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thesis algorithm. Finally, we have demonstrated a new iterative 
CWD technique which does not rely on a priori knowledge of the 
signal of interest. It is especially useful in applications where in- 
terference terms hinder the use of AWD synthesis techniques. 
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On the Asymptotic Statistical Behavior of Empirical 
Cepstral Coefficients 

Neri Merhav and Chin-Hui Lee 

Abstract-The asymptotic covariance matrix of the empirical cep- 
strum is analyzed. We show that for Gaussian processes, cepstral coef- 
ficients derived from smoothed periodograms are asymptotically un- 
correlated and their variances multiplied by the sample size T tend to 
unity. For an autoregressive process and its autoregressive cepstrum 
estimate, somewhat weaker results hold. 

I. INTRODUCTON 

Cepstral analysis is useful in the preprocessing of many speech 
recognition and speaker verification systems (see, e.g., [ 11-[6]). 
This is based on strong experimental evidence that among many 
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types of feature vectors, the cepstrum provides the best perfor- 
mance in speech recognition [6] and speaker verification [2] appli- 
cations. 

It is of interest, in light of this fact, to investigate the asymptotic 
statistical properties of the empirical cepstral vector. We examine 
both analytically (Section 11) and experimentally (Section 111) the 
covariance matrix of this vector when extracted from a stationary 
random process in two cases. First, an underlying stationary 
Gaussian process is assumed and we confine interest to the cep- 
strum derived from the smoothed periodogram [7]. The cepstral 
components are shown to be asymptotically uncorrelated and their 
variances, when multipled by sample size T, tend to unity as T + 

W .  In the second case, an autoregressive (AR) process (not nec- 
essarily Gaussian) is assumed and we focus on the cepstrum de- 
rived from the empirical AR power spectrum density (PSD), which 
is a parametric estimator of the PSD. Here the covariance matrix, 
when multiplied by T, tends to the identity matrix in the weak norm 
sense (Hilbert-Schmidt), which is a weaker form of convergence 
than in the former case. Thus, in both cases the asymptotic co- 
variance matrix is, in a sense, equivalent to the identity matrix 
independently of the underlying PSD. 

This “orthonormality ” property of the cepstral vector regardless 
of the PSD, does not exist in many other feature vectors commonly 
used in speech processing, e.g., the AR parameter vector, the vec- 
tor of reflection coefficients, and the DFT coefficients. It is inter- 
esting to note, however, that the log-spectral energies (which are 
related to the cepstrum via a Fourier transform) do have the above 
mentioned covariance orthonormality property under some condi- 
tions [lo]. This will be discussed more deeply in Section 11. 

One implication of these results is that, essentially, only the cep- 
stral means carry useful information regarding the PSD, while the 
cepstral variances are relatively insensitive to the PSD. This ob- 
servation has been also supported experimentally by earlier studies 
[ 5 ] ,  [11]-[13]. Another implication of the results is that they pro- 
vide some theoretical motivation for the use of diagonal covariance 
matrices in cepstral hidden Markov model of speech signals. 

11. MAIN RESULTS 

Consider a stationary process { y l } , 2  I with an autocorrelation se- 
quence R(7) = E( y , y , +  T )  and power spectrum density (PSD), $0) 
= C ,”= -m R(r)e -Jwr satisfying the following regularity conditions. 

A l )  There exist Smi, > 0 and S,,, < w such that Smi, I S(w) 
I S,,, for all -7r 5 w < 7r. 

A2) { R ( w ) }  is absolutely summable, i.e., E,”= -m IR(r)I < W .  

A3) The sequence { R 1 ( r ) ) ,  defined as the inverse Fourier trans- 

The cepstrum {c,} is defined as 
form of 1 /S (o ) ,  is absolutely summable. 

