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Abstract

A Kalman-filter method for power control is proposed for broadband, packet-switched

TDMA wireless networks. By exploiting the temporal correlation of co-channel interference, a

Kalman filter is used to predict future interference power. Based on the predicted interference and

estimated path gain between the transmitter and receiver, transmission power is determined to

achieve a desired signal-to-interference-plus-noise ratio (SINR). A condition to ensure power

stability in the packet-switched environment is established and proven for a special case of the

Kalman-filter method. The condition generalizes the existing one for a fixed path-gain matrix, as

for circuit-switched networks.

Performance results reveal that the Kalman-filter method for power control provides a

significant performance improvement. Specifically, when messages consist of 10 packets on

average, the 90th and 95th percentile of the SINR by the new method are 3.79 and 5.46 dB above

those when no power control is in use, and lie just 0.96 and 1.14 dB below the upper-bound

performance of the optimal power control, respectively, in a system with 4-sector cells and an

interleaved frequency assignment of a reuse factor of 2/8. In addition, the new method performs

noticeably better than the delta-modulation method and a simple scheme that uses the last

measurement as predicted interference power. In an example of 8-PSK modulation and average

message length of 20 packets, the SINR performance gain by the new method improves the

network throughput by about 150% and 70%, relative to no power control and the simple scheme,

respectively.

_ ______________

* Part of this paper was presented at IEEE INFOCOM’99, New York, NY, March 1999.
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1. INTRODUCTION

There is a growing demand for broadband wireless networks as work-at-home,

telecommuting and Internet access have become very popular. Given the proliferation of Internet

Protocol (IP) networks, it is important to design broadband wireless networks that support

transport of IP packets. Towards this goal, it is natural to allow terminals and base stations to send

data continuously until the whole data message is transmitted, as on typical wired IP networks

such as Ethernet.

Dynamic transmission power control has been widely studied and practiced to manage

interference in cellular radio networks; see e.g., [Z92a], [FM93], [CS94], [EKBNS96], [RZ98] and

[UY98]. Specifically, power control has been shown to be a useful technique to improve

performance and capacity of time-division-multiple-access (TDMA) wireless networks. In

addition to performance improvement, power control is actually essential in solving the near-far

problem in code-division-multiple-access (CDMA) networks. In this paper, we focus on

broadband packet-switched TDMA networks with data rates up to several megabits per second.

Existing power control algorithms can be categorized into two classes: signal-based and

signal-to-interference-ratio (SIR) based power control. Signal-based power control [W93]

[HWJ97] adjusts the transmission power based on the received signal strength. In contrast, SIR-

based control [Z92a], [Z92b], [FM93], [GVG94], [CS94] changes the power according to the ratio

of signal and co-channel interference (possibly plus noise) power levels. (Since only co-channel

interference is considered here, it is simply referred to as interference in the following.) It has

been shown that SIR-based power control outperforms signal-based control.

Many SIR-based power control algorithms implicitly assume that calls have relatively long

holding time and they use the last SIR measurement to adjust power iteratively. However, they

may not be efficient for packet-switching networks due to the burstiness of data packets, coupled

with irregular transmission schedule in these networks. Thus, we need an appropriate power

control for packet-switched TDMA networks, and this is the topic of this paper.

To help illustrate our ideas for wireless packet networks, let us assume that time is divided

into slots. Let each data message be divided into a number of packets, each of which can be

transmitted in one time slot. As in typical IP networks, the message length (in terms of the number

of packets) varies randomly from message to message. Despite such randomness, the networks

allow multiple, contiguous time slots to be used by the same terminal or base station for

transmitting a message. As a consequence, the interference at a given receiver is correlated from
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one time slot to the next. We observe that such temporal correlation for the interference becomes

strong quickly when the message length increases from one. For this reason, based on the

interference measurements in previous slots, one can apply appropriate methods to predict the

interference power to be received at a terminal or base station in the next slot. Based on the

predicted interference and estimated path gain between the transmitter and receiver, the

transmission power in the next time slot can be determined to achieve the desired performance in

terms of signal-to-interference-plus-noise ratio (SINR). These are the key ideas behind the power

control algorithm proposed in the following.

In particular, we propose to use a Kalman filter [BH97] [H96] to predict the interference

power, thus our algorithm is referred to as the Kalman-filter method. The advantage of the

Kalman filter is that it is simple, due to its recursive structure and robust over a wide range of

parameters, and it possibly provides an optimal estimate in the sense of minimum mean square

error. Kalman filters have been applied successfully to many systems [BH97]. As for wireless

networks, [DJM96] proposes using a Kalman filter for call admission in CDMA networks. We

report here that Kalman filtering is also useful for power control in TDMA networks.

The organization of the rest of this paper is as follows. In section 2, the Kalman-filter

method for power control is presented. The stability of power control in wireless packet networks

is analyzed in Section 3. Then, in Section 4, we use simulation techniques to study the

performance of the new method. Finally, we present our conclusions in Section 5.

2. A KALMAN-FILTER METHOD FOR POWER CONTROL

Although the Kalman-filter power control is applicable to both the uplink (from terminal to

base station) and the downlink (from base station to terminal), we focus on the uplink here.

2.1 System Assumptions

1. Consider a cellular radio network where time is divided into slots. Let each data message

be divided into a number of packets, each of which can be sent in one time slot. The

network allows multiple, contiguous time slots to be used by the same transmitter for

sending a message, thus producing temporal correlation for interference.

2. The path gain (i.e., the path loss plus shadow fading) between a terminal and its base station

can be estimated accurately by measurements; for example, by use of the control channel

for handoff purposes in GSM system [R96]. This assumption is reasonable, especially for

the case where the path gain does not change much over time when the terminal is moving
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at a very slow speed or is stationary.

