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mation is easier for strongly scattering objects than for weakly scat-
tering objects.
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Adaptive Convergence of Linearly Constrained
Beamformers Based on the Sample Covariance
Matrix

Barry D. Van Veen

Abstract—A statistical analysis of the adaptive convergence behavior
of linearly constrained beamformers is given, assuming the sample
covariance estimator is used to estimate the covariance matrix. The
sensor data is assumed to be Gaussian distributed and independent
from data vector to data vector. The output power and mean-squared
error in the absence of the desired signal are shown to be multiples of
chi-squared random variables. The presence of the desired signal re-
sults in an excess mean-squared error that is beta distributed and de-
pends only on the signal power, number of data vectors, and number
of adaptive degrees of freedom. The expected value of the excess mean-
squared error resulting from the signal presence is directly propor-
tional to the signal power and number of adaptive degrees of freedom,
but is inversely proportional to the number of data vectors.

I. INTRODUCTION

Linearly constrained beamforming is a powerful and versatile
method of spatial filtering. The weights in a linearly constrained
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beamformer are a function of the data covariance matrix which is
usually unknown. One common estimate of the covariance matrix
is the sample covariance matrix. The sample covariance matrix is
the maximum likelihood estimate given no prior constraints on the
covariance matrix [1]. The beamformer output is a function of the
covariance matrix estimate so it is a random variable with distri-
bution dependent on the statistics of the covariance matrix esti-
mate. In this correspondence, the distributions of the output power,
mean-squared error (MSE) in the absence of the desired signal, and
the excess MSE due to the presence of a desired signal are derived.

Several investigators have studied the convergence characteris-
tics of adaptive beamformers that utilize the sample covariance ma-
trix inversion algorithm (commonly referred to as the SMI algo-
rithm). In a well-known paper, Reed et al. [2] derive the
distribution of a normalized signal-to-noise ratio (SNR) assuming
the beamformer weights are based on signal free data vectors. Ca-
pon and Goodman [3] derive the distribution of the output power
for a minimum variance beamformer subject to a single linear con-
straint. Monzingo and Miller [4] treat adaptive convergence of SNR
and MSE for various configurations of beamformers commonly
used in narrow-band processing; several of these are equivalent to
a minimum variance beamformer subject to a single linear con-
straint. Additional related work is found in [5]-[8]. This corre-
spondence addresses the general linearly constrained beamforming
problem. The results for the output power and MSE in the absence
of the desired signal represent generalizations of several of the re-
sults cited above. The results for the excess MSE due to the signal
presence appear completely new. These results clearly show the
adaptive convergence advantages of partially adaptive beamform-
ing [10].

Section Il reviews the linearly constrained beamforming problem
and the generalized sidelobe canceller (GSC) implementation.
Expressions for the output power and the MSE are derived in Sec-
tion IIT using the sample covariance matrix estimate. The corre-
sponding probability distributions are derived in Section IV. A brief
discussion of the results is given in Section V.

II. LINEARLY CONSTRAINED BEAMFORMING AND THE
GENERALIZED SIDELOBE CANCELLER

Let the beamformer output at time n, y(n), be the inner product
of an N-dimensional weight vector w with an N-dimensional data
vector x (n)

y(n) = whx(m). (1)

If tap delay lines are used in the sensor channels, then we assume
the data at the taps and the corresponding weights are represented
in x(n) and w. For notation, we use boldface lowercase and up-
percase symbols to represent vectors and matrices, respectively.
Superscript # denotes complex conjugate transpose. The linearly
constrained minimum variance technique chooses w to minimize
the output variance (power) E{|y(n)|’} = w”Rw where R =
E{xx"} subject to a set of L linear constraints Cw = f

min w" Rw subject to C Hy = f Q)

w
The N by L constraint matrix C, and L by one response vector f,
are designed to control the beamformer response over direction and/

or frequency [11].
The GSC is an alternate but equivalent formulation of the lin-
early constrained minimum variance beamformer [12]. In the GSC,
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w is decomposed into two orthogonal components, one that lies in
the space spanned by columns of C, denoted as w,, and another
that is orthogonal to the space spanned by the columns of C, rep-
resented as C,w,. The N by N — L matrix C, satisfies det [C C,]
# 0, and CHC, = 0. It is straightforward to show that w, =
C(CHC)™' f to satisfy the constraint. The orthogonality of € and
C, implies that the constraint is satisfied independent of the value
of the N — L dimensional weight vector w,. Now w = w, — C,w,
and the GSC equivalent of (2) is

min (w, — C,w)"* R(w, — C,w,). 3)
The solution to (3) is given by
= (CYRC,)™'C!Rw,. @

