
-- --

EFFICIENT SERIAL AND PARALLEL ALGORITHMS FOR MEDIAN FILTERING +

Sanjay Ranka* and Sartaj Sahni

University of Minnesota

Abstract

We develop a serial algorithm for separable median filtering that requires only two comparisons

per element when the window size is three. In addition, fast parallel CREW PRAM algorithms

with good processor-time product are developed for separable median filtering and two dimen-

sional median filtering.

Keywords and Phrases

Median filtering, separable median filtering, complexity, CREW PRAM algorithms

1

-- --

2

1 INTRODUCTION

Median filters are widely used for smoothing operations in signal, speech, and image pro-

cessing ([TUKE76], [JAYA76]). This filtering operation is performed on an N×N image matrix

I [1..N, 1..N] using a W×W window where W = 2w + 1 is an odd number. The result of median

filtering is an N×N matrix MEDIAN2D defined as:

MEDIAN 2D [i, j] = median{I [a, b]
�
 nbhd (a, i, w, N) and nbhd (b, j, w, N)}

where

nbhd (p, q, r, s) =

�
� �
false otherwise
true (p − q) mod s ≤ r or (q − p) mod s ≤ r

A straightforward serial computation of MEDIAN2D takes O (N2W 2) time. This is easily

reduced to O (N2WlogW) by using balanced search trees. Huang, Yang, and Tang [HUAN79] have

developed an O (N2W) algorithm for the case when the image values are in the range 0 through

K −1 (i.e., there are K gray levels). Narendra [NARE81] has introduced a related filtering opera-

tion, separable median filter, that can be computed in O (N2logW) serial time (The algorithm

presented in [NARE81] for this takes O (N2W) time. This was improved to O (N2logW) by Basu

and Brown [BASU87]). The separable median filter, SMEDIAN2D, is obtained by computing

two one dimensional medians as below:

MEDIAN 1D [i, j] = median{I [a, j]
�
 nbhd (a, i, w, N)}

SMEDIAN 2D [i, j] = median{MEDIAN 1D[i, b]
�
 nbhd (b, j, w, N)}

In this formulation, row medians are computed first and then column medians. An alternate

is to compute column medians first and then row medians. Changing the order in this way will

generally lead to different results.

Basu and Brown [BASU87] also develop special purpose hardware for separable median

filtering. Parallel algorithms to compute MEDIAN2D on a pyramid computer have been proposed

in [TANI82] and [STOU83]. Note that by using the O (loglogM) time M processor algorithm of

+ This research was supported in part by the National Science Foundation under grants DCR84-20935 and MIP 86-17374
* Professor Ranka’s current address is CIS Dept, 313 Link Hall, Syracuse University, Syracuse, NY 13244.

-- --

3

[AJTA86] to find the median of m elements, we can calculate SMEDIAN2D and MEDIAN2D in

O (loglogW) time using O (N2W) processors and O (N2W2) processors respectively. The resulting

processor-time products are O (N2WloglogW) and O (N2W2loglogW). We develop algorithms which

have good processor-time product (i.e., within polylogarithmic factor of the optimal serial algo-

rithm). The results obtained in this paper are summarized below:

(1) In Section 2, we present an algorithm to compute MEDIAN1D for the case W = 3. This

algorithm requires at most two comparisons to compute each element of MEDIAN1D. For

the case W = 3, Basu and Brown [BASU87] present an algorithm that requires at most 2.5

comparisons per element of MEDIAN1D.

(2) In Section 3, we show that O (logW) comparisons per element of MEDIAN1D is a lower

bound under the decision tree model. Hence, the algorithm of [BASU87] is asymptotically

optimal for this problem.

(3) Parallel CREW PRAM algorithms for the separable median filter problem are developed in

Section 4. One of these computes MEDIAN1D and hence SMEDIAN2D in

O (log2WloglogW) time using O (N2/(logW loglogW)) processors. The processor time product

for this algorithm is O (N2logW) which by the result of Section 3 is optimal. The other algo-

rithm developed in this section computes MEDIAN1D in O (log2W) time using O (N2logW)

processors. The processor-time product for this algorithm is O (N2 log3W) which is subop-

timal.

(4) The technique used in Section 4 is extended in Section 5 to obtain an O (log2W) CREW

PRAM algorithm to compute MEDIAN2D. This algorithm uses O (N2log2W) processors.