3. The medium-access control (MAC) protocol in use allows at most one terminal in each

sector or cell to send data at a time; that is, no data contention occurs within the same sector

or cell. In addition, the base station knows which terminal is scheduled to transmit at

different times. (E.g., typical polling and reservation schemes meet both requirements.)

When a terminal transmits, it can send packets in multiple time slots contiguously.

4. Due to the large volume of data involved, base stations do not exchange control information

among themselves on a per packet basis in real time. Thus, it is extremely difficult to

estimate how much interference one transmission causes to others.

5. Interference power in each time slot can be measured quickly, but probably with errors at

each base station. The interference power is equal to the difference between the total

received power and the power of the desired signal, where the latter can be measured by

filtering based on the training symbols for the signal. In fact, making such measurements

can be challenging, especially when time duration is short; see e.g., [AS95] and [AMY98].

2.2 Interference Prediction by Kalman Filter

We use a Kalman filter to predict the future interference-plus-noise power. Let I(n) be the

actual interference-plus-noise power in dBm received at a given base station in time slot n. In

other words, I(n) is the "process state" to be estimated by the Kalman filter. Assume that the noise

power, which depends on the channel bandwidth, is given and fixed. For brevity, unless stated

otherwise, the interference plus thermal noise is simply referred to as interference in the

following. The dynamics of the interference power is described by

I(n) = I(n − 1 ) + F(n) (1)

where F(n) represents the fluctuation of interference power as terminals start new transmissions

and/or adjust their transmission power in the time slot. In the terminology of Kalman filtering,

F(n) is the "process noise." In essence, the interference power is modeled as a Brownian-motion

process [BH97] in (1). Let Z(n) be the measured interference power in dBm for slot n. Then,

Z(n) = I(n) + E(n) (2)

where E(n) is the "measurement noise" (e.g., due to receiver noise). Eq.(1) and (2) are commonly

referred to as the signal generation model. By the Kalman filter theory [BH97], the time and

measurement update equations for the interference power are:
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Ĩ(n + 1 ) = Î(n) (3)

P̃(n + 1 ) = P̂(n) + Q(n) (4)

K(n) = P̃(n) [P̃(n) + R(n) ] −1 (5)

Î(n) = Ĩ(n) + K(n) [Z(n) − Ĩ(n) ] (6)

P̂(n) = [ 1 − K(n) ] P̃(n) (7)

where Ĩ(n) and Î(n) are the a priori and a posteriori estimates of I(n), P̃(n) and P̂(n) are the a

priori and a posteriori estimate-error variances, K(n) is the Kalman gain, and Q(n) and R(n) are

the variances for the process noise F(n) and measurement noise E(n), respectively.

Clearly, Q(n) and R(n) need to be estimated as input for (4) and (5). As an initial attempt,

we estimate Q(n) based on interference measurements in the last W slots as follows:

Z
_

(n) =
W
1_ __

i =n −W +1
Σ
n

Z(i) (8)

Q(n) ∼∼
W − 1

1_ _____
i =n −W +1

Σ
n

[Z(i) − Z
_

(n) ]2 . (9)

This approximation of Q(n) is obtained based on the following reasoning. First, Z
_

(n) given by (8)

is the average measured interference power (noise included) over the sliding window W. We

observe that as I(n) and E(n) in (2) are typically independent, the variance of Z(n) over the sliding

window, as given by the right-hand side of (9), actually represents the sum of the variances of the

interference power I(n) and the measurement noise E(n). Since the fluctuation of I(n) can reach as

much as tens of decibels in the packet-switched networks, which is much higher than typical

measurement errors, the variance of Z(n) approximately equals the variance of I(n). In turn, as

shown in (9), the approximate variance of I(n) is used as an estimate of the variance Q(n) of the

process noise F(n), which is the change in interference power from one time slot to the next

according to (1). This last step of approximation is appropriate because Q(n) is proportional to the

fluctuation of I(n). We note that the sliding window in (8) and (9) is used in order to capture the

non-stationarity of interference. Evidently, W should be chosen big enough (e.g., ≥10) so that if the

measurement errors E(n) in (2) have zero mean (which is typical), (8) can yield an unbiased

estimate of average interference power.

Actually, R(n) depends on the error characteristics of interference measurements at the

receiver, and is typically uncorrelated with Q(n). In practice, R(n) can be determined by, for

example, measuring the "received" power on a known, idle channel. Thus, the variance of the
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"received" power over a time window is an estimate of R(n). To illustrate the potential

performance gain of the Kalman-filter method without considering details of the measurement

error characteristics and procedure here, we assume for simplicity that R(n) is given by

R(n) = ζQ(n) (10)

where ζ is a given constant between 0 and 1. The choice of R(n) in (10) as an illustrative example

is reasonable for our study here because, as mentioned above, Q(n) in (9) includes the variance of

measurement noise. We remark that determining the best estimates for Q(n) and R(n) represents

an area for further study. Nevertheless, we show in the following that the power-control method

using the above estimates can yield significant performance gain. Further gain may be achievable

with an enhanced estimate of Q(n) and an actual measurement of R(n).

For each slot n, the interference measurements are input to (8) to (10) for estimating Q(n)

and R(n). Using these values and the current measurement, (5) to (7) yield the Kalman gain and

the a posteriori estimates for I(n) and P(n), respectively. The a priori estimates for the next time

slot are given by (3) and (4). In particular, Ĩ(n + 1 ) in (3) is used as the predicted interference

power in slot n + 1 for power control as described below. Before discussing the determination of

transmission power, we emphasize that although the Kalman filter in (3) to (7) is presented as a

tool for interference prediction, it also provides smoothing effects as the measurement noise

(error) is smoothed out by the nature of filtering.

