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Tracking Characteristics of an OBE Parameter- 
Estimation Algorithm 

Ashok K .  Rao, Member, IEEE, and Yih-Fang Huang, Member, IEEE 

Abstmct-Recently there seems to have been a resurgence of 
interest in recursive parameter-bounding algorithms. These al- 
gorithms are applicable when the noise is bounded and the 
bound is known to the user. One of the advantages of such al- 
gorithms is that 100% confidence regions (which are optimal in 
some sense) for the parameter estimates can be obtained at 
every time instant, rather than asymptotically as in the case of 
the least squares type algorithms. Another advantage is that 
these recursive algorithms have the inherent capability of im- 
plementing discerning updates, particularly that of allowing no 
updates of parameter estimates in the recursion. This paper 
investigates tracking properties of one such algorithm, referred 
to as the Dasgupta-Huang optimal bounding ellipsoid (DHOBE) 
algorithm. Conditions that ensure the existence of these 100% 
confidence regions in the face of small-model parameter vari- 
ations are derived. For larger parameter variations, it is shown 
that the existence of the 100% confidence regions is guaranteed 
asymptotically. A modification is also proposed here to enable 
the algorithm to track large variations in model parameters. 
Simulation results show that in general, the modified algorithm 
has tracking performance comparable, and in some cases su- 
perior, to the exponentially weighted recursive least squares 
algorithm. 

I .  INTRODUCTION 
ERFORMANCE analysis of adaptive filtering is usu- P ally done by assuming that the unknown system being 

modeled is time-invariant. However, in practice, adaptive 
filters are often used in time-varying environments. It is 
thus important to investigate the performance of these al- 
gorithms, allowing the system-model parameters to vary 
with time. A considerable amount of attention has been 
paid to this problem in the adaptive-filtering literature, 
with analysis of varying amounts of rigor being performed 
mainly for the least mean square (LMS) and recursive 
least squares (RLS) algorithms; see, e .g . ,  [ 11-[5]. 

This paper investigates tracking properties of a recur- 
sive estimation algorithm, referred to hereafter as the 
Dasgupta-Huang optimal bounding ellipsoid (DHOBE) 
algorithm [6]. This algorithm belongs to a class of 
bounded-error estimation algorithms termed set-member- 
ship parameter estimation (SMPE) algorithms 171, [SI. 
The membership set is a set of parameter estimates com- 
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patible with the model of the underlying process, the as- 
sumptions on noise, and the observation data. At first 
glance the DHOBE algorithm appears to be very similar 
to the RLS algorithm. However, in contrast to the RLS 
algorithm, which obtains an optimal solution (in the sense 
of minimum mean-square estimation error) to the under- 
lying problem, the DHOBE algorithm is developed by us- 
ing a set-theoretic framework, namely, the notion of op- 
timal bounding ellipsoids (OBE). This causes the 
algorithm to behave quite differently from the RLS algo- 
rithm in many ways. In addition, the algorithm incorpo- 
rates a data-dependent forgetting factor that results in a 
discerning update strategy. 

In case of time-varying systems, it is important to en- 
sure that the time-varying true parameters { d* ( t )  ] are 
contained in the bounding ellipsoids { E ,  ] of the DHOBE 
algorithm. In this paper, such conditions will be derived. 
It will also be shown that if a jump in the true parameter 
vector O*(t)  causes it to fall outside the bounding ellip- 
soid, then provided that the jump is not too large the 
bounding ellipsoids will move toward d* ( t )  and eventu- 
ally enclose d* ( t )  again. A rescue scheme is proposed that 
will guarantee the existence of bounding ellipsoids in the 
face of large parameter variations. Some techniques for 
applying different parameter-bounding algorithms to time- 
varying systems have been reported by Norton and MO 
[9]. One of the techniques suggested for the OBE-type 
algorithms is to use a fixed scaling factor to inflate the 
bounding ellipsoid with every new data point. Another 
technique that can be used if prior knowledge of the pa- 
rameter increments is available is to vector sum the 
bounding ellipsoid with the set describing the parameter 
variation [9]. If the extent of parameter variation is un- 
known, as is often the case, the first technique will have 
to use a large scaling factor to cope with possibly large 
parameter variations and consequently the parameter 
bounds will be loose. In contrast, the rescue procedure 
described in this paper can automatically detect and ac- 
curately compensate for large parameter jumps. 