Suppose now that we wish to estimate c, from a finite observation 
sequence y , ,  y 2 ,  . . e ,  y ,  by using an estimate $(U) of the PSD and 
then substitute $(U) instead of S(w) in (1). Consider the smoothed 
periodogram [7] for estimating the PSD, i.e., 

where L is a fixed positive integer and &(7) is the empirical auto- 
correlation given by &(T) = T - ’  CTZ,’y,y,+ T. An alternative to the 
smoothed periodogram is a parametric estimator derived from an 
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TABLE I 
CEPSTRAL COVARIANCES FOR A SMOOTHED PERIODOGRAM 

T L PI1 P22 P33 PI2 P23 P I 3  

128 50 0.8265 0.8272 0.8239 -0.1163 -0.0892 0.0523 
256 100 0.8993 0.9314 0.9102 -0.0785 -0.0786 -0.0524 
512 150 0.9330 1.0227 0.9321 -0.0769 -0.0679 0.0038 

1024 150 0.9905 1.0070 0.9628 -0.0587 -0.0324 0.0031 

AR model, i.e., 
4 

k =  I 
Sq(w) = 8211 + c C i k e - y - 2  

where C2 and (GI, Ci,, , 6,) are estimates of the gain and the 
AR coefficients. Define tf- and 2: as the inverse Fourier transforms 
of log sL(u) and log Sq(w), respectively. The following lemmas 
(proved in the Appendix) describe the asymptotic covariance mat- 
rices of estimated cepstral coefficients in the two versions. 

Lemma 1: Let { y , }  be a stationary Gaussian process with PSD 
S(o) satisfying Al-A3. Then, for every two fixed positive integers 
k and I, limL,,lim,,,T . cov(tk, 2;) = 8k/, where 8kl = 1 if k 
= 1 and &, = 0 otherwise. 

Lemma 2: Let {y,} be a pth order AR process, that is, y, = 
-E:= a y , -  + w,, with all poles inside the unit circle, where { w,} 
are independently identically distributed (i.i.d) random variables 
with E{w,} = 0 and E{w:} < 00 for all k 1 1. Then, as q + 03, 

the q x q dimensional matrix whose klth entry is p i i  = limT+ ,T 
cov(&i, Z;), tends to the identity matrix in the Hilbert-Schmidt 

sense, i.e., l imq+aq- lEz , l= l [  p i l  - 
Discussion: In [ lo ,  corollary 5.6.31 a result related to Lemma 

1 has been established. Specifically, consider a periodgram S(w) 
smoothed by a window whose bandwidth B T  vanishes with T but at 
a rate slower than l / T .  Then, under certain assumptions BTT 
var{ln $(U)} tends to a constant as T + W .  Furthermore, from [ 10, 
corollary 5.62.1 it can be implied that BTT . cov{ln $(U), In $v)} 
vanishes with T whenever w # v and w # 2~ - v. It is tempting 
to think that Lemma 1 can be deduced from this covariance or- 
thonormality property of the log periodogram because the cepstrum 
is obtained from the inverse Fourier transform which is a unitary 
transform. However, this is not quite the case unless one shows 
that the above cross covariances in the frequency domain decay 
much faster. The reason is that in practice (1) is computed by the 
IDFT and hence the covariance between two cepstral components 
is given by a weighted sum of O(T2) covariances among the DFT 
components In $(2nk/T) whose overall relative contribution does 
not necessarily vanish with T. 

* 

= 0. 