2.3 Determination of Transmission Power

Let γ be the target SINR, p(n) the transmission power and g(n) the path gain from the

transmitting terminal to the base station for slot n, respectively. While I(n) and Ĩ(n) represent the

actual and predicted interference power in dBm, we use i(n) and ĩ(n) to denote the respective

values in mW. By Assumption 2, the base station can estimate g(n) accurately. Based on this and

the predicted interference Ĩ(n) in (3), the base station instructs (via a downlink channel) the

terminal to transmit in slot n with power

p(n) = γ
g(n)
ĩ(n)_ ____ . (11)

The goal of this setting of transmission power is to choose just enough power to achieve the target

SINR γ, thus minimizing interference to others without degrading one’s link quality. In fact,

different targets can be used in (11) for different terminals, depending on their link quality

[LW00]. Nevertheless, we assume all terminals have an identical target SINR here.
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When power is selected by (11), the receiving SINR γ(n) at the base station is

γ(n) =
i(n)

p(n) g(n)_ ________ = γ
i(n)
ĩ(n)_ ____ , (12)

where i(n) is the actual interference power in mW for slot n. It is clear from (12) that when the

interference prediction by the Kalman filter is accurate (i.e., ĩ(n) ∼∼ i(n)), the target SINR is

achieved. Even when ĩ(n) does not predict i(n) exactly, the method also helps in reducing the

spread of γ(n), as long as ĩ(n) and i(n) are positively correlated.

2.4 Steps for the Kalman-Filter Method

The Kalman-filter method for power control is summarized as:

a. For each time slot n, each base station measures the interference power for the time slot.

b. The interference measurements are used as input to the Kalman filter in (3) to (10) to predict

the interference power Ĩ(n + 1 ) (or equivalently, ĩ(n + 1 )) in slot n + 1.

c. Based on the MAC protocol in use (which satisfies Assumption 3), the base station tracks

the path gain g(n + 1 ), and selects the transmission power by (11) to meet a given target

SINR for the terminal that transmits in slot n + 1.

d. The power level p(n + 1 ) is forwarded via the downlink to the terminal for actual

transmission.

3. STABILITY OF POWER CONTROL IN WIRELESS PACKET NETWORKS

Instead of considering the general case of the Kalman-filter method, we consider a simple

power-control scheme where the transmission power for slot n is determined by

p(n) = γ
g(n)

z(n − 1 )_ _______ . (13)

where z(n − 1 ) is the measured interference power in mW for slot n − 1; that is, z(n − 1 ) is the

linear-scale equivalent of Z(n − 1 ) in dB in (2). Actually, (13) is a special case of the Kalman-

filter method. Specifically, if the measurement noise is constant (i.e., R(n) = 0 for all n), we have

K(n) = 1 and Ĩ(n + 1 ) = Z(n) = I(n) + E(n), according to (2) to (7). In other words, the measured

interference power in slot n − 1 is used as an estimate of that same quantity in slot n. In this case,

(11) becomes (13). It is noteworthy that (13) also corresponds to the power control with β =1 in

[FM93] and that in [GVG94] when receiver noise is ignored.
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To continue, let the network have M co-channel sectors and J terminals in each sector,

where exactly one terminal is scheduled to transmit in each sector in a time slot. For i , j = 1 to M,

we use g i j (n) to denote the path gain (i.e., the path loss plus shadowing) from a terminal that

transmits in slot n in sector j to the base station receiver of sector i. For each slot n, let G(n) be the

path-gain matrix [g i j (n − 1 )/ g ii (n) ] MxM with elements in the diagonal replaced by zeros. As in

[Z92a], we assume that G(n) for all n has a full rank with probability one. Let λ i (n) and u i (n) for

i = 1 to M be the eigenvalues and associated eigenvectors of G(n) with

 λ 1 (n) ≥ λ 2 (n) ≥ . . . ≥ λ M (n). To study power stability, it is appropriate to consider the l ∞

norm of a vector x = (x 1 ,x 2 , . . . ,x M ) T , denoted by   x  ∞ ≡
1≤i≤M
max  x i . To avoid extreme situations,

we also assume that all eignvectors associated with G(n) have finite l ∞ norm; i.e.,   u i (n)  ∞ < ∞

for all i and n, with probability one.

With M sectors in the system and J terminals in each sector, different combinations of

terminals can transmit in a time slot, which result in J M possible path-gain matrices applicable to

every slot. Let these matrices be denoted by G i for i = 1 to J M. Further, let β i be the largest

eigenvalue for each G i. Clearly, as a result of the packet switching, G(n) is equal to one of the

G i’s for each slot n, depending on which terminals are actually transmitting in the slot. We

assume that the choices of transmitting terminals are made randomly and independent of system

conditions. In addition, for k = 1 to J M, let a k be the long-term (i.e., over a sufficiently large

number of time slots) fraction of occurrence of G(n) = G k, for n = 1 , 2 , ... ,∞. Clearly,
k =1
Σ
JM

a k = 1.

Let the power vector be p(n) = (p 1 (n) , ... ,p M (n) ) T where p i (n) is the power for the terminal

of sector i transmitting in slot n. We note that the standard notion of "convergence" of the power

vector may not apply well in wireless packet networks because different sets of terminals can be

transmitting in consecutive time slots. Rather, our main concern is whether the transmission

powers of all terminals remain finite in the steady state. Thus, we define a power-control

algorithm to be stable, if
n→ ∞
lim p i (n) < ∞ for all i. That is, if

n→ ∞
lim   p(n)  ∞ < ∞.