Simulation results are presented to show that the 
DHOBE algorithm is able to track slow and abrupt vari- 
ations in the parameters. The tracking performance, in 
terms of parameter-estimation error, is comparable to the 
RLS algorithm with a forgetting factor. Abrupt changes 
in the parameter can in some cases be tracked better by 
the DHOBE algorithm than by the RLS algorithm. 
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11. THE DHOBE ALGORITHM 

One of the seminal works in SMPE is that of Fogel 
and Huang [IO]. The algorithm of [IO] recursively obtains 
ellipsoidal outer bounds to the membership set. The model 
structure considered is the following ARX model: 

(2.1) ~ ( t )  = e*%(t) + u(r)  

where 

e* = [ u , u ~  . . U,lbObl . . b,J 

is the true parameter vector and 

@ ( f )  = [ y ( t  - l )y( t  - 2) * * y ( t  - n) 

* u ( t ) u ( t  - I )  . u ( t  - m)]' 

is the measurable regressor vector. The noise v ( t )  is as- 
sumed to be uniformly bounded in magnitude with a 
known bound y, i.e., 

Assume that at time instant t - 1, the exact membership 
set is outer bounded by the ellipsoid E, I described by 

where N = n + m + I ,  P-' ( t  - 1) is a positive-definite 
matrix, and 0 ( t  - I )  is the center of the ellipsoid. At time 
instant 1, the observation y ( t )  yields a set S , ,  which is a 
degenerate ellipsoid in the parameter space, namely, 

S,  = { e  E R N :  - eT@(t)l2 5 y2}. (2.4) 

From (2.1) and (2.2) it is clear that S,  contains the true 
parameter vector. An ellipsoid E,, which contains the in- 
tersection of E, - I and S, ,  is then given by [ IO] 

E[ = { e  ERN: ( I  - x,)[e - e ( t  - i ) ] ' ~ - ' ( t  - I )  

* [ e  - e ( t  - l ) ]  + A,[ y ( t )  - eT@((t)]2}  
I (1 - A,)  a 2 ( t  - I )  + A,y2} (2 .5)  

where A, is a positive time-varying updating gain. Note 
that ( 1  - A , )  can be regarded as a forgetting factor. The 
formation of the ellipsoid E,, which contains the intersec- 
tion of an ellipsoid E,- I and the set S,, is illustrated by 
means of a 2-D example in Fig. 1 .  By performing some 
algebraic manipulations on (2.5), an expression for E, can 
be obtained as 

Fig. 1 .  Formation of the bounding ellipsoid E, 

where 

P - ' ( t )  = (1 - A , ) P - ' ( t  - 1) + A,@(t)@'(t)  (2.7) 

a'( t )  = (1  - A,)a'(t - 1) + X,y2 

e ( t )  = e ( t  - 1)  + A, P ( t ) @  ( t )  

* [ y ( t )  - @T(t)e( t  - I)]. (2.9) 

Using the matrix-inversion lemma in (2.7) yields 

P ( t )  = - [ P O  - 1) 
1 - x, 

1. (2.10) 
A,P(t - l )@( t ) cpT( t )P( t  - 1) 
1 - A, + A,@T(t)P(t  - l)@(t) 

- 

Equations (2.6)-(2.9) characterize the update of the 
bounding ellipsoids. The center e ( t )  of the bounding el- 
lipsoid E, can be taken to be a point estimate of the pa- 
rameter vector. Note that different values of A, yield dif- 
ferent bounding ellipsoids [IO]. To ensure convergence, 
A, needs to be chosen to optimize in some sense the 
bounding ellipsoids and, clearly, different optimization 
criteria would lead to different OBE algorithms. 