In partially adaptive beamforming the number of adaptive de-
grees of freedom is reduced. A partially adaptive GSC has the rep-
resentation w = w, — C, T, w, where T,isarank K, N — L by K
(K < N — L) dimensioned matrix that determines which of the
available degrees of freedom are adaptive [10]. w, is now of di-
mension K. Note that reducing the adaptive degrees of freedom is

- equivalent to adding constraints. The analysis below illustrates the

adaptive convergence advantages associated with reducing the
number of adaptive degrees of freedom. Let T, = C, T, for nota-
tional convenience. Thus, w = w, — T w,.

We assume that a portion of the constraints are used to control
the beamformer’s response to the desired signal. This implies that
the signal lies in the space spanned by the columns of C and that
C, is orthogonal to the signal; hence, C, is sometimes termed the
‘‘signal blocking matrix”’ [12] and satisfies CYR, = 0, where R,
is the signal covariance matrix. Thus, THR, = 0. Let R = R, +
R, be the sum of signal R, and noise R, covariance matrices where
the signal and noise are assumed to be independent. The orthogo-
nality of T, and R, implies

= (TR, T)"'T{R,w, ®

The adaptive weight vector w, is independent of the signal. The
output power or variance is given by

P =wiRw, — w/RT,(TYRT) 'T}Rw, (6a)

or equivalently, P = P, + P, where
P, = wiRw, (6b)
P, =wiRw, — wiRT(TIR,T) ' TIR,w, (6¢)

are the ouput powers due to the signal and the noise, respectively.

In order to derive the MSE we assume that the constraints are
chosen to pass the desired signal without distortion, e.g., with unit
gain and linear phase. Let x(n) = x,(n) + x,(n) where x;(n) and
x,(n) are the components of the data due to the desired signal and
noise, respectively. The constraints imply that wfij (n) = s(n)
where s (n) is the desired signal. Equivalently, the beamformer out-
put is equal to the desired signal in the absence of noise (x,(n) =
0). We also have T?x (n) = 0 since x,(n) must lie in the space
spanned by the columns of R,. The random nature of x;(n) only
affects where a given observation lies within this column space.
Define the MSE as e = E {|s(n) — y(n)|*}. Now,

e=E{|s(n) — w”x(n)|2}
E{|w¥x,(m) |*}

wiR,w

wiR,w, — wiR,T,(TZR,T) 'TIR,w, )
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w is assumed known so the expectation in (7) is taken with respect
to x,, (n). The last line in (7) is obtained by subsituting w = w, —
T,w, with w, given by (5). Note that e = P,.

III. MSE AND OuTPUT POWER USING THE SAMPLE
COVARIANCE MATRIX ESTIMATE FOR R

In practice R is unknown and is estimated from the data. Assume
there are M data vectors x(n), n = 1, 2, , M available. The
sample covariance matrix estimate of R is
M

g x(n) x4 ().

1
== 8

M ®
Define the data matrix X = [x(1) x(2) - * - x(M)] and let X = X
+ X, where X, is the data due to the desired signal and X, the data
due to the noise. Now

R xx7

I-‘ Nk

[XX”+XX”+XX”+XX”] ©)

Substitute (9) in (4) after replacing C, by T,. Use the orthogonality
between T, and the signal, i.e., T X, = 0 to obtain
w, = (TEXXHT) ' T?XX"w,
= (TEX,XHT)™" TIX, (X! +

XHw,. (10)

Lets =[s(1)s2) + - - s(M )1 be the column vector containing
samples of the complex conjugate of the desired 51gnal at times n

=1,2, , M. The constraints imply that wiX, = s”. Lety =
[y(1) y(2) y(M)]" be a column vector representmg the com-
plex conjugate of the beamformer output. Now y” wiX = (w,
— T,w,)X. Define the sample MSE é as
s _ L w_ Hp
é=q 18" =y
-1 |s# — whX 2. 11)
M
Using TYX, = 0 and w,’;Xx = s gives
1
é= M l HXn|2
= Loyux xthy (12)
M n n

Substitute the GSC representation for w into (12) with w, given
in (10) and simplify to obtain