3.1 Stability for Interference-Limited Case

Without the receiver (thermal) noise, z(n − 1 ) = i(n − 1 ) =
j≠i
Σg i j (n − 1 ) p j (n − 1 ). Based on

this, the power control in (13) for the whole system can be expressed in a matrix form:

p(n) = γG(n) p(n − 1 ) . (14)

Theorem 1: With   p( 0 )  ∞ < ∞,
n→ ∞
lim   p(n)  ∞ < ∞ if and only if
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γ
k =1
Π
JM

βk
a k < 1 , (15)

where for k = 1 to J M, a k is the long-term fraction of occurrence of G(n) = G k for n = 1 , 2 , ... ,∞.

Proof: As given by (14), the power vector for slot n, p(n), is determined as a function of the

power vector for the previous slot, p(n − 1 ). However, our approach in the proof is to express a

given power vector p(n) as a sum of eignvectors associated with the path-gain matrix G(n + 1 ) for

slot n + 1. Specifically, since G( 1 ) has a full rank, its eignvectors u j ( 1 ), for j = 1 to M, are linearly

independent. Thus, for a given p( 0 ), we can express

p( 0 ) =
i 1 =1
Σ
M

u i 1
( 1 ) . (16)

Substituting (16) into (14) and using the property of matrix eigenvectors and eigenvalues that

G( 1 ) u i ( 1 ) = λ i ( 1 ) u i ( 1 ) for all i, we have

p( 1 ) = γG( 1 )
i 1 =1
Σ
M

u i 1
( 1 ) = γ λ 1 ( 1 )

i 1 =1
Σ
M

λ 1 ( 1 )

λ i 1
( 1 )

_ ______ u i 1
( 1 ) . (17)

Similarly, u i 1
( 1 ) in (17) can now be represented by a sum of linearly independent eigenvectors

u i 1 ,i 2
( 2 )’s of G( 2 ) for slot 2. That is, for i 1 = 1 to M,

u i 1
( 1 ) =

i 2 =1
Σ
M

u i 1 ,i 2
( 2 ) . (18)

Then, recursively expanding (14) yields

p(n) = γn

i =1
Π

n
λ 1 (i)

i 1 =1
Σ
M

i 2 =1
Σ
M

. . .
i n =1
Σ
M

λ 1 ( 1 )

λ i 1
( 1 )

_ ______ .
λ 1 ( 2 )

λ i 2
( 2 )

_ ______ . . .
λ 1 (n)

λ i n
(n)

_ ______ u i 1 ,i 2 ,... ,i n
(n) , (19)

where, for k = 2 to n, u i 1 ,i 2 ,... ,i k − 1
(k − 1 ) =

i k =1
Σ
M

u i 1 ,i 2 ,... ,i k
(k), and the latter are linearly independent

eigenvectors of G(k) for slot k. Using the fact that
 λ 1 (k)

 λ i k
(k)_ _______ ≤1 for all k, we take the l ∞ norm of

both sides of (19). Further, since   u i 1 ,i 2 ,... ,i n
(n)  ∞ < ∞ for all n, let K be a finite upper bound of

these l ∞ norms. Finally, taking n→ ∞, we obtain from (19) that
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n→ ∞
lim   p(n)  ∞ ≤

n→ ∞
lim γn

i =1
Π

n
λ 1 (i)

i 1 =1
Σ
M

i 2 =1
Σ
M

. . .
i n =1
Σ
M

  u i 1 ,i 2 ,... ,i n
(n)  ∞

≤
n→ ∞
lim γn

i =1
Π

n
λ 1 (i) MKn = MK

n→ ∞
lim n




γ

k =1
Π
JM

βk
a k





n

. (20)

where the conversion of the product of the λ 1 (i)’s into that of the β k’s is valid due to the

following reason. By definition, when n→ ∞ and for each k = 1 to J M, na k is the number of

occurrence that G(i) = G k for i = 1 to n. Given G(i) = G k, their largest eignvalues equal to each

other; that is, λ 1 (i) = βk. Thus,
i =1
Π

n
λ 1 (i) =

k =1
Π
JM

βk
na k when n→ ∞. Applying Theorem 3.20d in [R76],

the last limit in (20) converges as n→ ∞ if and only if (15) holds. Thus,
n→ ∞
lim   p(n)  ∞ is bounded if

and only if (15) is true.

It is worth noting that Theorem 1 is a generalization of the standard condition γ λ <1 (e.g.,

[Z92a], [GVG94]) for power stability, where λ is the maximum eigenvalue of a given fixed path

gain matrix, as in circuit-switched networks.

3.2 A Sufficient Stability Condition in Presence of Receiver Noise

Suppose that the constant receiver noise power at the base station of sector i is η i. We use

η (n) to denote the vector of η i / g ii (n), for i = 1 to M and n ≥ 1. In parallel to (14), the power control

in (13) with receiver noise can be expressed as

p(n) = γ
 G(n) p(n − 1 ) + η(n) 

 . (21)

Before proving that (15) is a sufficient condition for the stability of (21), we define

A n ≡ γn −1

i =2
Π

n
λ 1 (i) (n − 1 ) + γn −2

i =3
Π

n
λ 1 (i) (n − 2 ) + γn −3

i =4
Π

n
λ 1 (i) (n − 3 ) + . . . + γ λ 1 (n) . (22)

Lemma 1: If (15) holds,
n→ ∞
lim A n < ∞.

