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Orthonormal and Biorthonormal Filter Banks as 
Convolvers, and Convolutional Coding Gain 

P. P. Vaidyanathan, Fellow, IEEE 

Abstract-A maximally decimated filter bank system (with 
possibly unequal decimation ratios in the subbands) can be re- 
garded as a generalization of the short-time Fourier trans- 
former. In fact, it is known that such a “filter bank trans- 
former” is closely related to the wavelet transformation. A 
natural question that arises when we conceptually pass from 
the traditional Fourier transformer to the filter bank trans- 
former is: what happens to the convolution theorem, i.e., is 
there an analog of the convolution theorem in the world of “fil- 
ter bank transforms”? In this paper we address the question 
first for uniform decimation and then generalize it to the non- 
uniform case. The result takes a particularly simple and useful 
form for paraunitary or orthonormal filter banks. It shows how 
we can convolve two signals x ( n )  and g ( n )  by directly convolv- 
ing the subband signals of a paraunitary filter bank and adding 
the results. The advantage of the method is that we can quan- 
tize in the subbands based on the signal variance and other per- 
ceptual considerations, as in traditional subband coding. As a 
result, for a fixed bit rate, the result of convolution is much 
more accurate than direct convolution. That is, we obtain a 
coding gain over direct convolution. We will derive expressions 
for optimal bit allocation and optimal coding gain for such 
paraunitary convolvers. As a special case, if we take one of the 
two signals to be the delta function (e.g., g ( n )  = 6(n)) ,  we can 
recover the well-known bit allocation and coding gain formulas 
of traditional subband coding. The derivations also show that 
these formulas are valid regardless of the filter quality, as long 
as orthonormality is not violated. 

A special case similar to orthogonal transform coding is also 
considered and good convolutional coding gains for speech are 
demonstrated, with the use of the DCT matrix. Finally, the re- 
sult is extended to the case of nonuniform biorthonormal filter 
banks; with the incorporation of an additional trick, the con- 
volution theorems in this case become as simple as for the or- 
thonormal case. 

I. INTRODUCTION 
HOWN in Fig. l(a) is the M-channel maximally dec- S imated digital filter bank, which has been studied by 

a number of authors in the past decade. Here Hk ( z ) ,  Fk (z), 
0 5 k I M - 1 are the set of analysis and synthesis 
filters. The notations h k  and tnk denote the nk-fold dec- 
imator and interpolator (unpsampler or expander) as de- 
fined in several earlier references [1]-[5]. In this paper, 

all nk are positive integers. The boxes labeled Qk denote 
quantizers which quantize the subband signals xk (n). 

The relations between filter banks and wavelet trans- 
forms have been known for some time [6]-[12]. An ex- 
cellent magazine article appeared recently [ 101, discuss- 
ing this connection explicitly. It is well known that 
wavelet transforms provide more flexibility (in terms of 
time-frequency resolution) than the traditional Fourier 
transform. In this paper we deal only with discrete-time 
filter banks (both uniform and nonuniform decimators will 
be considered). It is known that discrete time filter banks 
can be considered as discrete time wavelet transforma- 
tions. Here the analysis bank can be viewed as a trans- 
formation from “time” to “time-frequency.’’ We will 
simply refer to this as the filter bank transform, and the 
decimated subband signals xk (n) will be called the trans- 
form-domain signals. The synthesis bank is regarded as 
the inverse transformer (assuming perfect reconstruction, 
that is, f ( n )  = x ( n ) ) .  

A. Aim of the Paper 
The advent of these transforms leads us to ask the ques- 

tion, how do the standard properties of the Fourier trans- 
formation generalize to the case of “filter-bank trans- 
forms”? For example, what is the extension of the 
convolution theorem? To introduce the main topic of the 
paper, let y ( n )  denote the convolution of two sequences 
x ( n )  and g ( n ) ,  i.e., y ( n )  = E:=-, x(m)g(n - m). Ac- 
cording to Fourier transform theory [ 131, the transform of 
y ( n )  is related to those of x ( n )  and g(n )  as Y(e’”) = 
X(e’”) G(e’”), i.e., convolution becomes “multiplica- 
tion” in the transform domain. Now consider the “filter 
bank transformer, ” with the decimated subband signals 
regarded as the “transform domain.” What is the “con- 
volution theorem” in this case? To expand on this ques- 
tion, consider Fig. 1 where we show x ( n )  and g(n )  as the 
inputs to two copies of the filter bank. The transform do- 
main “coefficients” corresponding to x ( n )  and g(n) are 
the sets of sequences xk(n) and gk(n) ,  respectively. How 
should we combine x k ( n ) ,  g k ( n ) ,  0 I k I M - 1 so that 
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the convolution E, x (m) g (n - m) can be obtained from 