1
é=—[wix,Xtw, - wiIX,XUT,(TEX, XIT)'TEX, X W,

M

+ wiX XHT, (14X, X9T) 7' T X, X! w,). 13)
Define

1

= (wix,Xtw, — wiX,XIT (T X, X} T) "' T X, X} w,]

(14a)

! ;
& = o WX XTI XIT) ™ TIX,X}Iw,]

[s"XET,(THX, XHT)'TAX,s]

il'—‘

(14b)
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so that é = &, + ¢,. Note that &, is the MSE due to the noise, that
is é, is the MSE in the absence of the signal (X; = 0) and corre-
~ sponds to e (7) with R, replaced by M ~'X, X¥. &, is an additional
MSE that results because X, X f,' and X, X7 are nonzero.
The expression for the output power is obtained by substituting
M~'XX" for R in (6a)

P=—[whXX"w, — wiXX"T,(TUXX"T)"!

1
M
. TZ’XX”w,,]. (15)

Note that this expression is not equivalent to B, + P, with P, and
P, obtained from (6b) and (6c) by substituting R, = M ~'X, X" and
R, = M7'X,X¥ because of the nonzero cross terms X, XY and
X, x¥

IV. PROBABILITY DENSITY FUNCTIONS OF é,, é, AND P

The columns of X and X, are assumed to be independent and
identically Gaussian distributed with zero mean. Under these as-
sumptions XX* and X, X" are complex Wishart distributed [1],
with distribution denoted as W(M, N; R) and W(M, N; R,), re-
spectively. Here M is the number of columns in X (X,), N is the
number of rows, and R(R,) is the covariance matrix associated with
the columns of X (X,). Muirhead [9] is used as a reference for most
of the properties of the Wishart distribution needed below. Muir-
head [9] only considers real random variables; however, it is
straightforward to extend these properties to the compliex case (e.g.,
see [7, appendix 2]).

Consider P. Define the K + 1 by K + 1 matrices A and 4 as

A=[w, T)YRIw, T,
A=1w, T )" XX"[w, T,
_ [w;’XX”wq w;’XX”Ta]‘ a6
TYXX"%w, THXXT,
Use the identity for the inverse of a partitioned matrix [13] to ex-

press the element in the first row and column of A~! as

A7), = wixx"w, — w;'XX”T,,(TfXX”Ta)“fox”wq]“.
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This requires M = K + 1. Thus, (15) is expressed as
By = 1A, "
"M
=1 [l A" u)™! (18)
M 1
where 4, = [1 00 - -- 0]” Similarly, (6a) is written as P =

[uffA="u] .

Using [9, theorem 3.2.5] we see that A is distributed as WM,
K + 1; A). Now apply [9, theorem 3.2.11] to show that MP is
distributed by W(M ~ K, 1; [ufA™'u,)™") = WM - K, 1; P). A
random variable distributed as WM — K, 1; 1) is one half a chi-
squared random variable with (M — K) complex degrees of free-
dom (2(M — K) real degrees of freedom). Thus, the mean of P is
given by

M-K
M

The factor (M — K)/M represents the loss due to estimation of R
and determines the adaptive convergence behavior of the mean out-
put power when viewed as a function of M.

E{P} = P. (19)
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Capon’s ML estimator [14] is equivalent to the output power of
a beamformer using a single linear constraint to ensure distortion-
less response at a specified frequency and direction. The distribu-
tion of P derived here is the multiple constraint equivalent of the
distribution for Capon’s ML estimator given in [3].

Next, consider the distribution of é,, the MSE due to the noise.
The expression for é, (14a) is identical to the expression for P (15),
if X,, is replaced by X. Thus, Mé, is distributed as W(M — K, 1;
e) where e is given in (7). The mean of &, is

M-K

E{ée} = e. (20)
Again (M — K)/M determines the adaptive convergence of the
mean when viewed as a function of M.

Lastly, consider the distribution of é,. First, the conditional dis-
tribution of &, given s is obtained. Define T#X, = V so

é = i[s”V”(VV”)"'Vs], @n

Let E{VV*"} = MTZR,T, have Cholesky factorization TT* and
rewrite é; as

é = 1714 s*VET-HTH(YyVH)y-ITT V5]
= ﬁ HVAT (T Yy VAT -H) 17 vy
= 1T14 [s"U*@Wwu™-'vs). (22)

The columns of U = T~'V are i.i.d. Gaussian distributed random
vectors with E{UU"} = T"'E{VV#} T~¥ = I. This implies that
é, is independent of R, and the elements of T,. Let s = as, where
sf'sy = 1 and define ¢ = Us,. Given s, ¢ is a Guassian random
vector with mean E {g} = 0 and covariance E {gq"} = I. Substi-
tuting in (22) we obtain

i lq"(UU")'q)
T M

o 23)

I

RIS

where p = ¢ (UU*)'q.