111. EXPERIMENTAL RESULTS 

We examined experimentally the validity of Lemmas 1 and 2 for 
finite length data records. In our first set of experiments, Lemma 
1 has been examined. In each experiment, we have generated an 
ensemble of 500 examples of the random process y, = w, - 0.8w, - 
+ O . 1 6 ~ , - ~ ,  I = 1, 2,  . . . , T, where {w,} are zero mean, unit 
variance, independent Gaussian random variables. For each ex- 
ample i, 1 5 500, we computed the empirical cepstrum vector 
tL( i ) ,  where the Fourier integral of (1) was approximated by the 
IDFT. Finally, we computed the empirical covariance matrix over 
the 500 examples defined as 

p = T * [- c t L ( i )  t ~ ( i ) #  - [' 5 0 0 i = l  'c" t ~ ( i ) ]  1 500 

500 i = l  

TABLE I1 
DISTANCE FROM THE IDENTITY MATRIX FOR AN AR(q) SPECTRUM ESTIMATE 

T q = l  q = 2  q = 4  q = 6  q = l O  

100 0.3768 0.2087 0.1044 0.0909 0.0759 
200 0.3217 0.1805 0,1160 0.0982 0.0593 
400 0.3420 0.2104 0.1124 0.0685 0.0651 
800 0.4060 0.1731 0.1106 0.0857 0.0605 

where " denotes vector transposition. Table I presents the 3 X 3 
upper left block { pg}:, = of p for various values of T and L .  As 
can be seen the diagonal terms pLl are quite close to unity and the 
off diagonal terms are reasonably small even for relatively short 
data records. Generally speaking, the results improve for large T 
and L as expected. A similar behavior has been observed for the 
higher order cepstral components as well as for different shapings 
of the underlying PSD. 

The second set of experiments was associated with Lemma 2. In 
each experiment we generated 500 T-point examples of the AR pro- 
cess y, = 0.Q- I + w,, with w, as above. For each example, 2: 
has been computed and the empirical covariance matrix p over the 
500 examples has been calculated similarly to (2). Table I1 presents 
the calculated value of A = q-IE T,  = p,, - 6,,)2 for several values 
of q and T. As can be seen A decreases as q grows for every fixed 
T.  Similar results were obtained for different underlying AR pro- 
cesses as well as for a uniformly distributed driving white noise. 

APPENDIX 

Proof of Lemma I :  Define 
P* r L  1 

cf- = (27r)-I d weiro log I t =  C -L R(t)e-j""]. 
- H  

Since t; satisfies a similar relation with { R ( t ) }  replaced by { I ? ( ? ) } ,  
then by assumptions A1 and A2, 

L 

C 

C R(t)e 

dw t =  -L 
- eJTW log st4 P tf- - c4 = 

S'H 2?r 

f =  - L  

C A&r)e 

= S I , E e J -  [ ,;;LR(t)e-,,W] + %(T-1/2) 

A t 4  + O,(T-' /~) (-4.1) 

where AI?(?) I?(?) - R(t)  and O,(T-'/~) denotes a term of sto- 
chastic order less than T-'/'. Under conditions A1 and A2, it is 
easy to show that E ( t 4 )  - c4 = O(T-') and hence cov{g,  t f }  = 
= E(A2k A?;) + o(T-I). Thus, the asymptotic behavior of T * 

cov ( t k ,  E;)  is identical to that of T * E ( A t k  . A t ? )  and we con- 
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centrate on the latter. Let 

R ~ ( T )  4i (27)-1 i x  dw . eJ"/SL(w) 

where SL(o) 4 E:= - L  R ( r ) e  -Irw. Note that A t ; ,  as defined in (A. I ) ,  
is the inverse Fourier transform of the product of l / S L ( w )  and 

Al?(T)e-Jrw. Hence, it is equal to the convolution between 
the corresponding inverse Fourier transforms R f ( t )  and 
{A&)}:= - L ,  i.e., 

-* 

L L 

1=  - L  1 =  - L  
A t ;  = C A&t) . RF(k - t) = C A&t) R f ( t  + k) 

where the second equality follows from the symmetry of both con- 
volved sequences. Thus, 

TO compute E[Ak(t)A&s)] we use the fact that for a zero-mean 
Gaussian quadruple E(XYZW) = E(XY)E(ZW) + E(XZ)E(YW) + 
E(XW)E(YZ).  Therefore, 