Proof: We apply the root test [R76] to show that the sequence {A n } converges. Let

ω =
n→ ∞

lim sup [γn −1

i =2
Π

n
λ 1 (i) (n − 1 ) ]1/ n . (23)

For sufficiently large n,
i =2
Π

n
λ 1 (i) =

k =1
Π
JM

βk
na k , as in (20). Applying this and (15) to (23) yields
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ω = γ
k =1
Π
JM

βk
a k

n→ ∞
lim sup (n − 1 )1/ n = γ

k =1
Π
JM

βk
a k < 1 . (24)

By the root-test theorem with ω <1, {A n } converges. Applying Theorem 3.2c in [R76], the

convergence implies that {A n } is bounded.

Theorem 2: Assume that   p( 0 )  ∞ < ∞ and   η (n)  ∞ < ∞ for all n. If (15) holds, then

n→ ∞
lim   p(n)  ∞ < ∞, with p(n) given by (21).

Proof: Note that p(n) in (21) is determined as a function of p(n − 1 ). Similar to Theorem 1, our

approach to the proof is to express a given power vector p(n) as a sum of linearly independent

eignvectors associated with the path-gain matrix G(n + 1 ) for slot n + 1. Thus, we can express a

given p( 0 ) as

p( 0 ) =
i 1 =1
Σ
M

u i 1
( 1 ) , (25)

where the u i 1
( 1 )’s are independent eigenvectors of G( 1 ). Substituting (25) into (21) and using the

fact that G( 1 ) u i ( 1 ) = λ i ( 1 ) u i ( 1 ) for all i, we obtain

p( 1 ) = γ




λ 1 ( 1 )

i 1 =1
Σ
M

λ 1 ( 1 )

λ i 1
( 1 )

_ ______ u i 1
( 1 ) + η( 1 )






. (26)

Similar to (18), we express u i 1
( 1 ) =

i 2 =1
Σ
M

u i 1 ,i 2
( 2 ), for each i 1 = 1 to M, and η ( 1 ) =

i 2 =1
Σ
M

v i 1 ,i 2
( 2 ),

where the u i 1 ,i 2
( 2 )’s and v i 1 ,i 2

( 2 )’s are eigenvectors of G( 2 ). Thus, recursively expanding (21)

leads to

p(n) = γn

i =1
Π

n
λ 1 (i)

i 1 =1
Σ
M

. . .
i n =1
Σ
M

λ 1 ( 1 )
.

λ i 1
( 1 )

_ ______
λ 1 ( 2 )

λ i 2
( 2 )

_ ______ . . .
λ 1 (n)

λ i n
(n)

_ ______ u i 1 ,i 2 ,... ,i n
(n)

+ γn

i =2
Π

n
λ 1 (i)

i 2 =1
Σ
M

. . .
i n =1
Σ
M

λ 1 ( 2 )

λ i 2
( 2 )

_ ______ . . .
λ 1 (n)

λ i n
(n)

_ ______ v i 2 ,i 3 ,... ,i n
(n)

+ γn −1

i =3
Π

n
λ 1 (i)

i 3 =1
Σ
M

. . .
i n =1
Σ
M

λ 1 ( 3 )

λ i 3
( 3 )

_ ______ . . .
λ 1 (n)

λ i n
(n)

_ ______ v i 3 ,i 4 ,... ,i n
(n) + . . .

+ γ2 λ 1 (n)
i n =1
Σ
M

λ 1 (n)

λ i n
(n)

_ ______ v i n
(n) + γ η (n) (27)

where, for k = 2 to n and k > j, v i j ,i j + 1 ,... ,i k − 1
(k − 1 ) =

i k =1
Σ
M

v i j ,i j + 1 ,... ,i k
(k), and the latter are eigenvectors

of G(k). Consider the l ∞ norm and the fact that  λ i ( j)/λ 1 ( j) ≤1, for all i and j, in (27), we have



- 12 -

  p(n)  ∞ ≤ γn

i =1
Π

n
λ 1 (i)

i 1 =1
Σ
M

. . .
i n =1
Σ
M

  u i 1 ,i 2 ,... ,i n
(n)  ∞ + γn

i =2
Π

n
λ 1 (i)

i 2 =1
Σ
M

. . .
i n =1
Σ
M

  v i 2 ,i 3 ,... ,i n
(n)  ∞

+ . . . + γ2 λ 1 (n)
i n =1
Σ
M

  v i n
(n)  ∞ + γ  η (n)  ∞ . (28)

Since   u i 1 ,i 2 ,... ,i n
(n)  ∞ < ∞ and   v i j ,... ,i n

(n)  ∞ < ∞, for all j ≥ 2, let K be a finite upper bound of

these l ∞ norms. Applying this to (28) yields

  p(n)  ∞ ≤ γn

i =1
Π

n
λ 1 (i) MKn + γKM




γn −1

i =2
Π

n
λ 1 (i) (n − 1 ) + γn −2

i =3
Π

n
λ 1 (i) (n − 2 ) + . . . + γ λ 1 (n)





+ γ  η (n)  ∞ . (29)

Similar to (20), when (15) holds and n→ ∞, the first term on the RHS of (29) becomes zero. In

addition, since the last term is finite,   p(n)  ∞ < ∞ if the series in brackets is bounded. Indeed,

Lemma 1 confirms the latter, given that (15) holds.

Note that Theorem 2 generalizes the stability criterion in [FM93], where the path-gain

matrix is assumed to be constant. However, due to analytical difficulty, we are not able to prove

that (15) is the necessary stability condition for (21). We also point out that the computation for

(15) is very involved because of a huge number of applicable path-gain matrices, as a result of the

many possible combinations of transmitters in the packet-switched network. Lastly, the stability

criteria for the general case of Kalman-filter power control is an open research issue. Perhaps one

possible direction to study it may be to include another "noise" term in (21) to account for the

perturbation of power due to the filtering effects. When appropriate criteria are satisfied, the

Kalman filter remains stable, which in turn keeps the new "noise" term finite. If this could be

shown, the rest of the proof for Theorem 2 could remain applicable.