We shall now show that p is a beta distributed random variable
and is independent of s. Define an M by M dimensional unitary
matrix H = [G s}, i.e., GHG = I and G¥sy = 0. Let the matrix
B =UH=[Zql whereZ = UGisa K by M — 1 dimensional
matrix. Now, UU¥ = BBY = 2Z¥ + gq% 5o

o = [q"ZZ" + q4")7'q). 49
Assuming M > K, ZZ" is nonsingular with probability one. Ap-
plication of the matrix inversion lemma to (24) yields
_4"@z% 'qq"(zz")'q
1+ ¢%2Zz%™'q

o= q"@z%7g
1

= - (25)

"
q"@2Zz"'q
Define @ = g"gand v = ¢ /q"(ZZ")~'q so that

26
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a is a complex chi-squared random variable with K complex de-
grees of freedom. 7 is also a complex chi-squared random variable.
Recall that the columns of U are independent. The columns of B
are also independent and distributed identically to the columns of
U since B = UH is obtained from U via a unitary transformation
(see, €.g., [7, Appendix A, part F]). The columns of Z and g are
independent and Gaussian distributed with covariance I; thus, [9,
theorem 3.2.12] is applicable to y. This theorem says that y is a
complex chi-squared random variable with M — K degrees of free-
dom and is independent of q. Furthermore, v and o are independent
of s so p is independent of s. Now v/« is a complex F distributed
random variable. A simple change of variables indicates that p is
complex beta distributed

B M - 1)
PO = Tk K = D!

pXTI = MK @)

The distribution of & given s is thus

o MM ~ 1)!
P = o Tk D& - D!

Mé, K-t Més M-K-1
() (%) e

The dependence on s is only through a? = ss so, in principle, the
distribution of & is obtained by integrating the product of p(&, | 5)
and the distribution of a? over a?. However, the moments of &, are,
in general, of greater interest than the distribution itself. It is
straightforward in this case to obtain the moments of é; because p
and a? are independent. For example, the mean of & is

Efe}

M~'E{a’} E{p}

S 29
where o2 is the variance or power of the signal. Equation (29) in-
dicates that the average MSE associated with the signal presence
is directly proportional to the signal power and the number of adap-
tive degrees of freedom, but inversely proportional to the number

of data vectors. Note that the presence of a strong signal results in
large MSE.

V. DISCUSSION

The expected values of the output power and MSE due to the
noise are within 3 dB of the optimum values after M = 2K data
vectors, while the expected value of the excess MSE due to the
signal presence is down by 3 dB after M = 2 K data vectors. These
results clearly indicate the benefits of reducing the number of adap-
tive degrees of freedom K: the beamformer output is defined with
fewer data vectors (M > K), and faster convergence to the opti-
mum is obtained. The disadvantage of reducing X is an increase in
the asymptotic MSE e and noise output power P,. This increase
represents a loss in performance associated with reducing K and
indicates that T, should be designed to minimize P, or equivalently
e as suggested in [10].
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Direction Finding Using ESPRIT with Interpolated
Arrays

Anthony J. Weiss and Motti Gavish

Abstract—The technique of interpolated arrays is applied to ES-
PRIT-type direction finding methods. The resulting method uses sen-
sor arrays with an arbitrary configuration, thus eliminating the basic
restrictive requirement of ESPRIT for twe (or more) identical arrays.
Our approach allows for resolving D narrow-band signals if the num-
ber of sensors is, at least, D + 1, while the original ESPRIT method
requires at least 2D sensors. Moreover, it is shown that while ESPRIT
performs poorly for signals propagating in parallel (or close to paral-
lel) with the array displacement vector, the advocated technique does
not exhibit such weakness. Finally, using two subarrays, ESPRIT can-
not resolve azimuth and elevation even when the sensors are not col-
linear. However, the interpolated ESPRIT procedure resolves azimuth
and elevation using only a single array. All the above mentioned ad-
vantages are obtained with a reasonable increase of computation load,
thus preserving the basic and most outstanding advantage of ESPRIT.
We also discuss, and illustrate numerically, the performance of the
original ESPRIT when the sensor locations are perturbed. It is shown
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