Notice that the processor-time product of this algorithm is O (N2log4W) compared to

O (N2W logW) for the serial algorithm using balanced search trees. We can obtain a serial

O (N2log4W) algorithm for MEDIAN2D by simulating our parallel CREW PRAM algo-

rithm.

-- --

4

2 COMPUTING MEDIAN1D SERIALLY

Basu and Brown [BASU87] show that when W = 3 MEDIAN1D can be computed using at

most 2.5 comparisons per element of MEDIAN1D. Their algorithm is presented in Figure 1. For

simplicity, this C code computes only median 1d [1..N −2] for the N pixel image image [0..N −1]. In

iteration i of the for loop, two median 1d values (median 1d [i + 1] and median 1d [i + 2]) are com-

puted. First, in (a, b) we save image [i + 1] and image [i + 2] in ascending order. Now,

median 1d [i + 1] is the median of {image [i], a, b} and median 1d [i + 2] is the median of

{image [i + 2], a, b}. Since a, b are in ascending order, each median is computed using the respec-

tive if statement of Figure 1.

for (i = 0; i < N-3 ; i += 2){
if (image[i+1] < image[i+2]) {

a = image[i+1]; b = image[i+2]; }
else { a = image[i+2];

b = image[i+1] ;}
if (image[i] < a) median1d[i+1] = a;

else if (image[i] > b) median1d[i+1] = b;
else median1d[i+1] = image[i];

if (image[i+3] < a) median1d[i+2] = a;
else if (image[i+3] > b) median1d[i+2] = b;

else median1d[i+2] = image[i+3];
}

Figure 1: Basu and Brown’s algorithm (W = 3)

if (image[0] < image[1]) max = 1 ;
else max = 0;

for (i = 2; i < N-1 ; i++){
min = 2 * i - 3 - max;
if (image[i] < image[min]) {

max = i-1; median1d[max] = image[min]; }
else if (image[i] > image[max]) {

median1d[i-1] = image[max];
max = i; }

else { median1d[i-1] = image[i];
max = min + 1; }

}
Figure 2: Finding the median (W = 3)

In each iteration of the for loop of Figure 1, two median 1d values are computed and at most

-- --

5

5 comparisons are performed. Hence, at most 2.5 comparisons are performed per element of

median 1d. On the average, however, each iteration requires only 13/3 comparisons (the probabil-

ity of each image [] > b compare being 2/3) and the comparisons per element of median 1d

becomes 13/6. In Figure 2, we present an alternate way to compute median 1d. Once again the

code computes only median 1d [1..N −2].

median 1d [i − 1] = median{image [i − 2], image [i − 1], image [i]}, 1 ≤ i ≤ N − 2 At the start of each

iteration of the for loop of Figure 2, max is such that image [max] is the larger of image [i − 2] and

image [i − 1]. The smaller of these two is given by the formula 2i − 3 − max. The if statement in the

for loop uses this information to compute median 1d [i − 1] and also to update max for the next

iteration. The maximum number of comparisons per iteration of the for loop is 2 and the average

(assuming a 2/3 probability for the image [] > image [max] comparisons) is 5/3.

The code of Figures 1 and 2 was run on an Apollo DN330 workstation. For worst case data

(image [0..N −1] = (2 1 2 2 4 3 5 4 6 ...) for Figure 1) and

(image [0..N −1] = (1 N 2 N −1 3 N −2 4 N −3)) for Figure 2) and N = 16024, Figure 1 took 0.4

seconds while Figure 2 took 0.376 seconds. Hence our new algorithm takes 6% less time than the

algorithm of Figure 1 on worst case data. The average run time of Figure 2 is about 2.4% less than

that of Figure 1. While our new algorithm runs marginally faster than the algorithm of

[BASU87], its main contribution is theoretical. It uses fewer comparisons.

3 A LOWER BOUND FOR MEDIAN1D

Theorem 1: For the decision tree model of computation ([HORO86], pp. 341), computing

MEDIAN1D requires Ω(logW) comparison, on average, per element in MEDIAN1D.

Proof: The proof is similar to that used by Shamos [SHAM76] to show that Ω(nlogn) is a

lower bound for the online medians problem.