In the DHOBE algorithm, the updating gain A, is cho- 
sen to minimize a2 ( t )  at every instant 1. This has the effect 
of usually decreasing the size of the ellipsoid from itera- 
tion to iteration, though there is no guarantee that the size 
will be minimized. This choice of A ,  has yielded good 
results experimentally and in addition has simplified the 
convergence and tracking analysis of the algorithm. The 
minimization procedure yields the following updating cri- 
terion [6]: 
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where s(t) is the a priori prediction error, namely, 

s ( t )  = ~ ( t )  - +'(t)e(t - 1). (2.12) 
Otherwise, if a 2 ( t  - 1) + s2(t)  > y2, then the optimum 
value of h, is nonzero and can be calculated according to 

h, = min (a, v,) 

where 

v, = 

if s2(t)  = o (2.13.a) 

if G(r) = 1 (2.13.b) 

if 1 + P(t)[G(t) - 11 > 0 

(2.13.c) 

a, if 1 + P(t)[G(t)  - 11 I 0 (2.13.d) 

and a is a user-chosen upper bound on A, satisfying 

O < a < l  (2.14) 

and 

G(t) = +T(t )P( t  - l)+(t) (2.15) 

and 

y2 - a2( t  - 1) 
S 2 ( r )  . P (0 = (2.16) 

The initial conditions are chosen to ensure that 8" E Eo. 
A possible choice is 

P ( 0 )  = I, e ( [ )  = 0 and a2(0) = 1/e2, 

where E << 1. 

Equations (2.8)-(2.16) define recursions of the DHOBE 
algorithm. In [6], some convergence-type properties such 
as convergence of the parameter estimates to a ball and 
boundedness of the prediction error have been shown for 
time-invariant systems. In [ l l ]  and [12], an extension of 
this algorithm was developed for autoregressive moving 
average (ARMA) parameter estimation and similar con- 
vergence properties have been shown to hold. 

111. ANALYSIS OF TRACKING CHARACTERISTICS 

As mentioned earlier, tracking in the context of OBE 
algorithms for parameter estimation will mean ensuring 
that the time-varying true parameter vector is contained 
in the bounding ellipsoid. The theorems below present 
conditions under which parameter tracking can be accom- 
plished. 

Theorem 1: A sufficient condition for e*(t) E E, is 

(e*(t) - e ( t  - I ) ) ~ P - ' ( ~  - i)(e*(t) - e ( t  - 1)) 

5 a 2 ( t  - 1) .  (3.1) 
Proofi If e*(t) E E, - I ,  then since 6*(t)  E S, and E, 

2 E, - I n S, ,  it follows that 8" ( t )  E E,. And from (2.3), 
e* ( t )  E E, - is equivalent to (3.1). 

Theorem 2: At any time instant t ,  the true parameter 
e* ( [ )  E E, if and only if 

(e*(t) - e ( t  - i ) ) T ~ - l ( t  - i)(e*(t) - e ( t  - 1)) 

(3.2) 

where v(t )  is the noise term in (2.1). 
Pro08 Subtracting e*(t) from both sides of (2.9) yields 

e (t) - e* ( t )  = e ( t  - 1) - e* ( t )  + A , P ( ~ ) +  (t)s (t). 

(3.3) 
Define the following quadratic function in e*( t )  

v(t) = [e  (t) - e* ( t ) l T ~ -  I ( t )  [e (t) - e* (4. 
Using (2.7) and (3.3) it is straightforward though tedious 
to show that 

(3.4) 
A, (1 - w2 (0 + h,v2(t) - 

(1 - A,) + h,G(t)' 

Since e* ( t )  E Et if and only if V ( t )  5 o2 ( t ) ,  thus (3.2) is 
obtained. 

