoded case for systems (1,1),
with coding. We observe that the envelope of fhieurves is (1, m), and @, n) where the first number indicates the number
parallel to the Shannon capacity curve, with a fixed offset @f transmit antennas (transmitted substreams) and the second
about 8 dB. Thus, the envelope can be expressed in a form sane indicates the number of receive antennas. We can represent
ilar to the Shannon capacity, i.€}(Z) =~ log,(1 + Z/K,) the userthroughput for all of these cases by one general formula
where10log K, = 8 dB. This approximates the throughputased on (4) as follows:
for a given substream when its modulation is adapted, based on "
the current value of, so as to maximize throughput. This ap- Y = bz In(1 + aZy) (5)
proximation holds true for a large range of block lengthsA

I1l. ANALYTICAL FRAMEWORK

k=1
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TABLE |
KEY FORMULAS IN COMPUTING SPECTRAL EFFICIENCY FORSYSTEMS (1,1), (1,m), (n, n)

Systems (1,1) (1,m) (n,n)
(with MRC) (with MMSE or ZF)
User Throughput Y =nb| In(l+a-Z)p(Z)dz
p(Z) 1 - _ m-1 1 _ A
=—e % ?with Z=A - Z LN LI T RN
p(Z) 7 e Wi () T e p(Z) 7 e with Z .

whereb = 1/In2 anda = 1 (ideally coded) ow = K; = By combining (2), (3), and (7), we can rewrite (8) &s =
1/10°8 (uncoded). The user spectral efficientyis obtained AY " (z? + y?) wherez; andy; are independent Gaussian
by averaging each term of (5) over multipath fading. Since eacdndom variables of equal variance 1/2. Thisis a sum of
substream sees statistically identical fading, the average is #he independent Gaussian random variables, each with variance

same for all of them. Thus A/2. The pdf ofZ can then immediately be written down as [1]
Y = nb/ In(1+4aZ) p(Z)dZ (6) AR
Z)=——— Z > 0. 9
0 p( ) (m_l)!Anle ? — ( )

wherep(Z) is the probability density function (pdf) &f. ]
3) Systems(,n): For system#,n), the data model is ex-

A. Probability Density Function of the Output SNR pressed in matrix notation as in (1), whete:, andn aren-di-

We now consider the fololowing three cases: (1,1); (1,3) Wittrﬁensmnal vectord! and @ x m) is an matrix. We consider

maximal ratio combining (MRC): and (3.3) with zero forcin e high SNR case, where the linear MMSE combiner closely
- 9 ’ . . ) Yesembles the ZF combiner. (We do this to facilitate analysis,

(ZF) combining. In all three cases, there is no residual interfer- e ;
and we show later that the results agree closely with simulations

ence at the output, so in this section, we refer to the output metfr(l)(% the MMSE combiner.) Under this assumption, the solution
Z as the output SNR. ' '

1) System (1,1)The derivation of the pdf o in the case weight matrix is the ¢ x n) pseudoinverse matrix df such

Y MR thatW H = I"*™. The output of this linear filter can be ex-
of system (1,1) is straightforward. From (1), the data model Ca ssed in general as
be expressed in a scalar notationras: A - u + 7. Therefore, P g

the SNR at the receiver is y=Whr =4t Wiy, (10)