In Section 11-A we will derive this COnVOlUtiOn theorem 
for the case of uniform filter banks (i.e., nk = M for all 
k). The result takes an exceptionally simple form in the 
case of paraunitary or orthonormal filter banks [2], [123, 
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Fig. 1 .  The maximally decimated filter bank: (a) with input x ( n ) ,  and (b) with input g(n) 

[14], [ 151. Qualitatively speaking, the convolution x ( n )  * 
g ( n )  is reduced to computing the convolutions xk(n) * 
gk(n) and adding. In other words, the subband convolu- 
tions are decoupled; we need not consider xk (n )  * g, (n) ,  
for k # m. The result will be stated more precisely in 
Theorem 2.1 (equal nk) and Theorem 2.2 (unequal nk). A 
similar result also follows for the nonorthonormal case 
(the biorthonormal case), with the incorporation of a sim- 
ple additional trick, as shown in Section VI (Theorem 
6.1). 

In Section II-B, the result will be extended to the case 
of filter banks with nonuniform decimation ratios. Once 
again, it will be shown that when the synthesis filter coef- 
ficients form an orthonormal basis (this being the exten- 
sion of the paraunitary concept), the ‘‘convolution theo- 
rem” takes a special simple form. Even though the 
uniform filter bank is a special case, we have chosen to 
treat it separately first, because it is much simpler, while 
conveying most of the ideas well. 

B. Usefulness 
The motivation for obtaining these “convolution theo- 

rems” does not originate from a desire to obtain algo- 
rithms that are faster than the many well-known fast con- 
volution techniques. (Indeed, the state of the art for fast 
convolutions is already very advanced.) The actual mo- 
tivation comes from the fact that we can quantize in the 
subbands, and reduce the roundoff error (for fixed 
wordlength) by the proper bit allocation schemes. Thus, 

instead of quantizing x (n )  and then convolving with g (n ) ,  
we can now quantize xk (n)  and then convolve with gk (n) 
and add the results for all k .  When performing this quan- 
tization in subbands, we can exploit the subband energy 
distribution and perform optimal bit allocation. In this 
way, we obtain increased accuracy for a given bit rate. 
That is, the system offers a coding gain. This idea is very 
similar in philosophy to subband coding [16] (e.g., see 
[17, ch. 111 and [18, ch. 11). 

Unlike subband coding where subband quantization is 
used to compress the amount of data to be transmitted or 
stored, the goal is somewhat different here. The quanti- 
zation of subband signals here allows the subband con- 
volutions to be implemented faster, with certain types of 
computational architectures (e.g., bit-serial). Clearly the 
usefulness in a particular application depends on the cho- 
sen architecture, demands on speed and accuracy, and so 
forth. 

In a spirit to that described in the above references, we 
can define a coding gain for the paraunitary convolver. 
We will obtain the optimal bit allocation formula, and 
study the coding gain under optimal bit allocation. Unlike 
in usual subband coding, it is possible to obtain a coding 
gain > 1 even if x(n) has a flat spectrum (i.e., is white). 

It is important to notice that the computation of the sub- 
band signals xk(n) itself involves filtering. If this filtering 
complexity is comparable to the direct convolution of x(n)  
and g (n) ,  then the above technique is clearly unworthy. 
It has potential applications when x (n) and g (n) are very 
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long sequences (in comparison with the lengths of the 
analysis filters Hk(z ) ) .  A useful special case arises when 
the analysis filters have length I M (which is analogous 
to transform coding, e.g., using the DCT). We will see 
in Section IV that, even in this case, substantial coding 
gain can be exhibited. 

C. Paper's Outline and Main Results 
1) Orthonormal case. In Section 11-A we derive the 

convolution theorem for paraunitary filter banks with uni- 
form decimation. This is extended to the case of nonuni- 
form filter banks (nk not identical for all k) in Section 
11-B. We show how orthonormality can be exploited to 
decouple the subband convolutions. 

2) Bit allocation and convolutional coding gain. Sec- 
tion I11 presents a derivation of optimal subband bit allo- 
cation, as well as the corresponding coding gain expres- 
sion for the orthonormal convolver. Both uniform and 
nonuniform cases will be considered. 