4. PERFORMANCE STUDY

4.1 Simulation Model

Given the complexity of the Kalman-filter method, we choose to use simulation techniques

to study its effectiveness. We simulate the cell layout and interleaved channel assignment (ICA)

[WL00] in Figure 1. A total of 19 cells in the hexagonal layout are considered. Each cell is

divided into 4 sectors, each of which is served by a base station antenna located at the center of the

cell. The beamwidth of each base station antenna is 60o, while terminals have omni-directional

antennas. For simplicity while closely modeling practical antennas, the radiation pattern for the
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base station antenna is assumed to have a parabolic shape; that is, a 3 dB drop occurs at the

beamwidth half angle and any direction beyond a threshold angle in a clockwise or anti-clockwise

direction suffers a given, fixed attenuation relative to the gain at the front direction, which is

called the front-to-back (FTB) ratio. For the 60o base station antenna with 20 dB FTB ratio, this

pattern yields a 3 dB drop at the 30o angle in the clockwise or anti-clockwise direction from the

front direction, the threshold angle is 77. 5o and the antenna has a gain of 7.38 dBi at the front

direction. The ICA (static) scheme in Figure 1 allows sectors with the same labels to use the same

channel set, thus yielding a frequency reuse factor of 2/8 (i.e., reuse in every 2 cells or 8 sectors).

Each sector is populated with 500 randomly placed and uniformly distributed terminals. Each

terminal selects the base station that provides the strongest signal power. Terminals are assumed

to be stationary throughout the simulation. To provide accurate results, only statistics in the

middle cell in Figure 1 are collected and reported below.

Each radio link is characterized by a path-loss model with an exponent of 4 and lognormal

shadow fading with a standard deviation of 8 dB. Fast fading is not considered in obtaining the

SINR statistics, but is considered when mapping the SINR performance to packet error rate. Cell

radius is 1 Km and the path loss at 100m from the cell center is -78 dB (for a carrier frequency at 2

GHz). Thermal noise power is equal to -110 dBm to consider 1 MHz channel bandwidth and a

noise factor of 4 dB.

Message length is assumed to have a discrete form of Pareto distribution, which has been

shown to be appropriate for modeling IP traffic [WTSW97]. More precisely, each time a terminal

transmits a message, i, the number of slots used in the message transmission, is characterized by

the following cumulative distribution function:

H i = 1 − 
î k / i

α for i ≥ k ∈ Z + and α > 1 (30)

where k and α are given parameters. Then, the probability that a message consists of i packets is

given by h i = 
î k / i

α − 
î k /(i + 1 )

α for i≥k∈ Z + and the average message length is

L = k +
i =k +1
Σ
∞ 

î k / i
α . (31)

Since the Pareto distribution has an infinite variance if α ≤2, such values should be avoided.

Otherwise, our simulation cannot reach a steady state and results will not have statistical

significance. Thus, to guarantee finite variance, for a given L, we set k =  L /2  to ensure α > 2,

where  y is the smallest integer greater than or equal to y. Using this k value, α can be solved

from (31) for the given L.
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To illustrate our ideas without considering details of measurement noise characteristics, W

and ζ for (8) to (10) are set to be 30 and 0.5, respectively. (Actually, our extensive numerical

experiments reveal that the Kalman-filter method gives good results for a wide range of W and ζ,

which corresponds to drastically different characteristics of measurement noise.) For

convenience, our simulation model assumes that terminals in all cells are synchronized at the slot

boundary for transmission. Furthermore, unless stated otherwise (see the discussion associated

with Figure 5), we assume 100% traffic load in this study. That is, there are always terminals

ready for transmission in co-channel sectors. Thus, after a terminal transmits a message with a

random length according to (30), the base station immediately schedules another randomly chosen

terminal in the same sector to start a new transmission in the next time slot. At each time slot with

a packet transmission in a sector, its base station computes and records the SINR according to the

actual signal and interference power. With such statistics collected over a sufficiently long

simulation time, the distribution function for the SINR is obtained, including the high percentiles

of the SINR. To help us study the dynamic range for the power control schemes, the model first

assumes no limit on the actual transmission power in Section 4.2. Then, the power is limited

between 0 and 30 dBm in subsequent subsections. The model assumes that interference power in

one time slot can be measured and used to determine the transmission power for the next slot.

4.2 Performance Gain of the Kalman-Filter Method

Figure 2 compares the SINR performance for the Kalman-filter method with that for no, full

and optimal power control. For no power control, transmission power is fixed at 30 dBm, while

the full power control scheme fully compensates for the path gain between a terminal and its base

station (i.e., the combined path loss and shadow fading) such that the received signal strength at

the base station is maintained at a fixed level of -80 dBm.

Results for the optimal power control, shown by solid line in Figure 2, are obtained by the

method in [GVG94] based on SIR without considering thermal noise. The method assumes

precise knowledge of path gain for all combinations of terminals and base stations. Based on the

path-gain matrix, the iterative method is executed until convergence to determine the optimal

transmission power for each time slot. The transmission power is scaled in each iteration to avoid

numerical underflow and overflow. Thus, these results can be viewed as the upper bounds for the

actual SINR performance for the system in Figure 1.