Let A1
 . . . A3w be 3w independent sequences of w distinct numbers each. Let a and b be such

that a is smaller than every number in the Ai’s and b is greater than every number in the Ai’s. Con-

struct the N×N, N = 3w, image matrix I such that row i is:

-- --

6

a a . . . a Ai b b . . . b

w a’s w b’s

One may verify that the i’th row of MEDIAN1D with W = 2w + 1 has the form:

. x 1 x 2 . . . xw

w values w values

where x 1 . . . xw are the numbers of Ai in ascending order. So, using this construction, we can use

every algorithm for MEDIAN1D to sort 3w sequences of size w. The number of different possible

outcomes for such a sort is (w !)3w . Under the decision tree model [HORO86], every algorithm to

sort these 3w sequences must have average depth Ω(3w2logw). Consequently, under this model,

every algorithm to compute MEDIAN1D must have average complexity Ω(3w2 logw). So,

Ω(logw) = Ω(logW) work must be done, on average, per element of MEDIAN1D. This result can

be easily extended to the case N = 6w, 9w,...

4 CREW PRAM ALGORITHMS FOR SEPARABLE MEDIAN FILTER

Suppose we have an N×N image I and a 1×W window, W = 2w + 1. The fastest way to com-

pute MEDIAN1D on a CREW PRAM is to use W processors per element of MEDIAN1D. Each

group of W processors finds MEDIAN 1D [i, j] for a distinct index pair (i, j). This is done in

O (loglogW) time by using the algorithm of [AJTA86] to compute the median of the elements

{I [a, j] � nbhd (a, i, w, N)}

The processor-time product for this algorithm is O (N2W loglogW) which is not optimal. The

processor-time product for the asymptotically optimal algorithm of [BASU87] is O (N2logW). In

this section, we develop two parallel algorithms for MEDIAN1D (and hence SMEDIAN2D) with

processor time-products O (N2log3W) and O (N2logW) respectively. The first has a run time

O (log2W) and uses O (N2logW) processors. The run time of the second algorithm is

-- --

7

O (log2WloglogW) and the processor requirement is O (N2/(logWloglogW)). So, while the second

algorithm has an optimal processor-time product, its run time is not optimal. Neither the run time

nor the processor-time product of our first algorithm is optimal. However, the first algorithm is

asymptotically faster then the second and serves as an introduction to the second. The existence

of an O (loglogW) CREW PRAM algorithm with optimal processor-time product remains an open

problem.

4.1 First Algorithm

In this algorithm, MEDIAN 1D [i, j] is computed independently for each row i. Let

x 1 , x 2 , . . . , xN be the image values in some row i of I. For simplicity, we assume that w divides N

and N /w > 2. Partition x 1 , ..., xN into N /w segments S1 , S2 , ..., SN /w . This is done left to right with

x 1 , ..., xw in S1; xw +1 , ..., x 2w in S2; etc. The steps in Algorithm 1 are:

Step1: Let Ya = S (a −2) mod N /w + 1∪Sa∪Sa mod N /w + 1, 1 ≤ a ≤ N /w. Sort each Ya.

Step2: Let rank (left, j) = position of xj in Y (a −2) mod N /w + 1,

rank (middle, j) = position of xj in Ya,

rank (right, j) = position of xj in Y (a) mod N /w + 1,

where a = � j /w �

Step3: Sort each Sb by repeatedly merging adjacent subsequences of size at most

2j , 0 ≤ j < log2w. The merged subsequences for each j are saved.

Step4: For each l, 1 ≤ l ≤ N form the subsequence set, Zl, (from the results of Step3) that con-

sists of the W = 2w + 1 elements xc, nbhd (c, l, w, N).

Step5: Search Zl for the median element. This element is MEDIAN 1D [i, l].