3 )  Traditional subband coding. In Section 111-D we 
show how the well-known codirig gain results for tradi- 
tional subband systems can be obtained as special cases 
of the convolver's optimal bit allocation and coding gain 
expressions. (For this, one of the two signals to be con- 
volved is taken as the unit pulse.) This also shows that 
the ideal brick-wall nature of the analysis filters is not 
necessary, as is sometimes assumed, for the validity of 
these expressions; paraunitariness (more generally or- 
thonormality) is sufficient. 
4) Transform coding, and extension of the KLT prob- 

lem. Section IV considers a different specialization of the 
uniform paraunitary convolver, with analysis filter lengths 
constrained to be IM. This is, in principle, the extension 
of the transform coding problem to the case of convolu- 
tion. It has the advantage that we can further maximize 
the coding gain of the optimally bit-allocated system, by 
optimizing the transform matrix (generalization of the 
KLT). Section V presents several numerical examples. 

5 )  Biorthonormal case. In Section VI we show how the 
convolution theorem can be extended to the filter banks 
that do not satisfy orthonormality, but only the perfect 
reconstruction (or the biorthonormality) property. Even in 
this case we show that the subband convolutions can be 
decoupled, provided we use the analysis filters to decom- 
pose x ( n ) ,  and the synthesis filters to decompose g (n) (see 
Fig. 11 for a preview). 
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D. Notations and Basics 
1) x(n)  * g ( n )  denotes convolution of x ( n )  with g ( n ) .  

The sequence x ( n )  * g * ( - n )  is the deterministic cross 
correlation between x(n)  and g ( n ) ,  and has z-transform 
X ( z ) e ( z ) .  All signals and impulse responses are, in gen- 
eral, infinitely long and possibly noncausal. 

2) Boldfaced quantities represent matrices and vectors. 
The notations AT, A*,  and At represent, respectively, the 
transpose, coFjugate, and transpose-conjugate of A .  The 
tilde, as in H ( z ) ,  stands for transposition, followed by 

conjugation of coefficients, followed by replacemFnt of z 
with z - I .  Thus H ( z )  = C,h(n)z--" implies H ( z )  = 
C,ht(-n)z-" .  Foranyz ,  wehaveH(z) = Ht(l /z*);  on 
the unit circle B(z) = Ht(z). 

3) W N = e - J 2 x / N ,  with subscript omitted when it is 
clear. 
4) The M-fold decimator 1M and expander t M  (or in- 

terpolator) are defined as in [ 11, [2]. Thus the input output 
relation for the decimator is y ( n )  = x(Mn) ,  and for the 
expander it is 

x ( n / M ) ,  n = integer mul. of M 

otherwise. 
y(n)  = 

In this paper, all decimation and interpolation ratios are 
positive integers. In equations, the notation a (n) (  LM de- 
notes the decimated sequence a (Mn).  (The vertical bar is 
omitted where it is unnecessary.) With A ( z )  denoting the 
z transform of a(n) ,  the notation A(z)ILM denotes the z 
transform of the decimated version a (Mn).  Let A ( z )  and 
B ( z )  be rational functions and let K and L be integers. The 
following identity can be easily verified: 

( A  ( z K )  B (Z))lKL = ( A  (2) (B (2) I1K))LL. ( 1 . 1 )  

E. Polyphase Notation 
For the case where nk = M for all k,  the system of Fig. 

l(a) can be redrawn as in Fig. 2 where E ( z )  and R ( z )  are 
M X M matrices. Defining the analysis and synthesis filter 
vectors as 

h(z)  = W o ( z )  HI ( z )  * * H M -  I (z)IT,  

we have 

h(z)  = E(z')e(z), f T ( z )  = Z(z>R(z') (1.3) 

where e ( z )  is the delay chain vector, i.e., 

(1.4) 

E ( z )  and R ( z )  are, respectively, the polyphase matrices 
of the analysis and synthesis banks. Note, in particular, 
that any transfer function H ( z )  can be written in the form 

M -  1 

where E,,(z) are the so-called Type 1 polyphase compo- 
nents. 

11. CONVOLUTION THEOREMS FOR ORTHONORMAL 
FILTER BANKS 

A. Filter Bank with Equal Decimation Ratio in all 
Branches 

First consider Fig. 1 with nk = M for all k.  The con- 
volution theorem is obtained by analyzing this in absence 
of the quantizers Qk.  Assume that the set of filters { Hk ( z ) ,  
Fk(z) }  are chosen to satisfy the perfect reconstruction 



~ 

2113 VAIDYANATHAN: ORTHONORMAL AND BIORTHONORMAL FILTER BANKS 

Fig. 2 .  Polyphase representation of the filter bank with equal decimation 
ratios. 

property, i.e., 

X ( z )  = X ( z ) ,  &) = G ( z ) .  (2.1) 
Using the fact that the M-fold upsamplers. have outputs 
X k ( z M )  and Gk(zM) ,  we canAexpress X ( z )  as E!:; 
xk ( z  M ,  Fk ( z ) ,  and similarly for G ( z ) .  Using these together 
with (2.1) we obtain 

M -  I 

x ( z )  = c Xk(zM)Fk(z)  
k = O  

M -  1 

G ( z )  = Gk(ZM)Fk(Z). 

