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Adaptive Algorithms with Nonlinear Data and Error
" Functions

William A. Sethares, Member, IEEE

Abstract—Using the tools of nonlinear system theory, we ex-
amine several common nonlinear variants of the LMS algo-
rithm and derive a persistence of excitation criteria for local
exponential stability. The condition is tight when the inputs are
periodic, and a generic counterexample is demonstrated which
gives (local) instability for a large class of such nonlinear ver-
sions of LMS, specifically, those which utilize a nonlinear data
function. The presence of a nonlinear error function is found
to be relatively benign in that it does not affect the stability of
the error system. Rather, it defines the cost function the algo-
rithm tends to minimize. Specific examples include the dead
zone modification, the cubed data nonlinearity, the cubed error
nonlinearity, the signed regressor algorithm, and a single layer
version of the backpropagation algorithm.

I. INTRODUCTION

HE generic adaptive algorithm generates new param-

eter estimates as the sum of the old parameter esti-
mates plus some function of the input data multiplied by
some function of the error signal. In the least mean square
(LMS) algorithm [1], both the data and error functions are
unity, but various other functions have recently come un-
der scrutiny [2]. In [3] and [4], for instance, the data func-
tion is chosen to be the signum function. In [5], a cubic
function is considered. Other algorithms, such as back-
propagation [6], use other nonunity functions. This paper
treats these various cases in terms of a generic adaptive
update form, and, using the tools of nonlinear systems
theory (linearization and averaging), finds conditions un-
der which the various update strategies can be expected
to succeed in their identification task.

The conditions are stated in terms of a persistence of
excitation which, in the ideal case (with no disturbances),
must be satisfied in order to guarantee exponential con-
vergence of the parameter estimates to their true values.
When bounded disturbances are present, the convergence
is to a small region about the true value. The excitation
conditions involve the nonlinear functions of the data and
the error signal, but the nonlinearities enter in different
ways. It is shown that sign preserving error nonlinearities
are essentially benign in terms of stability of the adaptive
system, while even the best behaved data nonlinearities
can cause stability problems. A generic counter example
is presented which shows that for a very large class of data

Manuscript received April 12, 1990; revised August 26, 1991.

The author is with the Department of Electrical and Computer Engi-
neering, University of Wisconsin-Madison, Madison. W1 53706.

IEEE Log Number 9201585.

nonlinearities (including all ¢‘reasonable’’ ones), there are
inputs that lead to (locally) unstable performance of the
adaptive system.

These results have a simple geometrical interpretation
in terms of descending an error surface. LMS is well
known to be an approximate gradient descent method uti-
lizing the squared error as a cost function [7]. At each
update instant, the vector of input data points in the
“‘downhill’’ direction, while the error signal scales the
motion in that direction. The effect of a nonlinearity on
the data vector is to cause motion in a direction that is not
necessarily ‘‘downhill.”” It is not surprising that for cer-
tain data sequences, this misalignment from the actual
gradient direction can cause the algorithm to climb, rather
than descend the error surface. The effect of an error non-
linearity is subtler. It changes the cost function that will
be minimized. Thus the presence of sign preserving error
nonlinearities is transparent in terms of system stability,
though the various nonlinearities behave somewhat dif-
ferently in terms of convergence rate and minimization
properties.

The next section formulates the problem and gives sev-
eral examples in which nonlinearities in the data and/or
error signals arise. Section III reviews certain key results
on which the succeeding analyses are based. Section IV
demonstrates the persistence of excitation condition for
the generic LMS with nonlinearities. Section V interprets
these conditions and shows a generic counterexample to
stability whenever the data nonlinearity is nontrivial. Er-
ror nonlinearities are shown to be benign in terms of ful-
fillment of the persistence of excitation condition. Section
VI examines several concrete examples, states the rele-
vant excitation conditions and provides examples of and
counterexamples to stability. Conclusions are presented
in the final section.

II. PROBLEM FORMULATION

The parameter update for the LMS adaptive algorithm
is [7]

W = Wi + pXeeq 2.1
where W, is the filter weight vector at time k, ¢ is the
scalar error sequence, and yu is the step size. X, is the
‘‘regressor’’ vector

T
(xkv Xi—1 """ xk*N+])
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of input data x;, and N is the number of taps in the filter.
When the parameter update contains data and/or error
nonlinearities, (2.1) becomes .