As for the Kalman-filter method, we set the SINR target γ to be 17 dB in (11). As shown by

the dashed lines in Figure 2, when the message length is 1, the high (e.g., 90th to 99th) percentiles

of the SINR for the Kalman-filter method are very close to those for the full and no power control
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scheme. However, the performance for the new method improves rapidly as the average message

length L increases. In particular, for L = 10, the 90th and 95th percentile of the SINR are 3.79 and

5.46 dB above the respective percentiles for no power control, which represent very significant

performance improvement, and lie just 0.96 and 1.14 dB below the upper-bound performance of

the optimal power control, respectively.

Such improvement can best be explained by examining (12). As L increases, the temporal

correlation for interference becomes strong, and the interference power ĩ(n) predicted by the

Kalman filter is close to the actual value, i(n), thus achieving the SINR target. When possible, the

Kalman-filter method is expected to perform even closer to the target when L is increased further.

As expected, the probability for SINR exceeding 17 dB, the SINR target, for the Kalman-filter

method drops quickly in Figure 2. This implies that good radio links can transmit at a low power,

thus further reducing the amount of interference for co-channel sectors. In addition to the results

for Pareto-distributed message lengths in Figure 2, we also obtained similar results for

geometrically-distributed lengths.

Let us discuss about the selection of L in Figure 2. For a data rate of 1 Mbps, a time slot can

be chosen to be 0.5 msec; that is, each packet contains 500 bits, which is comparable to the length

of a TCP/IP acknowledgement (e.g., in web browsing applications) or the size of an ATM cell

when the IP is supported by the ATM transport network. With these parameters, L is likely to be

greater than 10 for applications such as telecommuting, where text emails can easily contain more

than 5,000 bits.

For L = 10, Figure 3 illustrates how the SINR performance for the Kalman-filter method

improves when the SINR target, γ in (11), increases from 13 to 20 dB. As the target increases, the

performance becomes close to optimum. Although not shown in the figure, analysis in Section 3

has revealed that there exists a certain maximum target for given channel assignment, cell layout

and radio parameters, without increasing transmission power to infinity. However, determining

the power stability for a given SINR target is involved in the computation. Thus, we choose to

determine the maximum stable (achievable) SINR target for the Kalman-filter method by

simulation experiments. For the system in Figure 1, it is found that when the SINR target is

greater than 20 dB, the simulation simply did not reach a steady state and the transmission power

was set to be extremely high. For L = 10, Figure 4 shows the distribution of transmission power

for selecting 15, 17 and 20 dB as the SINR target. We note that although a target of 20 dB is still

stable, it requires excessive transmission power. At the other extreme, for 15 dB as the target

SINR, terminals do not fully utilize their typical, maximum transmission power of 30 dBm. From
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these results, a maximum target of 17 dB can be supported in practice.

4.3 Performance Comparison With Other Methods

To have meaningful comparisons between the Kalman method and other methods, the

transmission power is bounded between 0 and 30 dBm in the rest of this study. The SINR target is

set to 17 dB, which is appropriate for the power limits shown in Figure 4.

Table 1 compares the SINR performance of the Kalman method with the delta-modulation

method studied in [CS94]. In the delta-modulation method, when a terminal starts a new message

transmission, the transmission power for its first packet is set according to the signal path gain so

that the receiving signal strength is -80 dBm. For the subsequent packets, the receiving SINR is

measured at each time slot. If the SINR is less (greater) than the 17 dB target, transmission power

is increased (decreased) by 1 dB for the next packet. As indicated above, the power is limited to

be between 0 and 30 dBm. Table 1 shows that the SINR percentiles improve as message length

increases for both methods. However, the Kalman method consistently yields a gain of 1.3 to 4.7

dB for the SINR percentiles over the delta-modulation method.

Our next step is to assess the performance of the proposed method in the presence of

random measurement errors. That is, for a given average relative (absolute) measurement error

(say X%) and the actual interference I i in dBm for slot i, the interference measurement Z(i), input

to (8), is randomly distributed between I i ( 1 − 2X /100 ) and I i ( 1 + 2X /100 ) dBm. Furthermore, one

may wonder how the performance of the Kalman-filter method compares with that of the simple

power control in (13). The simple control adjusts the transmission power p(n) for each terminal

transmitting in slot n according to (11), with ĩ(n) (which is the predicted interference by the

Kalman filter) replaced by z(n − 1 ). This simple scheme is based on the following observation:

Despite the fact that the interference power changes in time, it might not change drastically,

especially when L >>1 and/or the interference comes from many random sources, where the law of

large number starts to apply (i.e., to keep the total interference power at its overall average level).

As a result, the interference measurement in slot n − 1, namely z(n − 1 ), can approximate the actual

interference power in slot n as well. As pointed out in Section 3, the simple scheme is identical to

the Kalman method with zero R n. In addition, the simple scheme can also be viewed as a possible

implementation of the approach with β =1 in [FM93], although the latter method does not propose

use of interference tracking to adjust power for the first packet of each message transmission.

To illustrate the potential improvement of network capacity by the Kalman-filter method,

we consider an example of the packet error rate (PER) (or packet error probability) in Table 2.
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These parameters are adopted from Figure 7 in [E98] for 8-PSK modulation with a data rate of

22.8 Kbps in the Enhanced Data rates for the GSM Evolution (EDGE) system. The throughput

and PER performance of the Kalman-filter method and the simple scheme for selected average

message lengths with average relative measurement error of 5% are presented in Table 3. The

throughput is the product of 22.8 Kbps and the associated successful reception probability. For

reference, the results for no power control are also given. We first note that when the message

length increases, the throughput and PER for both methods improve as the accuracy of the

interference prediction improves. Secondly, the PER for no power control is 7.3%, compared to

5.1% and 2.8% when L = 20, for the simple scheme and the Kalman method, respectively. For

real-time services such as IP voice, the required PER is a couple of percent [FHCS99]. Thus, the

PER for no power control and for the simple scheme will both be inadequate for such services.