It is easy to see from Theorem 1 that if the true param- 
eter e* ( t )  is constant for all t ,  then the bounding ellipsoids 
obtained by the DHOBE algorithm enclose e*(t)  at all 
time instants. This is a property that all well-devised set- 
membership estimation algorithms should have when ap- 
plied to estimation of time-invariant parameters. If, on the 
other hand, e* ( t )  is time varying, and if at some time in- 
stant t k ,  8" ( t )  is found to be out of the bounding ellipsoid 
E,, it must not have been included in E, - Theorem 2 
then demarcates the region in which e*(t) can migrate 
without loss of tracking. This region is shown in Fig. 2 
for a 2-D case. This theorem also shows that by choosing 
y to be larger than the actual bound, say y ' 2  on v2 ( t ) ,  it 
is possible to increase the tracking capability of the al- 
gorithm. The next theorem gives an upper bound on the 
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D(t) Permissible domain of migration of O*(t) 

Fig. 2. Region outslde E , - ,  to which O * ( f )  can belong without loss of 
tracking. 

maximum variation in the parameters for which tracking 
is guaranteed. 

Theorem 3: If 8* ( t  - 1) E E,- I and A, # 0, then e* ( t )  
E E, if 

1 

l / 2  

+ 0 2 ( t  - 1)1] - (3.6) 

where 

~ ( t )  = e*(t)  - e*(t - 1) (3.7) 

and Amin and A,,, denote, respectively, minimum and 
maximum eigenvalues, and (1 .11  denotes the usual Euclid- 
ean norm. The quantity y r 2  is the actual bound on v2(t) ,  
and the threshold y2 needed for evaluating the optimal 
updating gain via (2.11) and (2.16) is chosen to be larger 
than y f 2 .  

Proof: It is straightforward to show that 

[e(t  - 1) - e * ( t ) l T ~ - I ( t  - i)[e(t - 1) - e*(t)] 

= V ( t  - 1) + AT(t) P-I ( t  - 1) A(t) - 2AT(t) 

P - ' ( t  - 1) e ( t  - 1) 

8 ( t  - 1) = e ( t  - 1) - e*(t - 1). 

(3.8) 

where V ( t )  has been defined previously and 

Substituting (3.8) into (3.5) and using the fact that v2(t)  
I y r 2  yield 

V ( t )  - a 2 ( t )  I ( I  - A,)[V(t  - 1) - a2( t  - l)] 

+ X,(yf2 - y2) + (1 - A,) 

* P - q t  - l )e ( t  - l)]. 

[AT(t)P-](t - l )A(t)  - 2AT(t) 

(3.9) 

therefore, V ( t  - 1) I a 2 ( t  - Since e*( t  - 1) E E,- 
l ) ,  and thus a sufficient condition for 8* ( t )  E E, is 

AT(t)P-'(t - l)A(t) - 2AT(t)P-l(t - l )6( t  - 1) 

(3.10) 

Since V ( t  - 1) I a 2 ( t  - I), therefore 

Substituting (3.12) in (3.1 1) gives a sufficient condition 
for e*( t )  E E, as 

A m a x [ P - ' ( t  - l)]IIA(t)I12 + 2IIA(t)II 

(3.13) 

Solving this quadratic inequality then yields (3.6). 
It can be seen from (3.6) that if A, = 0, then the differ- 

ence between y2 and y f2  cannot be exploited to increase 
the tracking capability of the algorithm. In this case, 8* ( t )  
E E, if and only if 8* ( t )  E E, - I .  Thus if 8" ( t )  jumps out 
of E,- I and no updates are performed at future time in- 
stants t + i ,  then 8" ( r  + i )  $ E, +; = E, - and the pa- 
rameter may never be tracked. However, it can be argued 
that an update will be performed in a finite interval of 
time. This is shown heuristically by examining the 
expression for the magnitude of the prediction error 

1 s( t )  1 = 1 [e*(t) - e ( t  - i ) l T w )  + v( t )  1 .  