W1 = Wi + pF(X)g(Wi, X0 2.2)

where F: RY — R" usually consists of N copies of the
scalar real valued function f, and g( ) is typically a scalar
function of the error ¢,. The nonlinearities are memory-
less, sign preserving, and are often assumed to be odd.
The sign preservation property is crucial because it allows
the scheme to descend (rather than climb) the error sur-
face. The odd assumption is less important, but is com-
mon in practice since it weights positive and negative data
equally.

A typical analytic trick is to suppose that there is a set
of parameters W* that will cause zero error. Introducing
the parameter error vector W, = W* — W, shifts the equi-
librium to the origin, and the evolution of the parameter
estimate error is

Wi = Wi — pF(X) g(e) 2.3)

where ¢, = W!X, is the error between the output of the
adaptive filter and the (fictitious) system W*. Conver-
gence of the weights to their optimum value W, = W* is
thus equivalent to convergence of the parameter estimate
error W, to 0.

Such F’s and g’s can arise in several ways: as a natural
consequence of a gradient minimization, as an attempt to
lessen the numerical complexity of the algorithm, or as
designer choice based on some a priori knowledge of the
problem setting. Some concrete examples of F’s and g’s
are: .

Example 1: Suppose it is desired to minimize the cost
function J = &} using a gradient procedure. Minimizing J
by choice of W, gives the algorithm

dJ
Wier = Wi — d—Wk
where dJ /dW, can be easily calculated as 4¢}X,. Thus F
is the identity and g(e) = €°. (Typically, the constant is
absorbed into the stepsize parameter u.) Somewhat more
generally, attempting to minimize J = |¢|® for arbitrary
o # 1 leads to the nonlinear error function g(e) = e”~".
Note that LMS is the special case p = 2.
Example 2 (LMS with Dead Zone): One common mod-
ification to adaptive algorithms, especially in the adaptive
control context [8], is to incorporate the error nonlinearity

2.4)

e—d ife>d
ge)y=|e+d e< —d for some d > 0.
0 otherwise

This g is insensitive to small errors, which are sometimes
presumed to be due to noise.

Example 3 (Signed Regressor LMS [3], [9]): In order
to simplify the number of computations per iteration of
the adaptive algorithm (for higher throughput), one might

consider an algorithm in which only the sign of the data
is used, replacing the multiplications inherent in any im-
plementation of LMS with bit shift operations. This is

Wisr = Wi — psgn (X)e. (2.5)

Hence g is the identity and F is the element by element
signum function.

Example 4 (Cubic Data Multiplier): This variant is first
suggested in [5], where it is noted that a cubic multiplier
gives increased weight to large inputs rather than empha-
sizing small data as does the signed regressor algorithm.
The algorithm is defined by an F which is composed of N
copies of f(x) = %3, and gle) = e.

Example 5 (Backpropagation [6]): The backpropaga-
tion algorithm is the extension of LMS to the situation
where a smooth nonlinearity A( - ) is placed at the output
of the linear combiner. (We consider here only the up-
dates for the ‘‘output layer,”’ those which can be directly
compared to an error signal.) A cost functionJ = £ elis
to be minimized via a gradient descent procedure as in
(2.4). The sum is taken over all output units. For each
unit, the algorithm updates the weights entering the unit
by

Wis1 = Wi + plh(XIW*) — h(X{WIIR'(X W) X,
2.6)

where k' indicates the derivative of 4 with respect to its
argument. Thus F is the identity, and g(W,, X)) =
[RXTW*) — R(XTW1h'(XLIW,) is a function of both the
error (between W* and W,) and the current estimate W,.

Section VI returns to each of these examples and pro-
vides concrete situations in which these algorithms are lo-
cally stable and/or locally unstable.

III. BACKGROUND

The key ideas which will be used are linearization, the
slow time variation lemma [10], averaging [11], and total
stability [12]. Linearization is used to examine the stabil-
ity of the algorithm operating in a region about its equi-
librium. This linearization is time varying (due to the data
signal), and a slow time variation result can be used (the
slowness is a consequence of the small step size u) to
relate the stability of the time varying system to the sta-
bility of the related frozen systems. Averaging is used to
derive conditions under which the frozen systems are lo-
cally exponentially stable. The total stability theorem then
translates the exponential stability result into robustness
of the adaptive system to small disturbances, including
small measurement noises, small nonlinearities, and slow
parameter variation.