I T - r T - s  
E[A&t)Ad(s)l = 7 C [ E ( Y , Y r + , Y / Y / + J  - R(W(s)I T r = I  / = I  

= -  i $ [R(r - I)R(r - 1 - s + t )  
T2 , = I  I = I  

+ R(r - 1 - s)]R(r - 1 + r)] 

- - C [R(r - I)R(r - I - s + t )  
1 

T2 U , ,  

where R I ( . )  is as in A3. Since R2(t) = R(r)*R(t) and R(t)*RI(t) = 
6(0 ,  where * denotes convblution and a(-) denotes the Kronecker 
delta function, the first t$!i#b in (A.5) becomes 6k/ and the second 
is zero for every 1 L 1 add k 2 1. 
Proof of Lemma 2: b n s i d e r  the AR(p) process satisfying 

Efl=oaky,-k = w,: whetti {w,} is zero-mean, unil variance white 
noise, a. = 1, and a = (a,, . , ak) is the vector of AR param- 
eters. For q 2 p ,  consider the AR(q) cepstrum 

r *  1 4  

where ai = 0, p + 1 I i I q,  if q > p ,  and its estimate 

where do = 1 and d = (6,  * . * , hq) is the vector of estimates of 
the AR pakameters calculated from the Yule-Walker equations [ 141 
for order q. Let Ad = d - a and AE4 = E 4  - c4, where cq = 
(cy, . . . , c: )  and C q  = (.E;, . . . , 2:). It is known [8], [ 9 ]  that 
under the conditions of Lemma 2, the asymptotic covariance matrix 
of Ad is given by lirfi,, T . E(AdAd') = R-I , where Ad is a col- 
umn v&btor, ' denotes tiansposition, and R is the q X q covariance 
matrix of the process, with the ijth entry being R(i - j). The 
asymptotic covariance matrix of AI? is given by HR-IH', where 
H i s  the Jacobian matrix whose klth element is aci/aa,. Now, 

+ R(r - 1 - s)R(r - 1 + t ) ]  ( A 4  

= { ( r ,  I): T - t < r I T o r  T - s < I 4 T}. As for 
* log [ 5 a,e-JW' r = O  5 urelwr] 

where 
the first term on the rightmost side of (A.2), we have 

r = O  

= -  SI, E elwk . s (w)  [ e  -Jw/ 5 a,elw' + eJw/ 5 5 [R(r - I)R(r - 1 - s + t )  r = O  

T2 r = I  / = I  

. 5 a,e -Jur] 
,=o + ~ ( r  - t - s)R(r - z + t ) ]  

= (1  - F) [R(k)R(k - s + t )  
T k = - ( T - I )  

+ R(k - s)R(k + t)]. (A. 3) 
Let 

m "*  

It is easy to see that (A.3), when multiplied by T, tends to R2(t - 
s) + R2(r + s) as T -+ w. The second term on the rightmost side 
of (A.2) can be shown to be O(T-2) under assumption A2 and hence 
even when multiplied by T, tends to zero as T + W. Combining 
these facts, 

L 

p;./ lim T . cov (e:, 2;) = C [ ~ ~ ( t  - s) 

+ R2(t + s)]Rf(t + k)%(s + I ) .  (A.4) 

Taking the second limit as L + w and using A3, it is easy to see 
that 

T -  m 1.5 = - L  

P 

i = O  
= - c a,[R(k + i - 1 )  + R(k + 1 - i ) ]  (A.6) 

where we have used the fact that S(w) = ( C f l , o a k e - J w k l - 2 .  Now, 
since 

P 

k = O  
C a,R(k + s) = E(w,y,+,) = h, 

where {h,};"=, is the impulse response of the filter H(z) = 
l/Eg,, akz-' and since R(-) is symmetric, we have acf/aa, = 
hk - I and hence H is a Toeplitz matrix. Since the process is station- 
ary, H(z)  must be stable, and hence {h,} is absolutely summable. 
Since R is a covariance matrix of an absolutely summable autocor- 
relation sequence satisfying A l ,  and the spectrum of its inverse 
cancels the spectrum induced by { h , } ,  we conclude by [15, theo- 
rems 2.1,5.1,5.2] that the weak normof (HR-'H' - Zq), Zq being 
the q X q identity matrix, vanishes as q --t 03, i.e., 