2 p- D7
¢ The postdetection SNR corresponding to &l substream
is Z = El|lu|?/[o2]] (W),, ||?] where(W ), denotes thésth
where we use the definition gfin (3). For a particular user po- column of matrixW. In order to analyze the distribution of
sition, the parametersandd in (2) are fixed; thush is equal to 7, we must determine the statistical properties of the random
a scalar multiplied by and, therefore, is a complex Gaussiaggriablew = 1/ (|| (W), ||?). Because this involves the recip-
random variable. Its squared magnitude is exponentially digycal operation, the analysis requires many steps. A solution can
tributed and so the pdf of is p(Z) = 1/Ze¢ #/%, Z > 0. pe found in [18] for the more general case where the number
The mean o7 is easily derived as of receivers can be larger than the number of transmitters. In
o D 0 DV ¢ D\ the Appendix, we present an alternate derivation for the case
Y E[h ) = s E[z]=0p <—) s. m = n which, by simple reasoning, shows tl#at is exponen-
c & d tially distributed for all users, with mean valug, = E[Z,] =
A/n. This mean output SNR decreases witlhecause it is a
per-substreamuantity, and we have assumed the same transmit
power P for all cases, divided evenly among thesubstreams.
A= D\" In Table I, we summarize the key formulas in computing results
=F <E> 8 ™) for systems (1.1), (1), and @, n).

_ P

Z 2
n

= [h]

Z

For later purposes, we define a quantityas Z for the (1,1)
case, i.e.,

2) System (Iyn): For system (1), the data model is €x- g - ghort-Term Aveged Thoughput (Spectral Efficiency)
pressed in vector notation as= h - « + 1, wherew is a scalar

andr, h, andy arem-dimensional vectors. Assuming an MRC 1) Systems (1,1) andn(n): Since p(%) has the same
receiver, it is well known that the SNR at the combiner outp@eneral form for both systems (1,1) and,4), we treat

equals the sum of the input SNRs of thebranches [1]. The the two cases together. Thus, the general expression for
output SNR is then equal to the short-term averaged throughput at a specified dis-

tance d, valid for both systems, is obtained via (6) as
P S hal? g ¥ = nb/Z ["In(1+a- Z) - e=#/7dZ. We can express this
- o2 ’ ) more compactly, and in a form that exploits standard computer
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subroutines as follows. We apply the change of variable 37
z =14 a-Z and get
b oo 251 * * «  fitting curve
Y = n__'el/Za / Inz-e %/ %2dz. (11) —————  exactcurve
Za 1 20k

We note from [19] thatJ'lOo lnz - e #dx = 1/p expint(p), Y
i > 0, whereexpint is the exponential integral function defined 151
asexpint(p) = f:o e~t/t dt.2 Thus

Y =n-b-c"- expint(p) (12)
where il
1 n
p=z-=a- k>0 (13) e BT

2) System (1,3):We now find an expression analogous to
(12) for the system (15). To carry out the analysis, we will Fig- 3. Short-term averaged throughput as a function of the parameter
actually have to specify a value for, so we present the case ofc urve fitting for system (1,1) with ideally coded signals.
system (1,3).
Combining (6) and (9) fon. = 1, the short-term averaged
throughput becomes
b

) . — 001 1 S 2zl A
mwm—1ﬂA nl+a-2) ¢

the exact expression for the short-term averaged throughput and
its corresponding approximation.

C. CDF of Spectral Efficiency Across Users at Distadce

1) Analytical Derivation: We now derive the CDF of over

Again, we seek a more compact form and one that exploits stzglfr]f-e log-normal shadow fading conditioned oni. From (15),

dard subroutines. By using (13) = 3 and the change of vari- we knqw thati” is a monotonic function ofi. Assuming th_at
- the variables; andag are related byy = «lu(1 + fSag), as in
able,x = 1+a- Z, itis easy to get
(15), we have

N il _
Y = 3 ~u%”/l Inz-(z—1)% e "da. Pr(Y <yld) = P.(A < ag|d). (16)
After some algebra, including integration by parts, we get tiimilarly, A is a monotonic function o in (7), thus

simple expression Pr(A < aold) = (s < so|d) (17)

- b 2 2 b 3 . .
Y = et <1 > + F) - expint(p) + SH <— - 1) . wheresg = (ao/p)(d/D)7. Sinces is a log-normal random

2 (14) variable
To summarize, we now have for all three systems (1,1), (1,3), _ 1 10log o(s0) — Mg
and (,») an expression for the short-term average throughput, Pr(s < sold) =1 — 2 fe 252 (18)