A. Linearization
Consider the discrete time system
zv1 = Fk, )

where z; is a state vector in R", and F is a vector function
R" — R" defining the evolution of the state. The states z*

3.1



SETHARES: ADAPTIVE ALGORITHMS

for which F(k, z*) = z* for all k are the equilibria of
(3.1), which we may assume without loss of generality to
be located at the origin. F is linearized at the equilibrium
z* = 0 via the Jacobian A; = DF |« .. The linearization
theorem (Lyapunov’s indirect method [13]) asserts that
the behavior of (3.1) near z* is dictated by the behavior
of the related linear system

Yer1 = A (3.2)

that is, if (3.2) is exponentially asymptotically stable
(e.a.s), then (3.1) is also e.a.s. The theorem holds assum-
ing that 4, is bounded, and assuming that the norm of the
difference F(k, z) — Az is uniformly bounded in time.
Formally, this requires that

i |Fk, 2) — Aezll _
m max —— v - =

0 3.3
lim | mé T G

which essentially guarantees that time variation in the
nonlinear terms of the Taylor series does not become ar-
bitrarily large as time progresses.

B. Slow Time Variation and Averaging

The task of showing stability for the adaptive system is
therefore translated to the simpler problem of finding con-
ditions under which the linear, time-varying system (3.2)
is e.a.s. One approach is to use the ‘‘slow time variation
lemma’’ of [10] which asserts that if the change in 4 is
slow enough (that is, ||4;,, — 4l is small), then expo-
nential stability of each 4, (uniformly in p) is enough to
imply e.a.s. of the time-varying system (3.2).

Unfortunately, the A, matrices from the adaptive sys-
tems of interest are virtually never exponentially stable
due to the structure of the problem. This implies that the
desired systems 4, fail to be ¢.a.s. The approach of [11]
takes a time average of (3.2), defining the ‘‘sliding aver-

29

age

— 1 &

Am) = — 2 Ay (3.4)
mi=l1

If the eigenvalues of A(m) are (uniformly in k) less than

one in magnitude for some m, and if the A,(m) vary slow

enough, then the averaged system

Ver1 = A (3.5

and the related (3.2) are both e.a.s. Fortunately, the slid-
ing averages can be exponentially stable even when the
Ay’s are not.

C. Total Stability

The final step in the argument is to relax the assumption
that there are no disturbances. The total stability theorem
of [12] relates the behavior of the unforced system (3.1)
to the behavior of

Zw1 = Ftk, ) + Gk, Z) (3.6)

where G is some small disturbance term that may depend
on the state. Assuming that F is Lipshitz continuous, the
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difference between the state z of (3.1) and the state z of
(3.6) can be bounded when F is known to be e.a.s. by
requiring that G be suitably small and that the initial dif-
ference is small. Formally, for every e, there is a 6, and
8, such that [z, — zll < 8, and |Gk, ZYll < 6, for
every k imply that ||z, — Z,| < e for every k. Thus, the
system no longer converges to its equilibrium, rather, it
converges to a ball about the equilibrium and then *‘rattles
around.’’ This disturbance term can be used to formally
consider measurement disturbances, small nonlinearities,
slow time variation of the parameters, and other small
“‘nonidealities’’ that may arise.

IV. PERSISTENCE OF EXCITATION FOR LMS WITH
NONLINEARITIES

The above ideas can be used to examine the stability of
the generic adaptive algorithm

Wior = Wi — uF(X)g(WiXy. @.1)

A. Assumptions

The following assumptions are made about the nonlin-
ear functions F and g:

a) F and g are sign preserving,
b) F and g are memoryless,
c) g(-) is differentiable at the origin.

In addition, whenever convenient we shall assume

d) F: RY > R" consists of N copies of the scalar real
valued function f,

e) F(X) does not vanish as X = +oo,

f) F is piecewise continuous.

Assumption a is fundamental in the sense that if F or g
were not sign preserving, this is equivalent to designing
an algorithm to climb rather than to descend the error sur-
face. This is also equivalent to reversing the sign of the
step size p. Assumption b is implicit in the formulation
of F and g as functions of their specified arguments, but
it is worthwhile noting because there is, perhaps, some
interest in considering functions with memory. The linear
case with memory is dealt with in [10] via techniques sim-
ilar to those used here, and others have attacked this sit-
uation in other ways, see [14] and [15]. Assumption c
assures that the linearization step is possible. Note that no
differentiability (or continuity) is required on F, nor on g
anywhere but at the origin. In certain of the examples be-
low, d, e, and/or f are assumed, though this is usually
more for notational convenience than out of any real ne-
cessity. Most of the nonlinear variants of LMS of which
we’re aware fulfill these requirements, though the *‘signed
error’” algorithm where g(e¢) = sgn (e) fails condition c.