Consider the case w = 4, and N = 16. Let [x 1 , ..., x 16] be

[2, 4, 6, 1, 3, 9, 8, 7, 11, 14, 13, 5, 10, 12, 16, 15]. For this, we get:

Y1 = 10, 12, 16, 15, 2, 4, 6, 1, 3, 9, 8, 7

Y2 = 2, 4, 6, 1, 3, 9, 8, 7, 11, 14, 13, 5

Y3 = 3, 9, 8, 7, 11, 14, 13, 5, 10, 12, 16, 15

-- --

8

Y4 = 11, 14, 13, 5, 10, 12, 16, 15, 2, 4, 6, 1

Let SYi represent the sorted version of Yi following Step 1. We have:

SY1 = 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 15, 16

SY2 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14

SY3 = 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

SY4 = 1, 2, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16

The quadruples (Xi, rank(left, i), rank (middle, i), rank (right, i)) for 1 ≤ i ≤ 16 are:

(1, 1, 1, 1)

(2, 2, 2, 2)

(3, 3, 3, 1)

(4, 3, 4, 4)

(5, 5, 2, 4)

(6, 5, 5, 6)

(7, 6, 7, 3)

(8, 7, 8, 4)

(9, 8, 9, 5)

(10, 6, 6, 9)

(11, 10, 7, 7)

(12, 8, 8, 10)

(13, 11, 9, 9)

(14, 12, 10, 10)

(15, 11, 11, 11)

(16, 12, 12, 12)

The step 3 pairwise merging takes the form:

2 4 6 1 3 9 8 7 11 14 13 5 10 12 16 15

S1 S2 S3 S4

2 4 1 6 3 9 7 8 11 14 5 13 10 12 15 16

1 2 4 6 3 7 8 9 5 11 13 14 10 12 15 16

For step 4, consider the case l = 6. The elements xl are {x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 , x 10}.

The necessary sorted subsequences are:

Z6 =

�� �
11 14
3 7 8 9
1 6
4

It is easy to see that � Zl � is O (logw).

To find the median of these W = 2w + 1 elements we replace each xi in Zl by a pair (xi, ranki)

-- --

9

low =1 ; high = 3w; found = false;
while not found do
begin

mid = � (low + high)/2 � ;
perform a binary search in each of the sequences
of Zl to determine the number of elements in
each sequence with ranki < mid;
add all these counts;
if this sum equals w
then [element with rank mid is the median; found = true]
else if sum < w then set low = mid

else set high = mid;
end;

Figure 3: Finding the median in Zl

where ranki is as given below:

ranki =

�� �
rank(right, i) if xi∈Sa mod N /w + 1

rank(middle, i) if xi∈Sa

rank(left, i) if xi∈S (a −2) mod N /w + 1

where a = � l /w � . For our example, the transformed Z6 is:

(4, 4)

(1, 1) (6, 6)

(3, 3) (7, 7) (8, 8) (9, 9)

(11, 10) (14, 12)

Note that since all the xi’s in Zl come from the same Ya, the ranki values are distinct and in

the range [1, 3w]. To find the element with median rank, we perform a binary search as in Figure

3. For our example, the while loop of Figure 3 is iterated 3 times. A trace of Figure 3 is given

below:

iteration low high mid sum

1 1 12 6 3

2 6 12 9 6

-- --

10

3 6 9 7 4

On termination, mid = 7 and the element with this rank is 7. So, the median is 7.

Complexity Analysis

On a CREW PRAM, each Ya can be formed in O (1) time using O (W) processors. So, all Ya’s can

be formed in parallel in O (1) time using O (N) processors. All Ya’s can be sorted in O (log2W)

time using O (W) processors per Ya for a total of O (N) processors. This can be done using a

bitonic sort [BILA86]. Step 2 is easily performed in O (1) time using O (N) processors. Step 3 can

be done in O (log2W) time using bitonic sort and O (N) processors. The subsequence sets Zl can

now be identified in O (logW) time using 1 processor for each l, 1 ≤ l ≤ N. To find the median of

each Zl, O (logW) iterations of the while loop of Figure 3 are to be performed. The binary search

for each subsequence of Zl can be done in O (logW) time. So, if we have O (logW) processors

assigned to each Zl, each iteration of the while loop will take O (logW) time (as each subsequence

of Zl is of size at most W and � Zl � is O (logW)). The total time for Step 4 is therefore O (log2W)

when O (NlogW) processors are available. The processor-time product is O (Nlog3W).

To compute the MEDIAN1D values for all N rows of I in parallel requires N times as many

processors. The run time remains O (log2W) but the processor requirement becomes O (N2 logW).

Once, MEDIAN1D has been computed, SMEDIAN2D may be computed by applying a similar

algorithm using MEDIAN1D as the image. The run time, processor requirement, and processor-

time product are unchanged.