(AS) where p:/ is the klth entry of HR-IH#. 
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Synthesis of Spectral Densities Using Finite 
Automata 

Carlo M. Monti, Gianfranco L. Pierobon, and Umberto Viaro 

Abstract-A method for designing a finite automaton whose output 
exhibits a given rational power spectral density belonging to a partic- 
ular class, is presented. The method exploits the properties of circulant 
matrices, which allow us to build a stochastic matrix with a set of as- 
signed eigenvalues. 
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I. INTRODUCTION 

The interest for the synthesis of rational spectral densities by 
means of finite sequential machines (SM’s) is twofold: first, this 
synthesis may be applied to design encoders often used for spectral 
shaping purposes in digital data transmission or recording; second, 
it may be used for the numerical simulation of processes with as- 
signed spectral density, as an alternative method to the classical 
approach of passing a white noise signal through a suitable digital 
filter. 

Let us recall that any rational spectral density may be repre- 
sented in the form [l] 

where * denotes conjugate and the zeros C k  and poles ek satisfy the 
conditions: I F k  1 5 1, I ek 1 < 1. Moreover, if the process is real, 
to every zero and pole there corresponds its complex conjugate. 

The synthesis through a linear filter requires a factorization R(z) 
= o2h(z-’)h*(z*); then h(z- ’ )  provides the transfer function of the 
filter and a’ gives the variance of the filter input. The general prob- 
lem of synthesizing an assigned rational spectral density by means 
of an SM fed by a suitable input formed by independent and iden- 
tically distributed (i.i.d.) symbols was dealt with by Mullis and 
Roberts [2], who proved that such a synthesis is possible for any 
rational spectral density. Unfortunately, the proof is not construc- 
tive and does not convey any suggestion about the choice of the 
SM and of the input probabilities. A complete solution to the prob- 
lem has been given by Mullis and Steiglitz [3] for a particular case, 
namely, for those spectral densities which qn obtained by sum- 
ming up elementary spectral densities haviqg only a single pole 
inside the unit disk. In their solution, each elefnentary spectral den- 
sity requires a separate SM and the machine inputs must be inde- 
pendent. 

In the following we consider the same class of spectral densities 
as in [3], but use a different approach. Our solution, in which a 
fundamental role is played by circulant matrices as well, leads to 
a simpler structure involving a single sequential machine. 

11. REVIEW OF THE SPECTRAL ANALYSIS OF THE OUTPUT OF 
AN SM 

As it is known, an SM (in particular, reference will be made to 
a Moore machine) may be specified [4] as a quintuple 3n = {a, 
a, S, g, h )  where 63 is the input set, Q. is the output set, S = {al, 
a,, . . ’- , a,} is the state set, g: S x 63 --t S is the state transition 
function, and h: S -+ Q. is the output function; explicitly, 

sf+  I = g(s,, b,), a, = h(sJ (2) 

where s,, b,, and a, denote the state, input, and output processes. 
If the input process b, is composed of i.i.d. symbols, the state 

process 9, is a homogeneous Markov chain [5] whose transition 
probability matrix ll can be determined from the probability mass 
function of the input and the state transition function of the autom- 
aton. By assuming that the Markov chain is ergodic, the state prob- 
ability vectorp = [p(l), p ( 2 ) ,  . . . , p ( l ) ]  collecting the probabil- 
itjesp(i) = Pr[s, = a,] is obtained from 

I 

p = ~ I I ,  C p( i )  = 1. (3) 
, = I  

We recall that the transition probability matrix II of an ergodic 
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