Assume that no updates are performed for a large interval 
of time, say from time instant t to time instant t + NI. 
From (2.11) it then follows that 

If the input and noise sequences are sufficiently rich, then 
the regressor vector + ( t )  will span the parameter space in 
all directions and so [8*(t  + i )  - 8 ( t  - l)JT+(t + i) will 
not be arbitrarily small for all i E [0, NI]. If 1 v( t  + i) 1 is 
close to its true upper bound yf  for some i in the same 
interval, and if { v ( t ) )  is sufficiently uncorrelated with the 
input ( ~ ( t ) } ,  then the above inequality will be violated 
and an update will be performed. It is also clear that to 
ensure that an update is eventually performed (i.e., vio- 
lation of the above inequality), the threshold y2 should not 
be chosen much larger than y". 

If the parameter variation is such that (3.2) is violated, 
then 8*( t )  $ E,. The next theorem shows that if O*(t)  re- 
mains fixed after it jumps out of E,, and if the jump is not 
large enough to cause the subsequent ellipsoids E,,; to 
vanish for i L 0, then the DHOBE algorithm guarantees 
that the true parameter will be tracked (enclosed) in finite 
time. 
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Theorem 4: Assume that the parameter variation at 

1) After this variation, the parameter remains constant 

2) a 2 ( t  + i) > 0, for a11 i 2 0. 
3) The algorithm does not stop updating. 
4) A lower bound p is imposed on all A, at all updating 

Then there exists an N I  > 0, which depends on the 
amount of parameter variation and the actual and user-set 
noise bounds, such that e* ( t )  E E, + 

Proofi Since O*(t) y! E,, define 

time instant t causes e* ( t )  $ E,. Assume further that: 

(i.e., the jump-parameter case). 

instants. 

rl = [e ( t )  - e * ( t ) ] P  (ti [ e  (ti - e* (t)] - u 2  ( t )  > 0. 

(3.14) 

Assumption (1) will imply that A([ + N I )  = A ( t  + 1) = 
0 for arbitrary positive N I .  Substituting in (3.9) and iter- 
ating from t + NI to t + 1 yields 

V( t  + NI) - a 2 ( t  + NI)  
I + N I  

r = , + l  

f + NI 

= 17 . (1 - Ai) + i=F+ I qi,r+NI [ y f 2 ( t )  - 7’1 

(3.15) 

where q;,, is defined as 

if i = t .  

Assumption (3) will ensure that some of the A , + i ,  i 2 0, 
will be nonzero. This ensures that the first term on the 
right-hand side of (3.15) will tend to zero. Since the sec- 
ond term on the right-hand side of (3.15) is negative, the 
difference V ( t  + NI) - a 2 ( t  + NI)  will tend to zero as 
NI increases. Thus there exists an N I  such that 

V ( t  + NI) - a 2 ( t  + NI) I 0 (3.16) 

thereby ensuring that 8* ( t )  E E, + N I .  

IV. A RESCUE PROCEDURE 
In many cases when the parameter jump is large or if 

the ellipsoid has shrunk to a very small size, the intersec- 
tion of E, - and SI can be void. This situation is illus- 
trated in Fig. 3. In such cases, a2( t )  will become nega- 
tive, thus indicating that a bounding ellipsoid could not 
be constructed. To circumvent such a failure of the al- 
gorithm, a rescue procedure is proposed. If at any time 
instant t ,  a 2 ( t )  becomes negative, then a 2 ( t  - 1) is in- 
creased by an appropriate amount, thereby increasing the 
size of E, - I so that the intersection of S,  and this enlarged 
E, - I will no longer be void. As such, an ellipsoid E, will 
be constructed. Alternatively, y2 could be increased to 
permit a non-null intersection. However, the former pro- 
cedure is preferable because it causes e ( t )  to migrate to- 
wards e* ( t ) ,  thereby reducing the parameter-estimation 