Now consider the quantity X ( z )  G ( z )  (with 
fined at the end of Section I). We have 

k = O  

M - 1  M - l  

he tilde as de- 

The inverse z transform of X ( z ) G ( z )  is equal to the con- 
volution of x ( n )  with g * ( - n )  (i.e., the deterministic cross 
correlation between x ( n )  and g ( n ) ) .  Similarly 
xk ( z )  Gm ( z )  represents the convolution of the subband sig- 
nals x k ( n )  and g , * ( - n ) .  

1) Paraunitary or  Orthonormal Filter Banks: The 
above equation reddces to a much simpler form (the dou- 
ble summation reduces to a single summation) when the 
filter bank is paraunitary [ 121, [ 141, [ 151. I In this case the 
polyphase matrix E ( z )  satisfies 

" ( z )  = z (2.4) 
and we choose R ( z )  = E(z )  for perfect reconstruction (so 
that R ( z )  is also paraunitary). In this case the analysis and 
synthesis filters are related as Fk(z)  = Hk(z), that is, fk(n)  
= h ; ( - n ) .  In order to ensure that Fk(z)  is stable, we as- 
sume that the analysis filters are FIR. Thus, hk(n)  and 
fk(n)  are FIR with the same length. A paraunitary filter 
bank satisfies the following properties, regardless of the 
exact nature of H k ( e J w )  (i.e., regardless of filter quality) 
t 121. 

1 )  The energy of each analysis filter equals unity, that 
is ltT IHk(e1")I2 dw/2.rr = 1 .  

2) The analysis filters are power complementary, that 
is, CkI&(e'")(2 = M .  

3) Since fk(n) = h t ( - n ) ,  we have IFk(eJ")I = 
lHk(eJu)1. So the above two properties hold for the syn- 
thesis filters as well. 

'To appreciate the significance of the simplification, read Section 
VII-A. 

(Notice, in particular, that in the case of ideal brick- 
wall filters, to be shown later in Fig. 6 ,  the first two prop- 
erties are evident.) The paraunitary property of R(z )  is 
equivalent to the property that the synthesis filters satisfy 
an orthonormality condition [lo]-[ 121, that is, 

W 

fk(n) f : (n  + Mi) = 6 ( k  - m ) 6 ( i ) .  (2.5) 
n =  -CO 

In the z-domain this can be rewritten as 
(Fk(Z)Fm(Z))JM = h(k - m )  (orthononnality). (2.6) 
2) Simplification of the Convolution Formula: Using 

the above orthonormality condition, (2.3) leads to 
M -  I 

(X(z)G(z))JM = xk(z)ck(z ) -  (2.7) 
k = O  

This can be rewritten in the time domain as 
M -  1 

(x(n)  * g*(-n)) lM = kzo xk(n) * gk*(-n>. (2.8) 

In the time domain, the left-hand side represents the 
M-fold decimated version of the convolution of x ( n )  with 
g * ( - n ) .  The kth term on the right-hand side represents 
the convolution of the subband signal xk(n)  with 
g; ( -n ) .  Thecross termsoftheformxk(n) * g : ( - n )  have 
disappeared, i .e . ,  there is no "cross-coupling" between 
subbands any more. Summarizing, we have proved: 

Theorem 2 .1:  Paraunitary convolution theorem.2 Con- 
sider the two copies of a maximally decimated filter bank 
as in Fig. I ,  with FIR analysis and synthesis filters, and 
nk = M for all k. Ignore the quantizers Qk. Assume that 
the system has perfect reconstruction (.t(n) = x ( n )  for any 
x ( n ) )  and that the polyphase matrix E ( z )  (Fig. 2) is 
paraunitary (equivalently the synthesis filters are ortho- 
normal, i .e.,  satisfy (2.5) or equivalently (2.6)). Then the 
M-fold decimated version of the convolution x ( n )  * 
g * ( - n )  can be computed by computing the convolutions 
xk(n) * g : ( - n ) ,  0 5 k I M - 1, andadding them. 0 

Obtaining all the samples: In order to obtain all the 
samples of the convolution x ( n )  * g * ( - n ) ,  we repeat (at 
least conceptually) the above operation M times, by re- 
placing g ( n )  with g ( n  - i ) ,  for 0 I i < M - 1. We can 
represent these operations mathematically as 