4.2 Second Algorithm

As in Algorithm 1, MEDIAN 1D [i, j] is computed independently for each row i. The steps in

Algorithm 2 are:

Steps1-3: Same as Steps 1-3 of algorithm 1.

Step 4: For l = 1, log2w + 1, 2log2w + 1, .. form the subsequence set Ql that consists exactly

of the W = 2w + 1 elements xc , nbhd (c, l, w, N).

-- --

11

Step 5: Use Ql to find MEDIAN [i, l + r], 0 ≤ r < log2w

Consider the same example as for Algorithm 1. While, in Algorithm 1, Zl is formed for

1 ≤ l ≤ N = 16, in Algorithm 2, Only Q1 , Q5 , Q9 , and Q13 are formed. Q9 , for instance, consists of

elements x 5 . . . x 13 . The subsequences used are slightly different from those used in Z9 . For Ql,

the subsequences obtained in Step 3 are used only to cover the last W − log2w elements of Ql. The

first log2w elements are covered by a new sequence obtained by sorting these log2w elements. So,

Q9 consists of the subsequences:

Q9 =

�
� �
10
5 11 13 14
3 7 8 9

Let the subsequences in Ql be A0 , A1 , , Ak with A0 being the sequence that contains the

first log2w elements of Ql. Let Ak +1 be another, initially empty, sequence. Since we shall be delet-

ing from A0 and inserting into Ak +1, we maintain these as balanced binary search trees.

MEDIAN 1d [i, l] is computed using the algorithm of Figure 3 modified to handle the search trees

A0 and Ak +1 . In addition, the algorithm computes S (i) and B (i), where S (i) is the largest element

in Ai smaller than the median of Ql and B (i) is the smallest element in Ai bigger than this median.

S (i) and B (i) are null if Ai does not contain such elements.

For Q9 of our example, the median, MEDIAN (i, 9), is 9. So,

S (0) = 8, S (1) = 5, S (2) = phi, S (3) = φ, B (0) = φ, B (1) = 11, B (2) = 10, and B (3) = φ. Now

MEDIAN 1D [i, r] for r = 10, 11 and 12 are computed by successively forming Q10 , Q11 , and Q12 .

For Q10 , we add x 14 = 12 to A3 and delete x 5 = 3 from A0 to get:

A0 = 7 8 9

A1 = 5 11 13 14

A2 = 10

A3 = 13

This requires us to update B (3) to 12. There are four cases in the computation of the new

median:

Case 1: The element deleted from A0 as well as that added to Ak +1 are smaller than the previ-

ous median. In this case the median is unchanged.

-- --

12

Case 2: The element deleted from A0 as well as that added to Ak +1 are bigger than the previ-

ous median. Here too, the median is unchanged.

Case 3: The element deleted from A0 is less than or equal to the previous median but that

added to Ak +1 is bigger. The new median is min{B (s) � 0 ≤ s ≤k + 1 and B (s) ≠ φ}.

Case 4: The element deleted from A0 is greater than or equal to the previous median while

that added to Ak +1 is smaller. The new median is max{S (s) � 0 ≤ s ≤k + 1 and S (s) ≠ φ}.

For our example, the deleted element is 3 and the inserted element 12. Since the previous

median was 9, we are in Case 3 and the new median is min{11, 10, 12} = 10. The S’s and B’s are

now updated to:

S (0) = 9 B (0) = φ

S (1) = 5 B (1) = 11

S (2) = φ B (2) = φ

S (3) = φ B (3) = 12

For MEDIAN 1D [i, 11] we delete x 6 = 9 and insert x 15 = 16 to get:

A0 = 7 8

A1 = 5 11 13 14

A2 = 10

A3 = 12 16

This causes B (0) to be updated to 8. Since the inserted element is bigger than the previous

median and the deleted element smaller, we are again in Case 3. The new median,

MEDIAN 1D [i, 11], is min{11, 12}. The S’s and B’s are updated and we proceed to compute

MEDIAN 1D [i, 13] by first deleting x 7 from A0 and inserting x 16 into A3 .