\ \  

Fig. 3 .  A case in which a jump in the parameter causes the intersection of 
E, ~ and S, to be void. 

error. The rescue procedure is similar to the covariance- 
resetting technique used in RLS algorithms to cope with 
time-varying systems [ 131. However, in the RLS case, a 
jump in the parameters has to be detected by some other 
means before the covariance matrix can be reset, whereas 
for the DHOBE algorithm, a’(t) becoming negative is an 
automatic indicator of a jump. The amount of increase in 
a 2 ( t  - 1) required to make a’(()  positive in such a case 
is now calculated. 

Recall that the optimal updating gain A, is the one that 
minimizes a2  ( t ) .  The minimum occurs either at a station- 
ary point of a 2 ( t )  or at one of the boundaries A, = 0 and 
A, = a.  Since it is assumed that a failure occurs when 
a 2 ( t  - 1) > 0 and a 2 ( t )  I 0, an update, therefore, has 
to occur at t and so A, # 0. The case that the minimum 
occurs at a stationary point, which is strictly inside the 
interval [0, a], and the case that the minimum occurs at 
A, = CY are considered separately. 

Case 1: 

2Ik,=”, = 0, and 0 < v, < a. 

From (2.13) it is clear that this case occurs if and only 
if 1 + P ( t )  [G( t )  - 11 > 0 and U, < CY. Setting the deriv- 
ative of a 2 ( t )  in ( 2 . 8 )  to zero yields 

+ 62( t )  = 0. 
( I  - A, + A,G(t))2 

Substituting a2( t  - 1) from above into (2.8) yields 

a 2 ( t )  + (’ - @ ( t )  = y2. (4.1) 
(1 - A, + A,G(t))2 

Thus, a 2 ( t )  is negative if and only if 

1 - A, + A,G(t) I S ( t ) l  > 1 - A, Y. (4.2) 

On substituting for A, from (2.13b) and (2.13c), (4.2) can 
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be expressed, respectively, as For the DHOBE algorithm, we chose CY = 0.2, y2 = 1 .O, 
and ~ ’ ( 0 )  = 100. In all the examples shown here, the 
parameter estimates are taken to be the centers of the op- 
timal bounding ellipsoids. The parameters were varied as 
follows : 

Case 1 :  Slow Variation in the Parameter Vector 
The parameters a and b were varied by 1% for every 

10 samples, starting from the first sample, and the output 

was then observed that the bounding ellipsoids created by 
the DHOBE algorithm contain the true parameter at all 
time instants. The final parameter-estimation error was 7.0 
x lop3. The parameter estimates, i.e, the centers of the 
OBE, are plotted against the true parameters in Fig. 4. 
From the figure it is clear that the DHOBE algorithm 
tracks slow time variations in the parameters quite well. 

Case 2 :  Slow Variation in the Parameter Vector from t 

G( t )  - 1 

”(‘)’ > dG(t)[l + P(t ) (G( t )  - l)] - 1 ” 

if G(t)  # 1 

if G(t)  = 1. (4.3) 

Using the definition of P ( t )  from (2.16) in (4.3) and ma- 

tion for a 2 ( t )  to be negative in terms of a 2 ( t  - 1) 

o’(t - 1) < ~ [b2( r )  + y 2 [ G ( t )  - 11 

27 
I6(t)I > 1+Po’ 

nipulating terms yields a necessary and sufficient condi- data { y ( t ) }  were generated for t = 1, 2, . . . , 1000. It 

G(t )  - 1 

[Y[G( t )  - 11 + lW)Il2 = K1, 1 - 
G 0) 

if G(r) # 1 

and 

a 2 ( t  - 1) < s2(t)  + y2 - 2 y ( 6 ( t ) (  = K1, 

if G(t )  = 1. 