B. Linearization

Define the vectors W, = (wh, wi, e, wf)T and X, =
(1, X3 ka)T, and the vector function F(X;) =
(fiX), H(X), * . fu(X)". Typically, X, consists of a
““regressor’’ vector of time shifted versions of a scalar
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sequence ¥, that is, x; = x{Z} fori = 2, N, but this is
not necessary. Identify the function F of (3.1) with the
right-hand side of (4.1), and let

H, = F(Xk)g(WkTXk)
filX0)  gluwi + xiwi + <+ - + xfw)
| A& gmowk + xiwi s+ xPw])
XD giwi + xiwi + - - + xwld)
4.2)

Then the Jacobian can be calculated as

can be guaranteed less than one as long as M, has no ei-
genvalues with positive real part, and as long as  is cho-
sen small enough. Gathering the above results together
shows the following theorem.

Theorem: Consider the algorithm (4.1) with #-periodic
input data X; and nonlinear elements F and g, under as-
sumptions b and c. If there are « > 0 and § > 0 such
that

B > g'(0) Re N\(M) > « 4.7
then there is a u* such that for every p in (0, u*), the

algorithm (4.1) is locally exponentially stable about its
equilibrium W* = 0. Conversely, if g'(0) Re \;(M,) is

for every i

[X)xg' XiW)  AX)xig' X{W) -+ fX)xig XIW)

dH, _ ) h(X)xig (XiWy)

aw,
v X)xig' XL ¥y

When evaluated at the equilibrium W* = 0, this simpli-
fies to

dH, , T
“ = am, e = ' (O FX) X 4.4
and the linearized system is
Yerr = = uBy. 4.5)

The linearization result shows that if (4.5) is exponen-
tially stable, then the original nonlinear systen (4.1) is
also exponentially stable.

C. Slow Time Variation and Averaging

Note that by choosing the step size parameter p small,
the time variation of the transition matrix (I — uB,) is
slowed. In fact, as p — O, ||(I — uBy.,) — (I — uByl|
— 0. Consequently, the exponential stability o the time-
varying linearized system can be translated via the slow
time variation lemma to the exponential stability of the
frozen (or time invariant) systems (/ — uB,), for each p.

Unfortunately, due to the structure of B, as a scaled
product of two vectors, each B, has rank at most 1, and
s0 has N — 1 zero eigenvalues. This implies that (/ —
pBy) has N — 1 unity eigenvalues, and hence is not ex-
ponentially stable. Define the sliding average B,(m) over
the time window m as in (3.4). Then the averazing theo-
rem demonstrates that exponential stability of

Verr = (I — pB(m)¥;

implies exponential stability of (4.5), and hence (4.1).
Define the excitation matrix

M, = 2 FX)X{ (4.6)

which, for t-periodic inputs is equal to the sliding aver-
age. Then the magnitude of all eigenvalues of /7 — uM,)

4.3)

co S Xoxl g (XKW

negative for some i/, then the algorithm (4.1) is locally
unstable about its equilibrium at W* = 0.

(The notation Re \;(M) means the real part of the ith
eigenvalue of the matrix M.)

Remarks:

a) Local exponential stability of the algorithm implies
that the parameter estimate error W converges to 0 if it
is initialized in some region about 0. Convergence of the
parameter estimate error to zero is equivalent to the con-
vergence of the parameter estimates W, to their true val-
ues W*. Local instability implies that there are arbitrarily
small perturbations that can drive the parameter estimates
away from W#*. This does not necessarily imply diver-
gence to infinity of the parameter estimates.

b) The condition (4.7) is called the persistence of ex-
citation (PE) condition for the LMS algorithm with non-
linearities. Note that the condition involves the input data
sequence X; as well as the data nonlinearity F and the
derivative of the error nonlinearity g at the origin.