Y, in terms of the exponential integral functionafAs noted, ) )
however, we wish to find an even simpler expression¥or WnereMr ando are the mean and varianceoéxpressed in
involving only elementary functions of, so that it is easy to 9€Cibel. Combining (7), and (16)~(18), we get
manipulate analytically. To do this, we compute and plot (12) 101og (d"(ey/"—l)
and (14) versus the parametdr(contained iny) and find a  p.y « yld) =1— lm,fc 1o PR
function that fits the plot points for a wide range of values of - 2

A3 The function we choose has the general form

) . (19)

202

We can show that (19) can be well approximated by a Gaussian

Y = aln(l+44) (15)  CDF of the form
where « and 3 are constants that depend on the case being . i Y—my 5
studied (e.g., system size and coding). We show one example Pr(Y <yld)=1~- ¢ fe V2o, | (20)

of curve fitting in Fig. 3 for the case of system (1,1) and ideally

coded signals. The exact curve is given by (12) and the fittifg do this, the term between parentheses in (19) is rewritten as
curve is given by (15) withx = 1.4 and = 0.82. Similarly, & (Vo1 - o

close agreements are found for all cases. Table Il summarizes 101n (T) In (p,aDv) +1n (Gy/a - 1)

2There exists another common definition of the exponential integral In(10)v20? In(10)4/ %
function, denoted byE; (1)[19]. The relationship betweem) E;(u) and is:
expint(p) = —Ei(—p), > 0. _ Next, we make the approximation

3For small values ofl, A can have a very large magnitude. We choose to fit
the curve for values oft anywhere between 0.01 and 20°7. For example, for n (ey/a 1)

Y
p = 100 ands = 1, this corresponds to a range df/(©) from 12 to 0.037. ~ a (21)
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TABLE I
EXACT AND APPROXIMATE EXPRESSIONS FORY FOR SYSTEMS (1,1), (1,3),AND (n,n),
AND FOR BOTH IDEALLY CODED AND UNCODED CASES

Systems ¥ Expressions a=1 (ideally coded) a=1/10°® (uncoded)
(L) = s = ) ) 1
Y (exact expression): Y =b-e” - expint(u) with u= v
a
Y =aln(B A+1) (approximation) | a=14=q,; a=a;
B=082=4 B=p 110
1,3 = . —
a3 Y (exact expression): 7= [ ”zey[l _ _2_+ 2ﬁ ) -expint(p) + [ ﬂ[i - 1)
2 uou 27\
Y =aln(B A+1) (approximation) a=q,; a=a;
B=5-, B=5-p,/10%
() Y (exact expression): Y=n-b-e” - expint(y) with g= f—
a
Y =aln(B A+1) (approximation) a=n-a; a=n-a;
B=pIn B= B ln-10°%)

which is accurate to within better than 5% fpp> 2.3-«. Thus, at a distanced from the base. We did this experiment for
with the values ofx in Table Il, this approximation is valid for different values of distancé (normalized to the cell radius),
systems (1,1) and (1,3) for any valueg,of 3.2, and for system for different systems sizes, and for both ideally coded and
(3,3) for any values of > 10. We can now match (19) and (20)uncoded signals. For the (3,3) case, we considered both MMSE

to find expressions fom, ando, and OSIC-MMSE combining, as discussed in Section II-A.
, The comparison between simulation and analysis [shown for
my(d) = — aln < d ) (22) twocases in Fig. 4(a) and (b)] displays a clpse agreer.nent.. No'te
pRDY that for the analysis, we used the Gaussian approximation in