Note that the last inequality was obtained because v, = (1 
- P(t))/2 < 1; hence, 1 + P ( t )  > 0. Thus, if the cal- 
culated value of a 2 ( t )  is negative, the rescue procedure 
will replace u2( t  - 1) by K 1  + (, where { is a positive 
constant, thereby increasing the size of E, - ,  . The opti- 
mum updating gain will then be recalculated, and the re- 
sulting value will be used to calculate a2( t ) ,  O(t),  and P( t ) .  
Our simulation studies have shown that using a value of 
( = 1 yields satisfactory results. 

Case 2: X, = a 
In this case, from (2.8), a 2 ( t )  is negative if and only if 

a 2 ( t  - 1) + -1. y2 
1 - C Y  

6’(t) 2 [ I  - CY + uG(t)]  

Thus, 02(t)  is negative if and only if 

1 - + aG( t )  - ‘1 1 - K2. 
62 (0 a2( t  - 1) < CY 

In this case, a 2 ( t  - 1) would be replaced by K2 + ( and 
the value of the updating gain would be recalculated and 
used to calculate a 2 ( t ) ,  O(t ) ,  and P ( t ) .  

V. SIMULATION EXAMPLES 
The tracking properties of the DHOBE algorithm are 

studied for an ARX( 1 , l )  model 

y( t )  = ay(t  - 1) + bu(t) + u( t )  

The nominal values for the parameters were a = -0.5 
and b = 1 .O. The noise sequence { v ( t ) )  and the input 
sequence {U ( t ) }  were both generated by a pseudorandom- 
number generator with a uniform distribution in [ - 1,  11. 
This corresponds to a signal-to-noise ratio (SNR) of 0 dB. 

= 500 
The parameters a and b were varied by 1% for every 

10 samples, starting from the five-hundredth sample. The 
final parameter-estimation error was 3.0 X All the 
bounding ellipsoids were seen to contain the true param- 
eter. The parameter estimates are plotted against the true 
parameters in Fig. 5. The figure shows that the algorithm 
can track slow time variations in the parameters even after 
it has “converged.” 

Case 3: Jump in the MA Parameter at t = 500 
The parameter b was changed by 100% at the five-hun- 

dredth sample, and a was kept constant at its nominal 
value at all times. Several runs of the DHOBE algorithm 
were performed with different input and noise sequences. 
It was observed that the true parameter vector was out of 
the bounding ellipsoid at t = 500 and would be recaptured 
by the bounding ellipsoid after some number of samples 
(usually less than 50) ,  thus verifying the claims made in 
Theorem 4. It was also observed that the jump causes the 
resulting bounding ellipsoids to have smaller sizes. Intu- 
itively, a jump at time t causes the set S,, i 2 t ,  to have 
a smaller intersection with E, - and so the ellipsoid that 
bounds the intersection is also smaller. In one particular 
run, the parameter was recaptured at t = 530, and the 
final parameter estimation error at t = 1000 was 1.3 x 

The parameter estimates (the centers of the bound- 
ing ellipsoids) are plotted against the true parameters in 
Fig. 6. Fig. 7 shows the parameter estimates obtained for 
this run by applying the RLS algorithm with a forgetting 
factor X ( t )  = 0.9 and X ( t )  = 0.99. Observe that the RLS 
parameter estimates are extremely jumpy when h(t)  = 
0.9, probably because the forgetting factor is not large 
enough to average out the noise. Fig. 8 shows the esti- 
mates when the variable forgetting factor proposed by 
Fortescue and Kershenbaum [13] is incorporated into the 
RLS algorithm. This variable forgetting factor X ( t )  is a 
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Fig. 5 .  DHOBE parameter estimates for the case of slow variation in the 
true parameter from t = 500. 
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Fig. 6.  DHOBE parameter estimates for the case of a jump in the MA 
parameter at t = 500. 

function of the prediction error and is given by 

h2 (0 A(?) = 1 - CYr ___ 
1 + G(?)' 