¢) The importance of the sign preservation property of
F is apparent from the persistence of excitation condition,
since if F reverses the sign of the data, then the right-hand
inequality of (4.7) fails. Similarly, g’(0) must be positive.

d) If g’(0) = oo then assumption ¢ and the left-hand
inequality of (4.7) fails. In particular, this averaging ap-
proach is inapplicable to the signed error algorithm with
g(e) = sgn (e). An extended Lyapunov approach can be
found in [9].

e) The convergence rate of the averaged system (4.6)
(and hence the convergence rate of the algorithm (4.1)) is
proportional to the size of the real part of the smallest
eigenvalue of (4.7). Thus, given an input sequence X, if
o is chosen as large as possible, the convergence rate is
dictated by «. Since g’(0) is directly proportional to «,
increasing the slope of g near the origin will tend to in-
crease the convergence rate, if other parameters are held
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fixed, provided that the left-hand inequality in (4.7) is not
violated.

f) The periodicity assumption is not necessary, and can
be relaxed to ‘‘almost periodic’’ inputs as in [16] at the
expense of a large amount of technical detail.

g) The fact that (4.7) depends on the function g only
at the origin emphasizes the local nature of the results;
initial conditions must be chosen so that g remains in a
small ball about 0.

Suppose that g'(0) = 0, as occurs in example 2 and in
example 1 for certain p. Then the right-hand side of the
persistence of excitation condition (4.7) fails, and the al-
gorithm is not exponentially stable about W* = 0. If,
however, g is nondecreasing, continuous, and differen-
tiable at the endpoints of some region R, then there is
hope that the parameter estimate errors will converge to
the region R rather than to W* itself. To make this notion
more precise, consider the following definition.

Definition: The system x; .| = f(k, x;) is said to be
(uniformly) locally exponentially stable to the compact
region R contained in B if 3y € (0, 1) and an N >> 0 such
that vX, € B, d(X,, R) < N| Xoll v* v k, where the distance
from the point X; to the set R is defined as d(X,, R) =
mianR ” Xk - rH

Note that this minimum exists when R is compact, and
that the definition reduces to the standard definition of (lo-
cal, uniform) exponential stability when R coasists of an
isolated equilibrium. The following corollary simply ex-
tends the theorem to include the case of convergence to a
region, rather than a point.

Corollary: Consider the algorithm (4.1) wita r-periodic
input data X and nonlinear elements F and 3 under as-
sumptions b and c. Suppose further that g is nondecreas-
ing and continuous in a region R = [—r, r], that g'(0) =
0, that g'(r) and g'(—r) exist and are positive, and that
3o > 0and B8 > O such that § > Re N\, (M) > aVi.
Then there is a u* such that for every u € (0, u*), the
algorithm is locally exponentially stable to the region R.

D. Total Stability

The final step is to remove the ‘‘ideal’’ assumption, and
to suppose that some small nonidealities are present. The
F and G of (3.6) may be related to the LMS with nonlin-
earities by identifying the state z; with the parameter es-
timate errors W,, and G with the disturbance term. As-
suming that the input data fulfills the PE concition (4.7),
then the homogeneous system (4.1) (and (2.1) with F
identified as the right-hand side of (4.1)) is exponentially
stable. Consequently, the total stability theorem asserts
that for small disturbances G, the perturbed system will
remain within an e ball about the origin. This has several
implications:

1) Robustness to small measurement noise¢s. Suppose
that a bounded measurement disturbance 7, corrupts the
prediction error ;. Then G(k, W) = uF(X,) .gle, + )
— g(ep)], and the norm of G can be bounded in terms of
t, | F1l, | X1, and the smoothness of g. Herce, if || 7,
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is small so that || G| < &,, the total stability theorem of
Section III applies, showing that an algorithm that is ex-
ponentially stable cannot be destabilized by arbitrarily
small measurement biases or inaccuracies.

2) Robustness to undermodeling. Suppose that the
N-dimensional W* is only an approximation to the *‘true’’
plant, which is N + M dimensional. If this undermodeling
is not too severe (if there is an N-dimensional W* that is
a good approximation to the true plant), then the algo-
rithm retains stability. In this case, , represents the dif-
ference between the output of the true N + M dimensional
plant and the output due to W*. As in (1), if this 7, is
small, then the perturbed system is stable.

3) Robustness to small nonlinearities. Suppose that the
linear W* is only an approximation to the ‘‘real”’ plant
which contains small nonlinearities. If n; represents the
output due to these nonlinearities, and if this is kept small,
then the algorithm retains stability.