(20). Fig. 4(a) shows the best match and Fig. 4(b) shows the
poorest match. The accuracy for every other case treated lies in
between. The divergence between simulation and analysis noted

aporoximated by a Gaussian distribution whose mean and Stin Fig. 4(b) brings us to conclude that, in situations where the
PP y ectral efficiency is small, itis no longer Gauss-distributed and,

d?trr? dde_wta_tkl)or:_ aredglven bty d(22) adnd (i?’)t'txve ?eec}ha; ;he M Us, its distribution has to be modeled by the exact distribution
ofthe distribution does not dependanthat the standard devia- iven in (19). Note that this latter analytical expression is valid

g?g (;izec::‘dsse(\)/grlgll gig{éyr},aggéhp?totgaegrggg: ;)Sa?;r'nn;?;;uncu Sl all values ofy; it was found to match the simulations almost
. 4 . ; - ; exactly and, hence, is not plotted.
2) Comparison With Simulation Resultgn addition to the y P

analysis methodology, we have developed a general-purp@secpr of Spectral Efficiency Over the Cell
system-level simulation platform, both to confirm the analysis

and to treat cases less amenable to simple analysis. Our basle Sectloq !“'C.:' we derived the CDF of the spectra_l e.ff|C|ency
simulation approach is as follows. We generate uniform at a specific distancé. The last step of the analysis is to av-

distributed random positions of the mabile on a circle of radifd29€ this conditional CDF over all user locations and, thereby,

d within the cell, and we compute the complex path gains to tpPtain the CDF of the spectral efficiency over the cell. A minor

serving base, following the channel model given in (2). We uggmplication is that cells are typically modeled as hexagons, a
the following parameters values: path loss exponert 3.7 model we followed in conducting simulations over the full cell.

log-normal shadow fading standard deviatien= 8 dB, and To facilitate analysis, we approximate the conventional hexagon
the median 06N R at the cell extremity i — 100 (20’dB) cell with maximum distancé by a circle of effective radius

Given the array processing scheme, we compute the outﬁ)mf'deﬁned such that the areas of the hexagon and the circle are
SINR for each transmitted signal from the serving base. Wee same. It is easy to show tht ; /D = 1/3v/3/2r ~ 0.91.
adapt each substream’s modulation rate according to the cdssuming that users are uniformly distributed over a circular
responding output SINR and we compute the user throughpuea of radiugd). ¢, the pdf ofd for a randomly selected user
for each substream. We then sum the throughput oven alllocation isp(d) = 2d/D?;,0 < d < D.y. Thus, the CDF
transmitted substreams, and average over the multipath fadimjshe averaged throughput over the cell can be obtained from
By repeating this procedure over 2000 random positions/s@sY < y) = fODef P.(Y < y|z) - p(x)dx, where we applied

of path gains, we find the probability distribution of the usea change of variablel(— z) for notational clarity. We compute
spectral efficiencyY over the population of user locationsthis integral numerically and show the results in Fig. 5, where

_oaln(10)

% =" (23)

Thus, the CDF oft” over s, conditioned ond, can be closely
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02 / 2 A IV. NUMERICAL RESULTS
il V74 - .
005 Vi Table 11l shows the mean spectral efficiernay, for various
o001 ' 7 cases. A few key points can be extracted from these results.
0001774 7 First, we get a quite close agreement between analysis and sim-
0.0001 10 20 30 40 S0 60 70 80 ulation, despite three simplifying analytical assumptions: 1) we

y consider a circle in place of the hexagonal cell; 2) we apply the

(b) approximation shown in (21); and 3) we estimate MMSE com-

Fig. 4. (a) Comparison of the CDF of short-term averaged throughput acr&'@mg performan_ce_z by_ assum_mg ZF ‘?Omb'”'”g- Second, the
users, at preselected distances such didd = (0.05,0.25,0.95). Case Mmean spectral efficiencies attainable with MIMO systems (16.2
shown corresponds to system (1,1) with ideally coded signals. The curygs23.52 bps/Hz) go far beyond those of single-input multiple-
are plotted on a probability scale, whire a straight line denotes a Gaus%"ﬂ}put (SIMO) systems (8.77 to 11.4 bpS/HZ) and single-input

distribution. Simulation* Analysis. (b) Comparison of the - .
CDF of short-term averaged throughput across users, at preselected distaftgle-output (SISO) systems (6.75 to 9.28 bps/Hz), which con-