( ~ ' x ( z ) G ( ~ ) ) ~ ~  = C x k ( z ) G f ) ( z ) ,  
M -  I 

o I i I M - 1 

(2.9) 
where Gt'(z) is the subband signal obtained by replacing 
g ( n )  with g ( n  - i ) .  Equation (2.9) means that the ith 
Type 1 polyphase component (see end of Section I) of the 
quantity X ( z ) G ( z )  is given by the right-hand side. So we 
can write 

k = O  

M -  I M -  1 

X ( z ) G ( z )  = C X k ( z M )  c z-"Gim'(zM).  (2.10) 
k = O  m = O  

*A simple modification of this result, which eliminates the need for 
paraunitariness and depends only on the so-called biorthonormality, is pre- 
sented in Section VI. The modification also shows how we can directly 
perform convolution (x  (n) * g (n)) rather than correlation ( ~ ( n )  * g* ( - n ) ) .  
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Notice that it is not necessary to repeatedly run the filter 
bank with inputs g(n  - i )  for 0 I i I M - 1 in order 
to obtain gf’(n). Let sk(n) denote the (undecimated) out- 
put of H~(z) in response to g (n).  Then g f) (n)  = sk (Mn  - 
i) so that we can write &(z)  = z“Gim’(zM). Com- 
bining this observation with (2.10) we see that the quan- 
tity x (n) * g * ( -n )  can be computed using the schematic 
shown in Fig. 3. In the figure, the “correlator” computes 

Notice that unlike traditional convolution theorems, we 
do not have to apply an “inverse transform” after per- 
forming the transform domain operations. This is true 
even if the filter bank is the DFT filter bank (i.e., Fig. 2 
with E ( z )  equal to the DFT matrix). So even in the special 
case of DFT filter banks, the above result is fundamen- 
tally different from well-known DFT based convolutions. 
See Section VII-A for further remarks about this. 

Comments on complexity: Computational complexity 
is not the main advantage of the method of subband con- 
volution. Assume for simplicity that x ( n )  and g ( n )  are 
N-point sequences. Then direct convolution of x ( n )  and 
g * ( -n)  (without using standard fast techniques) requires 
N 2  multipliers. Assuming that N is much larger that the 
lengths of the subband filters H k ( z )  (so that the multipli- 
cations required to implement analysis filters are negligi- 
ble) the signals xk(n) and gk(n)  have lengths = N / M .  Each 
subband convolution requires nearly ( N / M ) 2  multiplica- 
tions, so that the total number of multiplications for all 
the M values of i in (2.9) is nearly N 2  again. It is true that 
we can employ the FFT, or even the fast short convolu- 
tion algorithms in the subbands, but again this is not the 
main point of the discussion. 

The above reasoning does not hold if the analysis filters 
have length comparable to those of x ( n )  and g (n) .  In this 
case, the complexity of the analysis bank becomes com- 
parable to the direct convolution of x ( n )  with g(n )  and 
this additional overhead may overshadow the advantages 
of subband convolution: Recall that the actual advantage 
of the (paraunitary) subband convolver is that it allows us 
to allocate the computational accuracy (i.e., bits) among 
the subbands, resulting in a coding gain as elaborated in 
Section 111. In fact, considerable coding gain can be ob- 
tained even in the special case where the analysis filters 
have small length (e.g., I M ) ,  as discussed in Sections 
IV and V. 

xk s k  (z) .  

B. Orthonormal Filter Bank with Unequal Decimation 
Ratios 

Now consider the case where the decimation ratios nk 
in Fig. 1 are possibly unequal integers such that 

(2.11) 
1 M -  1 c - = 1 .  

k = O  Izk 

. This condition implies that we have a maximally deci- 
mated system. The design of such nonuniform systems 
has received attention recently [21]-[23]. Such a system 
can be regarded as a discrete time wavelet decomposition 
system. The analysis bank is the “wavelet transformer” 

Fig. 3 .  Implementation of the paraunitary convolver 

and the synthesis bank the inverse transformer. Assuming 
perfect reconstruction (i.e., i ( n )  = x ( n ) )  we can express 
the signal x(n) in terms of the synthesis filters Fk(z )  and 
the wavelet coefficients X k ( z )  as follows: 

M -  I 

X ( z )  = c F k ( z ) X k ( Z n r )  (2.12a) 
k = O  

i.e., in the time domain, 
M -  I 

x ( n )  = c c x k ( Z ) f k ( n  - nkZ). (2.12b) 
k = O  / 

The doubly indexed set of sequences 

Ek, / (n)  h f , ( n  - n k l ) ,  0 5 k 5 M - 1, 

- 0 O I l c E o o  (2.13) 

are therefore the basis functions for the expansion of x (n) .  
Note that the sequence x (n )  and the basis functions E k ,  [ (n )  
are, in general, doubly infinite in extent (i.e., -00 5 n 
5 00). Special cases of this system based on binary and 
nonbinary tree structures (wavelet packets) have been re- 
ported earlier [5], [7], [lo], [241, [251. 