The above three robustness results are related in that
the nonidealities enter as an additive disturbance corrupt-
ing the prediction error.

4) Robustness to slow time variations. The ‘‘real’”
plant may actually vary with time. If these time variations
are slow enough, then the exponentially stable algorithm
will track the motion and remain stable. Let W} represent
the time-varying plant, and suppose that || W}, — W{l
is small. The error system is becomes

Wi = Wi — sFX)gWIX) + WE — W), (4.8)

Letting G = (Wy,, — W{), and bounding the rate of
variation by || G|| < &, shows that the algorithm retains
stability.

V. INTERPRETATION OF THE EXCITATION CONDITIONS

This section examines the persistence of excitation (PE)
condition for LMS with nonlinearities in several ways.
First, it is compared with the standard PE for LMS con-
dition, and it is shown to be strictly more difficult to fulfill
the PE for nonlinear LMS than PE for (linear) LMS. Sec-
ond, a generic counterexample is provided, showing that
whenever F is nonlinear, there are input sequences that
will fail the PE condition and destabilize the algorithm.
These are interpreted in terms of a misalignment from any
reasonable ‘‘gradient’’ direction. Error nonlinearities en-
ter in a relatively benign fashion.

The standard PE condition for LMS [17] (without non-
linearities), when excited by r-periodic inputs X, is that
there exist « > 0 and 8 > O such that

t
Bl > El XX > al. (5.1

As above, this implies local exponential stability of the
error system. Since the matrix in (5.1) is symmetric, all
eigenvalues are real, and the notation ““>’’ means posi-
tive definite. How does (5.1) compare to (4.7)?

Lemma 1: Suppose that (4.7) holds for a given F, g,
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and input sequence X, and that F fulfills assumption e of
Section IV. Then (5.1) also holds.
Proof: By contradiction. There are two possibilities:

1) If (5.1) fails the upper bound, then X; must be di-
verging. By assumption e, this implies that F(X) X] must
diverge. Hence (4.7) is unbounded.

ii) If (5.1) fails the lower bound for every positive «,
then there must be a zero eigenvalue of £ XX”. Conse-
quently, there must be a nonzero eigenvector v such that
v7X, = 0 for every k. This implies that (£ F(X)X v =
0, and so there is a zero eigenvalue of the matrix in
4.7). |

This says that if the nonlinear LMS algorittm is per-
sistently excited (4.7), then the standard LMS algorithm
is also persistently excited (5.1). We will show that for a
large class of F, the reverse implication is false, by con-
structing particular input sequences X, for which I
F(X) X" has negative eigenvalues. These input sequences
cause unstable parameter updates. The following pair of
technical lemmas will be useful in constructing such X,.

Lemma 2: Suppose that f: R — R is sign preserving,
piecewise continuous, and is not a linear funct.on. Then
there are positive x, y, z such that

x>y+z and f(x) < f(y) + f(2) (5.2)
or there are positive x, y, z such that
x<y+z and f(x) > f(y) +f@. (5.3)

Proof: By contradiction. We show that if both (5.2)
and (5.3) fail, then f must actually be linear. Suppose that
for every positive x, y, z, x > y + z implies that f(x) >
f(y) + f(@and x < y + z implies that f(x) << f(y) +
f(2). Pick a point x at which fis continuous, and let y and
Z be any two points with x = y + z. Let x;, > x from
below, and X, — x from above. Then for every k, f(x;)
< f(y) + f(@ and f(%) > f(y) + f(2). The continuity
of fat x implies that f(x) = f(y) + f(2). If fis actually
continuous everywhere, this implies linearity, and gives
the contradiction. If fis only piecewise continuous, then
fcan be approximated arbitrarily closely by a continuous
function f. The same argument repeated for f gives the
desired contradiction.

Lemma 3: With f (x) as in Lemma 2, for any integer n,
there are positive x and y such that

x >ny and f(x) < nf(y) 5.4)

or
x < ny and f(x) > nf(y). 5.5

Proof: Note that Lemma 2 holds for y = z, and it-
erate the argument n times. g
By choosing values of x (and y) based on the function
F and the dimension ¥, it is possible to construct periodic
input sequences that will destabilize the nonlirear LMS
algorithm for virtually any data nonlinearity F.
Lemma 4: Suppose that F: RY — RV (with N > 2) ful-
fills assumptions a, b, d and f, and that F is nct a linear
map. Then there is an N periodic data sequence X, k =

1,2, - -+, Nsuch that Re \;(My) < 0, where My is the
excitation matrix (4.6).