Complexity Analysis

For this, we shall assume that only O (N /(logWloglogW)) processors are available. Using the

bitonic sort algorithm of Bilardi and Nicolau [BILA86], Steps 1 through 3 can be done on a

CREW PRAM in O (log2WloglogW) time. For Step 4, we note that O (N /log 2w) Ql’s are to be

formed. Thus, for each we have O (logW /loglogW) processors. Since A0 initially contains log2W

-- --

13

elements, the height of its balanced tree representation is O (loglogW). A0 may be set up in

O (log2WloglogW) time using one processor. The remaining Ai’s are easily accumulated in

O (logW) time using a single processor. The algorithm of Figure 3 takes O (log2WloglogW) time to

find the median of a Ql when O (logW/loglogW) processors are available to each Ql. The B’s and

S’s are a byproduct of the searches used to find the median and may now be initialized in

O (loglogW) time. For the remaining medians, each insertion into Ak +1 and each deletion from A0

can be done in O (loglogW) time with a single processor. All the B’s and the S’s may also be

updated in this much time using O (logW /loglogW) processors. The min of the O (logW) B’s or the

max of the O (logW) S’s can also be computed in O (loglogW) time using O (logW /log logW) proces-

sors. So the computation of the remaining log2W − 1 medians for each Ql takes O (log2WloglogW)

time. Hence, one row of MEDIAN1D can be computed in O (log2WloglogW) time using

O (N /(logWlog logW)) processors. All N rows can be computed in this much time using

O (N2/(logWloglogW)) processors. This algorithm has an optimal processor-time product of

O (N2logW).

5 TWO DIMENSIONAL MEDIAN FILTERING

Our parallel algorithm for MEDIAN2D is an adaptation of Algorithm 1 for MEDIAN1D.

The Steps are:

Step1: Partition the N×N image into w×w subimages Si, j as in Figure 3. For each Si, j form

Yi, j =

nbhd (j, l, 1, N /w)
nbhd (i, k, 1, N /w)

∪ Sk, l and sort Yij , 1 ≤ i, j ≤ N /w.

Step2: Rank the elements of the N×N image I. Each element I [a, b] will have nine ranks

rank (y, z, a, b), y ∈ {top row, middle row, bottom row }, z ∈ {left column, middle

column, right column}. Let Sc, d be the subimage that contains I [a, b]. rank (y, z, a, b)

is obtained by looking at each of the nine Yi, j’s that contain Sc, d. y and z are defined

by the position of Sc, d in Yi, j (see Figure 3) and rank is the position of I [a, b] in the

sorted Yi, j.

Step3: Each Si, j may be tiled with rectangles of size 2f×2g , 0 ≤ f , g ≤ �� log2w �� . When w is

-- --

14

2,4

3,4

4,44,3

3,3

2,3

4,2

3,2

2,2

3,1

4,1

2,1

1,41,31,21,1w

w

N

Figure 3: Partitioning of N×N image into w×w subimages

not a power of 2, some partial tiles may be used at the ends. Figure 5 shows the tiling

for the case w = 7.

Step4: For each pair (i, j), 1 ≤ i, j ≤ N form the sorted sequence set, Ui, j, from Step 3 that

includes exactly the elements {I [a, b] � nbhd (i, a, w, N) and nbhd (j, b, w, N)}

Step5: Search Ui, j for the median element. This is MEDIAN 2D [i, j].

Complexity Analysis

For the analysis, we assume that O (N2log2W) processors are available. Each Yij of step 1 has

O (W 2) elements. As there are N2/W 2 Yij’s, we can allocate O (W 2) processors to sort each. This

sort can be done in O (log2W) time with this many processors. The ranking of step 2 can now be

done in O (1) time. The step 3 sorting may be done by repeatedly merging smaller tiles to get

bigger ones. In each merge stage pairs of tiles of some fixed size are merged to get sorted tiles of

the next size. There are O (log2W) tile sizes and O (logW) merge stages each taking O (logW) time

are needed (Figure 6). So, step 3 is done in O (log2W) time with the given number of processors.

-- --

15

1

2

4

124

7

Figure 5: Tiling of Si, j (w = 7)

For step 4, 1 processor is used to form each Uij. Each Uij can be formed so as to have only

O (log2W) sorted sequences. Each such sequence is at most O (W 2) long. The step 4 time is

O (log2W). The step 5 search of each Uij is done using an algorithm almost identical to that of Fig-

ure 3 (the rank range needs to be increased from 3w to 9w2). Using O (log2W) processors for each

Uij, this search takes O (log2W) time. So the total time for the algorithm is O (log2W) and the pro-

cessor requirement is O (N2log2W). The processor-time product is O (N2log4W) which is better

than that for the serial algorithm that uses balanced search trees.