I )  Orthonormality (Nonuniform Case): The above ba- 
sis is said to be orthonormal if 

C h ( n  - n k l ) f : ( n  - n,i)  = 6 ( k  - m)6(1 - i ) .  (2.14) 
n u -  

( k . / ( n )  E:, Sn) 

In terms of the synthesis filters, the orthonormality prop- 
erty is 

Cfk(n)f ,*(n n + n k l  - n,i) = 6 ( k  - m)6(1 - i). (2.15) 

This is a generalization of the orthonormality property 
(2.5) which followed earlier from paraunitariness. Let I l k , ,  

denote the greatest common divisor of nk and n,, i.e., 

(2.16) nk., = gcd (nk, n,). 

C . t i (n) f ; (n  + nk.,p) = 6 ( k  - m ) 6 ( p )  (2.17) 

(see Appendix A). In the z-domain this is equivalent to 

We can then rewrite (2.15) as [24] 

( F k  ( z )  F, ( z ) ) ~ , ~ ~  ”, = 6 ( k  - m) (orthonormality). 

(2.18) 

A simple example of a perfect reconstruction orthonormal 
filter bank with unequal nk is obtained by use of a binary 
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tree structure [5] with paraunitary polyphase matrices at 
each level [lo], [ 121, [24]. This results in filter responses 
that have an octave spacing. For a preview, the reader can 
see Fig. 7. The heights of the filters are unequal because 
the energy of each filter has to be unity (as seen by setting 
k = m a n d p  = 0 in (2.17)). 

Properties of nonuniform orthonormal jilter banks: 
Some crucial features of maximally decimated orthonor- 
mal filter banks are summarized next. These are elabo- 
rated in Appendix B. 

1) For a perfect reconstruction system (i.e., a(n )  = 
x ( n )  in Fig. l(a)), the analysis and synthesis filters are 
related as Fk(z)  = Hk(z). This implies, in particular, that 
IHk(ejO)l = IFk(ejO)( .  As noted above, all the filters have 
unit energy, that is 

2* 1 I H k ( e q 2  d 4 2 a  = 
0 r IFk(e'")1* d 4 2 a  = 1. 

2) Since Fk ( z )  = f i k  ( z ) ,  the analysis filters also satisfy 
orthonormality, i.e., 

(Hk(z)~m(z)) ln, , ,  = 6 ( k  - m).  
3) The filters satisfy a generalized version of the power 

complementary property, viz., 

= 1. (2.19) 
M -  1 

lHk(e'")12 = 1, and 
k = O  nk k = O  12k 

4) Let L denote the least common multiple (lcm) of the 
decimation ratios. Then orthonormality also implies 
(Fk(z)pm(z)) lL = 6 ( k  - m). This means that the L X M 
matrix F(z)  with elements 

[F(Z)],,i = Fi(zw;),  0 5 i 5 M - 1, 

O s n s L - 1  

is paraunitary, that is p ( z ) F ( z )  = L I .  So the orthonor- 
mality of a nonuniform filter bank is essentially the 
paraunitary property in disguise. In fact, it has been ob- 
served [21], [22] that the nonuniform system can be re- 
drawn as a uniform L-band filter bank (with L-fold deci- 
mators); this "bigger system" is paraunitary if and only 
if the smaller nonuniform system is orthonormal (Appen- 
dix B). 

2) Derivation of the Convolution Theorem (Nonuni- 
form Fuse): Assume tpat we have perfect reconstruction, 
i.e., X ( z )  = X ( Z )  and G ( z )  = G ( z ) .  Using the expression 
(2.12a) for X ( z )  and similarly for G ( z ) ,  we have 

M-1 M-l 

(2.20) 

Let L be the least common multiple of the decimation ra- 
tios, i.e., 

(2.21) 

= nkPk, = nk,mPk,m (2.22) 

L = lcm {nk} . 
For 0 s k, m 'E M - 1 we then have 

for some integers Pk Consider now the L-fold 
decimated version of X ( z )  G(z). Using the above decom- 
position of L and the identity (1. l ) ,  we can write 

M -  I M -  I 

(x(Z) G ( Z ) ) i L  = k = O  m=O ( (~k( z )~m(z ) ) ln , ,~xk( zn , 'n , 'm)  

. Gm(Znm/nk.m P k , m  (2.23) 

since nk,m is a common factor of nk and n,. Using the 
orthonormality property (2.18) this simplifies to 

M -  1 

(x(Z> e ( z ) ) i L  = k = O  (xk(z) G k ( ( Z ) ) l p , -  (2.24a) 

Equivalently, in the time domain 
M -  I 

(x(n)  * g*(-n>)lL = kFo (xk(n) * gk*(-n))lpt* (2.24b) 

Again, there is no cross-coupling between subbands. TO 
obtain all the samples of the convolution x (n) * g * ( - n ) ,  
we have to (at least conceptually) repeat the above with 
the shifted versions g ( n  - i ) ,  0 I i 5 L - 1, even though 
a simpler procedure will be described below. The main 
result is summarized as follows. 