Proof: By construction. Any symmetric matrix My
will have a negative eigenvalue if there is a V such that

ViMyV < 0. (5.6)

We construct a matrix My of the form (4.6), find an ap-
propriate V, and then verify that M}, = My. From the def-
inition of My, (5.6) can be rewritten

VMV = VI FX)XTYV = L VIFX)XTV < 0.

5.7
One way this could occur is if ¥7F(X,) has an opposite
sign from X7V for every k. Let V = (1, 1, - - -, )". To
construct such an X, sequence, let X; = (s, x,%, s,
xy and F(X) = (f (), f(x3), + -+, fx¥)'. Choose X,
such that
B R I B IR S N P
withx! > 0,x{ =y < 0,
i=2,--,N
and
[faDl < [FOD] + [faD] + -+ + [FGD)]
(5.8)
or choose X, such that
il < e+ il + e+ (]
withxl > 0,x) =y <0,
i=2,-++,N
and
[FGD] > [F&D] + 1 fadl + -+ + [FeDI
(5.9)

Note that either (5.8) or (5.9) is always possible by
Lemma 3, provided f(-) is not linear. By the sign pres-
ervation property, f(x}) > 0 and f(y) < O fori = 2,
<+, N. In either case, X,TV is the sum of elements of
X, VTF(X,) is the sum of elements of F(X,), and sgn
XTV) = —sgn (VTF(X,)). Now construct an N-periodic
X, sequence by X, ,, = QX; where Q is the permutation
matrix

010 ---0
001 ---0
0001 --- 0
100...0

Then sgn &xTvy = —sgn (VTF(X,)) for every k, which
implies (5.7) holds. To see that the My constructed is ac-
tually symmetric, observe that X; = (x, y, - -+ , y) and
FX)) = (f&D, £(»), =+, f(¥)). Thus, My is a matrix
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in which all diagonal elements are equal to xl j'(x{) + (N
— 1yf(y) and all off-diagonal elements are equal to
() +yf D) + N =2 3f () u

Remarks:

a) Note that this result is not true for N < 3. For N =
1, the sign preservation of F is enough to guarantee that
fulfillment of (5.1) implies fulfillment of the persistence
of excitation condition for nonlinear LMS (4.7). For N =
2, a monotonicity assumption on F is enough to insure
that the choice of X; in (5.8) and (5.9) cannot be made.
Most applications require many more than 2 parameters.

b) The possibility of instability with nonlinear F is un-
derstandable from a gradient point of view since virtually
any cost function leads to a gradient that points in the
direction of X. By manipulating X in such a way as to
change its direction ‘‘often enough,”’ the algorithm can
be made to climb, rather than to descend the error surface.
This was the inspiration for the construction in Lemma 4.

¢) As one might expect, if F is “‘nearly’’ linear, then
such examples of instability will be highly unlikely to oc-
cur. In fact, if the maximum error between F(X) and X
can be bounded by some &,, then one can find a 3, such
that if « of (5.1) is greater than §,, then the algorithm
retains stability. This can be shown as in [18].

This is a “‘generic>> counterexample showing that it is
strictly more difficult to insure that the nonlinear algo-
rithm “‘works’’ than to insure that LMS “*works."” More-
over, this instability is due solely to the presence of the
data nonlinearity F, and not to the error nonlinearity g.
Indeed, suppose that F(X) = X is the identity map. Then
(4.7) is a scaled version of (5.1) with scaling factor g'(0).
As long as g’(0) is finite and positive, g( - ) does not affect
the stability of the algorithm. The primary effect of g( )
in the ideal case is to speed up or slow down the asymp-
totic convergence. Stated simply, it is fine to manipulate
the error term as long as the sign is preserved, but it is
dangerous to tamper with the gradient calculation.

The error nonlinearity g( - ) can often be viewed as de-
termining the function of the error that the algorithm is
attempting to minimize. In example 1, for instance, the
error function g(e) = e’ ~! (for p # 1) corresponds to a
minimization problem with cost function J = | ¢;|*. Sim-
ilarly, whenever f(X) = X and g(-) is integrable with
respect to its argument, the algorithm tends to minimize
§8(+).