6 CONCLUSION

We have developed an algorithm for separable median filtering that requires at most 2 com-

parisons per median element when the window size is 3. This represents a theoretical improve-

-- --

16

Stage 7

Stage 6

Stage 5

Stage 4Stage 3Stage 2Stage 1

....
....

....
....

....
....

....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

..

....
....

....
....

....
....

....
....

....
....

....
....

....
....

...
....

....
....

....
....

....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

...

....
....

....
....

....
....

....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

..

....
....

....
....

....
....

....
....

....
....

....
....

....
....

...
....

....
....

....
....

....

(4,1)

(2,8)

(8,8)(8,4)(8,2)(8,1)

(4,8)(4,4)(4,2)

(2,4)(2,2)(2,1)

(1,8)(1,4)(1,2)(1,1)

... represent the stages
---> represent the dependencies

Figure 6: Stages required in Merging

ment over the result of [BASU87]. Our algorithm, however, runs only marginally faster that of

[BASU87]. Fast parallel CREW PRAM algorithms with good processor-time product have also

been developed for separable median filtering and two dimensional median filtering. The follow-

ing problems remain open:

(1) Is there an O (logN) CREW PRAM algorithm with optimal processor-time product for

Separable Median Filtering?

(2) What is the complexity of an optimal serial algorithm for two dimensional median filtering?

(3) Find an O (logN) CREW PRAM algorithm for two dimensional median filtering with good

processor-time product (within a polylogarithmic factor of the optimal).

-- --

17

7 REFERENCES

[AJTA86] M. Ajtai, J. Komlos, W. L. Steiger, and E. Szemeredi, "Deterministic Selection in

O (loglogN) Parallel Time", Proceedings of 18th ACM Symposium on Theory of

Computing, 1986, pp. 188-195.

[BALL85] D. H. Ballard and C. M. Brown, "Computer Vision", 1985, Prentice Hall, New Jer-

sey.

[BASU87] A. Basu and C. M. Brown,"Algorithms and Hardware for Efficient Image Smooth-

ing", Computer Vision, Graphics and Image Processing", Vol. 40, February 1987,

pp. 131-146.

[BILA86] G. Bilardi and A. Nicolau, "Bitonic sorting with O (NlogN) comparisons", Proceed-

ings of 1986 Conference on Information and System Sciences , Department of

Electrical Engineering, Princeton University, pp. 366-341.

[JAYA76] N. S. Jayant, "Average and median based smoothing techniques for improving digi-

tal speech quality in the presence of transmissions error", IEEE Trans. on Commun-

ication, Vol. COM-24, September 1976, pp. 1043-1049.

[HORO86] E. Horowitz and S. Sahni, "Fundamentals of Data Structures in Pascal", Computer

Science Press, Maryland, 1986.

[HUAN79] T. S. Huang, G.Y. Yang, and G. Y. Tang, "A Fast Two dimensional Median Filtering

Algorithm", IEEE Transaction on ASSP, Vol. ASSP-27, No. 1, February 1979, pp.

13-18.

[NARE81] P.M. Narendra. "A Separable Median Filter for Image Noise Smoothing", IEEE

Trans. on PAMI, Vol. PAMI-3, No. 1, January 81, pp. 20-29.

[RABI75] L. R. Rabiner, M. R. Sanbur and C. E. Schmidt, "Applications of a non-linear

smoothing operation to speech processing," IEEE Transaction on ASSP, Vol.

ASSP-23, December 1975, pp. 552-557.

[SHAM76] M. I. Shamos, "Geometry and Statistics: Problems at the Interface", Algorithms and

-- --

18

Complexity: New Directions and Recent Results, Edited by J.F. Traub, Academic

Press Inc., New York, 1976.

[STOU83] Q. Stout, "Sorting, Merging, Selecting and Filtering on Tree and Pyramid

Machines", Proceedings of 1983 International Conference on Parallel Processing,

pp. 214-221.

[TANI82] S. L. Tanimoto, "Sorting, histogramming, and other statistical operations on a

pyramid machine", Department of Computer Science Report 82-08-82, University

of Washington, Seattle.

-- --