Theorem 2.2: Convolution theorem for  orthonormal 
nonuniform jilter banks. Consider the maximally deci- 
mated filter bank of Fig. 1, and ignore the quantizers Qk. 
Let 

L = 1Cm { n i } ,  IZk,m = gcd (nk, n,), and Pk = L/&. 

(2.25) 

Assume that the system has perfect reconstruction (2 (n) 
= x (n) for any x (n) )  and that the synthesis filters are or- 
thonormal, i.e., satisfy (2.17) or equivalently (2.18). 
Then the L-fold decimated version of the convolution x (n) 
* g * ( - n )  can be computed by computing the pk-fold 
decimated versions of the convolutions xk(n) * gk *( -n),  
and adding them. We can obtain all the samples of the 
convolution by repeating this for L successively shifted 
versions of g ( n ) .  0 

Comments 
1) Implementation that obtains all samples. Let s(n) 

denote the (undecimated) output of Hk(z)  in response to 
the unshifted input g (n). Then 

nk-  I 

S(z)  = zmGim)(znk) .  

Thus, we can recover all Gl"(z) from the undecimated 
signal S(Z).  We can obtain an efficient implementation of 
the convolution as follows: from Appendix B-3 we know 
that the given filter bank is equivalent to an L-channel 
uniform filter bank with equal decimation ratio L in all 
channels. For this uniform system, Theorem 2.1 holds. 
We can therefore obtain an implementation of X ( z )  G ( z )  
by using the scheme of Fig. 3 ,  with M replaced by L and 
the filters {Hk(z)} replaced by { H ; ( z ) }  as described in 
Appendix B-3. 

m = O  
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2) Complexity. From a computational complexity 
viewpoint, the comments following (2.10) continue to 
hold. It can be shown that the number of multiplications 
for a direct convolution x (n) * g * (-n) are nearly the same 
as the total number of multiplications required to perform 
all the necessary subband convolutions. (This neglects the 
multiplications required to implement the analysis filters 
H k ( z )  and assumes that the lengths of Hk(z )  are much 
smaller than those of x ( n )  and g ( n ) . )  

3) Parseval’s relation. If we evaluate the 0th sample 
of the convolution (2.24b) we obtain 

M -  1 

C x ( n ) g * ( n )  = C C Xk(n)gz(n).  (2.26) 
n k = O  n 

This can be regarded as the equivalent of Parseval’s re- 
lation [13], in the world of (nonuniform) orthonormal fil- 
ter bank transforms. With x ( n )  = g ( n ) ,  this reduces to 
the energy balance equation 

C 1 g (all2 = C C 1 gk(n)l2 
M -  I 

(Energy conservation). 
n k = O  n 

(2.27) 
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111. CODING GAIN OF ORTHONORMAL CONVOLVERS 
Fig. 1 shows the paraunitary convolver with quantizers 

inserted in the subbands of x ( n ) .  We will first consider 
the uniform case (nk = for all k ) .  The nonuniform case 
will be addressed in Section III-C. Assume that g ( n )  is a 
fixed filter with no quantizers in its subbands. (This as- 
sumption can be removed, but only with considerable loss 
of simplicity of mathematics.) For simplicity of analysis 
we assume that x ( n ) ,  g(n) and the filter coefficients in 
Hk (z) are real so that xk (n) and gk (n) are real. This enables 
us to deal with quantizers that operate on real inputs. 

Let bk denote the number of bits per sample of xk(n), 
permitted by the quantizer Qk. Thus the average bit rate 
is . M - l  

(3.1) 

i.e., on the average, we have used b bits per sample of 
x ( n ) .  

Because of the quantization in the subbands, the output 
of the paraunitary convolver is different from the ideal 
result x ( n )  * g*( -n ) .  To analyze this error, we replace 
the quantizers Qk with the noise sources qk(n) as shown 
in Fig. 4.  Consider the paraunitary convolution formula 
(2.8). In the presence of quantizers, we are actually com- 
puting 

M -  I 

k - 0  (xk(n) f q k ( n ) )  * gk*(-n).  (3.2) 

(According to the realness assumption the conjugate sign 
is redundant, but we show it for consistency with previous 
sections .) The quantization error is therefore 

M -  1 

q(n) = k = O  qk(n) * gk*(-n). (3.3) 

Fig. 4. The quantizer and its noise model. 