VI. EXAMPLES

Several concrete examples of the stability and instabil-
ity results are presented, demonstrating that many nonlin-
ear versions of LMS can be analyzed via the present tech-
niques.

Example 1 Revisited: The algorithm (2.4) is designed
to minimize J = e‘,f using a gradient procedure. Since F(X)
= X and g(x) = €°, g'(0) = 0, and the persistence of
excitation condition for this algorithm is £ XX (by the
corollary). Convergence is exponential to the region [—r,
rl, and r > O can be chosen arbitrarily small. For the
more general situation when g(e) = e”” ', the stability
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depends on the value of p. Forp > 1, the corollary shows
stability about the region [—r, r] as above. Forp < 1,
g'(0) = oo. The origin is unstable, and trajectories are
repelled.

Example 2 Revisited: LMS with the dead zone modifi-
cation also falls under the conditions of the corollary.
Thus, if £ XX has all positive eigenvalues, the algorithm
will converge to [—r, r] for any r > d, where d is the
dead zone parameter.

Example 3 Revisited: The persistence of excitation con-
dition for the signed regressor algorithm is L sgn (X)X T
by the theorem. Lemma 4 gives a way of constructing
input sequences X, which cause the algorithm to be lo-
cally unstable. For instance, for X € R, the three periodic
input [3, —1, — 1} fulfills condition (5.8) of Lemma 4 and
it is easy to verify that the excitation matrix has a negative
eigenvalue. Simulations of this algorithm with this input
“diverge’’ (give overflow errors) from any initial condi-
tion (other than the unstable equilibrium itself).

Example 4 Revisited: The theorem shows that the per-
sistence of excitation condition for the cubed data algo-
rithm is T X3X”. Although many inputs will cause con-
vergence of this algorithm, Lemma 3 allows construction
of simple 3 periodic inputs (for the X € R’ case) that cause
instability. One such example is [1.5, —1, —1], which
fulfills condition (5.9) of Lemma 4 and has a negative
eigenvalue. As in the previous example, simulations of
the data cubed algorithm with this input grow rapidly.

Example 5 Revisited: This algorithm does not fulfill the
exact conditions of the theorem, but a similar result is
easy to derive. With g(+) and k(") as defined in (2.6),

dg( Wk’ Xk) d T1f B T+,
W, aw, [—hX W h' (X W)

+ hXTWH R (XW
= [(WXTW)? — h(X[WYh" X[WDIX,
— hXTW* " (XIW) X,.
Consequently, with H, = g( W, X)X],

dH, ; ;
T =[x = hX W) h"(X{W)
k

— (W XTI XX
Following the logic of Section IV shows that the appro-

priate persistence of excitation condition is that there are
8 > o > 0 such that

H
8l > Zé%>a1

a, 6.1)

over the period of the input pattern X,. That is, fulfillment
of (6.1) implies local exponential stability of the algo-
rithm.

If (5.1) fails, then (6.1) will also fail, which indicates
the necessity that the data sequence X; span the space reg-
ularly. Equation (6.1) also requires that [(h(XTW*) —
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hXTWY) h" (XTWy) — (B’ (X1 W,))"] be negative. This will
occur when the second term dominates, that is, when the
error h(X]W*) — h(XI'W,) between the ‘‘real”’ system
W* and the estimated system parameters W, is small.

This emphasizes the local nature of the result, that the
initial parameter estimates must not be too far from W*
in order to insure convergence. Equation (6.1) also ex-
plains the very slow observed convergence times of back-
propagation algorithms, since the magnitude of
(W' (XTWY)? is small for most sigmoidal functions A( ).
No doubt the multiple layer case can be handled sirnilarly,
though this requires suitable identifiability assumptions on
the unknown system W*.

VII. CONCLUSIONS

Persistence of excitation conditions are derived for sev-
eral common nonlinear variants of the LMS algorithm.
These provide conditions under which the error system is
locally exponentially stable. When there is a nonlinear
data function F(:), a generic counterexample is con-
structed for which the algorithms are (locally) unstable.
Nonlinear error functions g( + ) cannot affect the stability
of the error system. Rather, they define the cost function
the algorithm tends to minimize, and are related (through
their derivative at zero) to the asymptotic coavergence
rate. The ideal (no disturbance) assumption is rzlaxed via
application of the total stability theorem. Several specific
examples illustrate the method.
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