A value of CY' = 0.01 was used because it yields steady- 
state tracking error of about the same magnitude as does 
the DHOBE algorithm. From these figures, it is evident 
that the DHOBE algorithm can track jumps in the param- 
eters at least as well as the exponentially weighted RLS 
algorithm. 

L 
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RLS a 0 9 9  

RLS b o 9  
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Fig 7 RLS (with X(t) = 0 9 and X ( t )  = 0 99) parameter estimates for 
the jump-parameter case 
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t 

Fig. 8 .  RLS (with variable forgetting factor) parameter estimates for the 
jump-parameter case.  

The effect of varying y2 was also studied. A value of 
y2 = 2 was taken. In this case, the true parameter did not 
jump out of the bounding ellipsoid at t = 500. The pa- 
rameter estimates are identical to those in Fig. 6 .  But the 
ellipsoids are larger, as expected. 

For a different run, i.e., with a different input and noise 
sequence, the jump at t = 500 caused a2(t)  to become 
negative. The rescue procedure was then used and yielded 
remarkable results. The true parameter was captured im- 
mediately at ? = 501. The final parameter-estimation er- 
ror was 2.4 x Fig. 9 shows that the parameters are 
tracked extremely rapidly in this case. 

Tracking Performance in Gaussian Noise 
It is well known that least squares algorithms are opti- 

mal in the constant-parameter case for Gaussian-distrib- 
uted noise. It is thus interesting to compare the tracking 
abilities of the DHOBE and RLS algorithms in Gaussian 
noise. The same ARX model was used with the noise se- 
quence U (?) now being generated as zero-mean white 
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Fig. 9. DHOBE parameter estimates when the rescue procedure is acti- 
vated in the jump-parameter case. 
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Fig. 10. Tracking performance of DHOBE and RLS algorithms for 
Gaussian noise. 

Gaussian noise with variance 0.25, which corresponds to 
an SNR of 1.25 dB. To satisfy the bounded-noise as- 
sumption, u( t )  was truncated to the range [-1, 11, re- 
sulting in a slightly larger SNR. The parameter b was 
changed by 100% at the five-hundredth sample, and a was 
kept constant at its nominal value at all times. Several 
runs of the DHOBE algorithm were performed with dif- 
ferent noise sequences. As in the uniform-noise case, it 
was found that in a few runs the rescue procedure was 
activated, consequently causing extremely rapid acquisi- 
tion of the parameter. In most of the runs, the true param- 
eter was acquired by the bounding ellipsoid without re- 
quiring rescue. The acquisition usually happened in less 
than twenty samples after the change occurred. Fig. 10 
compares the tracking performance of the RLS algorithm 
(with h(t) = 0.9 and h ( t )  = 0.99) to the DHOBE algo- 
rithm for a run in which the rescue procedure was not 

activated. The curves shown are plots of estimates of pa- 
rameter b by both algorithms. It is seen that RLS with h ( t )  
= 0.9 seems to track a little faster than the DHOBE al- 
gorithm. However, the steady-state RLS estimates are ex- 
tremely jerky. The tracking performance of RLS with h(t) 
= 0.99 is definitely inferior to that of the DHOBE algo- 
rithm; however, its steady-state performance prior to the 
jump is superior. Another point of note is that the DHOBE 
estimates become much less jerky after the jump on ac- 
count of the decrease in the size of the ellipsoids. 

VI. CONCLUSION 
The tracking properties of a recursive set-membership 

parameter estimation algorithm, the DHOBE algorithm, 
have been investigated. Some sufficient and other neces- 
sary conditions that ensure parameter tracking have been 
derived. A modification of the DHOBE algorithm is pro- 
posed to improve its tracking capability for larger param- 
eter variations. Simulation results show that the tracking 
performance of the DHOBE algorithm is comparable to 
that of the exponentially weighted RLS algorithm. In some 
cases of large parameter jumps, the automatic activation 
of a rescue procedure causes the parameters to be tracked 
extremely rapidly. 
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