Even for non-real-time data services, it has been shown [p.13, B98] that a few percent of PER can

significantly reduce data throughput at the network protocol layer. Thus, it is desirable to keep the

PER satisfactorily low. Without using complicated techniques, one way to improve the PER is to

decrease traffic load and thereby reduce interference, as examined in the following.

For a given traffic load ρ per sector and L, each sector stays idle for a number of slots after

its transmitting terminal finishes a message transmission and before another terminal begins a new

transmission. As an example, the idle period is assumed to be geometrically distributed; that is,

the idle period lasts for k slots with probability PI
k ( 1 − P I ) where P I = ( 1 − ρ) L /ρ +( 1 − ρ) L. Let us

use the PER’s achieved by the Kalman method with ρ =1 and various L values in Table 3 as the

required PER’s. We perform a binary search on ρ for no power control and also for the simple

scheme, so that the reduced traffic load can support the required PER. Figure 5 shows the

throughput improvement of the Kalman-filter method relative to no power control and relative to

the simple scheme. In particular, to support the required PER of 2.8%, achievable by the Kalman

method with L = 20 with ρ =1, the traffic load for no power control and for the simple scheme have

to be reduced to 0.4 and 0.59, respectively. As shown in Figure 5, the Kalman method thus

provides a relative throughput increase of 150% and 69.5% over no power control and the simple

scheme, respectively.

Generally, the performance gain of the Kalman-filter method reduces when the control delay

increases or message length decreases; see additional results in [L99]. A technique for handling

increased control delay and/or decreased message length can be found in [L00].
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5. CONCLUSIONS AND FUTURE WORK

The Kalman-filter method for power control has been proposed for broadband packet-

switched TDMA wireless networks. By observing the temporal correlation of co-channel

interference when transmitters can send data packets contiguously, the method uses a Kalman

filter to predict future interference power. Based on the predicted interference and estimated path

gain between the transmitter and receiver, transmission power is determined to achieve a desired

SINR performance. The new technique is simple to implement due to its recursive structure and is

robust over a wide range of parameters. A condition to ensure power stability in the packet-

switched system is established and proven for a special case of the Kalman-filter method. The

condition generalizes that for circuit-switched networks where path-gain matrices are fixed.

Our performance results reveal that the Kalman-filter method for power control provides a

significant performance improvement in wireless packet networks. Specifically, for an average

message length of 10 packets, the 90th and 95th percentile of the SINR by the new method are

3.79 and 5.46 dB above those when no power control is in use, and lie just 0.96 and 1.14 dB below

the performance of the optimal SIR-based power control, respectively, in a system of 4-sector

cells using the interleaved channel assignment with a frequency reuse factor of 2/8 [WL00]. In

addition, the new method performs noticeably better than the delta-modulation method and a

simple scheme that uses the last measurement as predicted interference power. In an example of

8-PSK modulation and average message length of 20 packets, the SINR performance gain by the

new method improves the network throughput by about 150% and 70% relative to no power

control and the simple scheme, respectively.

Performance of future wireless networks will depend on the design of dynamic channel

assignment (DCA), traffic scheduling, power control, MAC, adaptive antenna, and adaptive

modulation/coding for link adaptation. Often, these issues are studied separately. With the

proposed power-control algorithm as a basis, we are in the process of developing and studying

new designs to consider these issues jointly (e.g., see [LW00]), with a goal of achieving high

spectral efficiency and capacity in practical networks.
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Figure 1. A 4-Sector Cell Layout and Interleaved Channel Assignment (ICA)
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Figure 2. Improvement of SINR Performance
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Figure 3. Performance Impacts of SINR Target for the Kalman-Filter Method
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Figure 4. Transmission Power Distribution for the Kalman-Filter Method
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Table 1. Comparison Between the Kalman-Filter Method and the Delta-Modulation Method.

_ _______________________________________________
Average Message SINR Percentile (dB)_ _____________________

Length (Slots)
Method

90% 95% 99%_ _______________________________________________
3 Kalman 13.40 11.01 4.92

3 Delta 11.96 8.90 2.94_ _______________________________________________
5 Kalman 14.37 12.33 6.28

5 Delta 12.44 9.36 3.14_ _______________________________________________
10 Kalman 15.29 13.54 7.52

10 Delta 12.99 9.88 3.31_ _______________________________________________
20 Kalman 16.02 14.53 8.38

20 Delta 13.82 10.61 3.66_ _______________________________________________
40 Kalman 16.50 15.38 9.52

40 Delta 15.19 12.15 5.39_ _______________________________________________ 
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Table 2. Packet Error Rate for a Fading Channel Using 8-PSK Modulation.
_ ___________________________

SINR (dB) Packet Error Rate_ ___________________________
0 1.0

5 0.8

10 0.25

15 0.024

19 0.001_ ___________________________ 



































Table 3. Comparison of Throughput and Packet Error Rate.
_ ___________________________________________________

Avg. Message Throughput Packet Error

Length (Slots)
Method

(Kbps) Rate (PER)_ ___________________________________________________
- No Control 21.14 0.073_ ___________________________________________________
3 Kalman 21.71 0.048

3 Simple 21.24 0.068_ ___________________________________________________
5 Kalman 21.91 0.039

5 Simple 21.42 0.060_ ___________________________________________________
10 Kalman 21.96 0.037

10 Simple 21.53 0.056_ ___________________________________________________
20 Kalman 22.16 0.028

20 Simple 21.63 0.051_ ___________________________________________________ 
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Figure 5. Throughput Improvement of the Kalman-Filter Method.
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