S‘JChh thaﬂéDd? (0-?57&/25,095)- Case SZQWH COFFGSEOHdS to S_ystelm_(3.3ﬁrms results from [3], [4], and [9]. The large values shown for
with uncoded signals. We start seeing a divergence between simulation .

analysis for large values @f Indeed, when the users are on the cell boundar@![ilg SIMO and SISO cases _anse from th.e Ve_ry large SNRs for
the throughput is smaller than when the users are closer in and, therefore,Us€rs close to the base, which are exploited in our study by as-

values ofy are in the range for which the approximation in (21) tends to bsyming correspondingly large constellation sizes. In a practical
erroneous . - Simulation; * *: Analysis. system, these results would not be realizable because of the vul-
nerability of such modulations to impairments.
we compare the analytical CDF with the simulated CDF. For As mentioned earlier, simulations were also used to treat
the particular case displayed here and all others we examinesises less amenable to simple analysis. For example, we
agreement between analysis and simulation was found to be gxdified the channel model in (2) to include a LOS component,
cellent. The departure of the simulation curve from analysis whose power is scaled with respect to the scatter component
the 99th percentile and beyond is due to the limited number# the Riceank -factor. While the analysis considered a pure
trials, i.e., the simulation is over 1000 users. scattering environmenti{ = 0), simulations enable us to
Finally, from the Gaussian approximation in (20) with meaguantify the effect of higher values &f. Furthermore, we used
(22), we can derive an analytical expression for the meantbk simulations to investigate the benefits of OSIC-MMSE,
the cell-wide distribution. This mean, averaged over all pogescribed in Section II-A.
sible values ofd is given by the general expressiom, = Fig. 6 shows the range of mean spectral efficiencies attainable
fODﬁf m,(z) - p(x)dz. This yields using systems (1,1), (1,3), and (3,3) for the two valies= 0
and K = 10. The addition of OSIC to the linear MMSE algo-
| <,y <0'5 ln < D )) +1n(p/3)> rithm improved the mean spectral efficiencies from the range
Dy 16.2-23.5 bps/Hz to the range 19.2-26.8 bps/Hz. This differ-
~a (0.6 + In(pp3)) ence can be explained as follows. With the OSIC technique ap-
plied to system (3,3), the first (strongest) signal is received with
showing the influence of various parameters on this mean spao-diversity since the two other substreams must be nulled. The
tral efficiency. In a system with a large number of user channetgcond signal, however, is detected in the presence of only one

y =

(24)
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TABLE 1lI
MEAN SPECTRAL EFFICIENCY 77y (BPSHZ) VIA ANALYSIS AND SIMULATION

System Simulation (bps/Hz) Analysis (bps/Hz)

SISO system (1,1) ideally coded 9.28 9.25
uncoded 6.75 6.67

SIMO system (1,3) ideally coded 114 11.5
uncoded 8.77 8.93

MIMO system (3,3) | ideally coded 2352 23.14

(with MMSE) uncoded 16.2 15.4

bution and mean value of the spectral efficiency (bps/Hz) over
the user positions, both within a cell coverage area and as a func-
osic-M tion of user distance from its serving base station. A key contri-
20 T bution of this paper is a simple formula (24) for the mean spec-
° rL M tral efficiency in terms of the propagation exponent, median re-
15 ceived SNR at the cell boundary, system size«), and coding
type (uncoded or ideally coded). Our results show spectral ef-
ficiencies in the range 16—24 bps/Hz for a MIMO system (3,3)
i I having a median received SNR of 20 dB at the cell boundary
and MMSE combining at the receiver.
@3 a3 an These enormous spectral efficiencies were obtained for
MIMO SIMO SISO a system with no external interference. In a heavily-loaded
cellular environment, there will be significant co-channel inter-

Fig. 6. Mean spectral efficiency (bps/Hz) for systems (1,1), (1,3), and (3.fdrence (CCI) from surrounding cells. Our simulation platform
in a single-cell environment, downlink, no power contrel,= 8 dB, p =

20 dB. Each vertical bar represents the range of spectral efficiencies obtaindSie@!SO applicable to such interference-limited environments

between the case of uncoded signals (lower end) and that of ideally coded sigadigl has been used to quantify spectral efficiencies for that case
(upper end). The output SINR for system (1,3) was computed using MM EO] [21].

combining (equivalent to MRC when there are no interferers), and the output h | dh hould b ded L
SINR for system (3,3) was obtained for two types of combining, i.e., MMSE 1 ne results presented here should be regarded as optimistic

and OSIC-MMSEL: K = 0.* K = 10. M: MMSE combining, OSIC-M: upper bounds on the performance achievable by practical sys-

OSIC-MMSE combining. tems. In addition to CClI, other limiting factors should be exam-
ined to make the results more realistic. Among them are finite

other signal and is, therefore, received with dual-diversity. Féonstellation sizes [21], implementation errors, channel disper-

nally, the last (weakest) signal is detected with diversity of ordsion, time variations, and correlated path gains.

3, since the two prior detected signals have been cancelled out.

With MMSE, each signal is detected in the presence of all the APPENDIX

others, and the nulling-out of other signals results in reduced di- . .
versity benefits, thus, reduced capacity. We show here that, in an(n) system, the postdetection SNR

Finally, the influence of( is noticeable for MIMO systems cc_)rresponding o theth substreamZi, Is exponentia_lly dis-
because it affects the correlation among the path gain&” s tributed. Fror; (1) and (10), thieh output of the combiner can
creases from zero to ten, the throughput of system (3,3) dropsbo%lexpresse as
around 20% for OSIC-MMSE, and by around 40% for MMSE. n non n
Indeed, for closely spaced antennas in an LOS environment, the= Z wi; - hyi s+ Z Z wi; - hs - si+ Z wi; - ny

10

Spectral Efficiency (bps/Hz)

a8
F=—xk 2
3

w

path gains become highly correlated and, as a result, the MIMO ;=1 =1} =1 j=1
capacity is reduced. Note that this issue was addressed in [5], k#i
where a new cell geometry was defined to preserve the separa- (A-1)
tion among paths in the LOS case. where we have isolated three components corresponding to: 1)
the desired signal;; 2) the self-interference signadg; and 3)
V. CONCLUSION the noise.

We presented a general framework for studying the perfor- 1€ ZF algorithm computes the weighis; such that the
mance of MIMO systems in a noise-limited cellular enViron(_:ontrlbutlon of the self-interference signals is nulled. Thus, for
ment. Specifically, we studied the throughput performance tflt ¥ € {1, nlk # i}, we have £ —1) equations of the form
may be achieved by combining multiple transmit signals, adap- n
tive modulation, and adaptive array processing at the receiver. w’; - hjx =0, E=1,...,nk#1. (A-2)

An analysis method was developed to find the probability distri- =
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Since, for given:, there aren values ofw;; and onlyn — 1

constraints, (A-2), there is one remaining degree of freedom.

We use it by specifying that

n
> lwil? =1
j=1

(A-3)

This has the effect of constraining the output noise [last termg

in (A-1)] to have a mean power d#|2 which is 2. Now, we
haven equations to determine the weightg;, j = 1,...,n
which are functions of all the gairis;, except those fok = <.
Thus, for giveni, we have a set of weights?,, j = 1,...,n,

.
jir

that eliminates self-interference, resulting in an output whose

instantaneous SNR is

2—
> 1 W hji

(A-4)

Since the weights are functions of all the path gareepth;;,
7=1,...,n,the summation termin (A-4) is a sum ovecom-
plex Gaussian variates that are independentwf} There-
fore, the summation term conditioned ow {} is itself com-
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