The noise model: To perform a statistical analysis, we 
will make the following assumptions: 

1) x ( n )  is a zero-mean wide-sense stationary random 
process so that the subband signals xk(n) are zero-mean 
WSS with some variance, say, ~7:~. We consider g ( n )  to 
be determininistic sequence. 

2) The quantizer noise source qk(n) is zero-mean and 
white, with variance a:k. Also qk(n) is uncorrelated to 
qm(i) ,  k # m, and to the input x ( n )  (hence to the quantizer 
input xk (n)). 

It should be noticed that the above assumptions are rea- 
sonable as long as the bit rates bk are moderate or high 
[26]. In any case, in the absence of such assumptions, it 
is not usually possible to find an expression for error 
variance. (However, in the special case of subband coders 
(where g ( n )  = 6 ( n ) ) ,  these assumptions can be relaxed. 
See Section III-D and Appendix C.) 

A .  Expression for  the Error Variance 
Let ~ 7 : ~  denote the variance of &(n), and uEk the vari- 

ance of the quantizer error q k  (n). In order to equalize the 
overflow probability across all the M subbands, these two 
should be related as 

(3.4) 

(For a detailed explanation of this equation, see, e.g., [ 17, 
ch. 41, or [ 12, appendix, sec. C. 13.) Here c is a constant, 
identical for all subbands (which is a valid assumption if 
all xk(n) have similar type of distribution, e.g., all 
Gaussian). 

Using (3.3) and the noise model assumptions stated 
earlier, the variance of q(n) can be expressed as 

M -  I 

@:(n) = k = O  7 lgk( l ) I2  

M -  1 

k = O  u.rk ( g k ( l ) I 2  (f” (3*4))* (3.5) = c 2-2bk 2 

This is for i = 0 in (2.9). For arbitrary i ,  the filter g ( n )  
is replaced with g (n - i), and the above equation is mod- 
ified to 

M -  1 

U & ; ) = C  k = O  c 2-2bk u X k  7 lgf)(’)129 

O s i r M - 1  (3.6) 

where gf’(n) is the kth subband output in response to g(n 
- i). The dependence on i is removed by averaging over 
all i. The resulting average variance of q(n)  is given by 

M -  I 

(Jq,PU 2 - - 5 M k=O 2-26‘ U x k Q  2 2 k (3.7) 
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where 
M -  I 

(3.8) 
i = o  I 

The inner summation above represents the energy in the 
kth subband in response to the input g ( n  - i ) .  The outer 
summation removes the dependence on i. Thus a: is pro- 
portional to the average energy of g (n)  in the k th sub- 
band. Using the paraunitary property, it can be shown that 
Ek c r : / ~  is the total energy in g ( n )  (see (3.22) later). 

The PU in the subscript in (3.7) is a reminder of 
paraunitary. Equation (3.7) gives the average error vari- 
ance (over a period of length M), and is independent of 
time. 

mean inequality [27] (AM-GM inequality) which states 
this: if Pk, 0 I k 5 M - 1,  is a set of nonnegative num- 
bers, then . M - l  / M - l  \ 1 / M  

(3.13) 
1 

- M & = o  pk (Eo p k )  

with equality if and only if Pk = P for all k. Using this in 
conjunction with (3.1) we can show that 

. M - l  M -  1 

with equality if and only if all terms on the left side above 
are equal. Since the quantizer variances are given by 
(3.4), we see that the above condition for equality implies 

constant 
O;k = c02 2-26' = -. 

a: 
B. Coding Gain of the Paraunitary ConvoZver Xk 

Now consider direct convolution x (n) * g * ( - n). Sup- 
pose x ( n )  is directly quantized to b bits before convolu- 
tion. Denoting e ( n )  as the quantization error, the result of 
quantization is [x (n) + e (n)] * g * ( - n) so that the error 
is e ( n )  * g * ( - n ) .  Under usual noise model assumptions, 
the variance of this error is 

The output noise variance due to the kth quantizer (kth 
term in (3.7)) is therefore independent of k. 

We obtain the formula for the optimal bit allocation by 
setting all the terms on the left side of (3.14) to be equal. 
The result is 

bk = c + log2 (O:ka:)  (3.15) 

for some C. By using (3.1) we can eliminate C and obtain 
ui,direct = 03 lg(rZ)l2 (3.9) 

where 0 2  is the variance of e ( n ) ,  which can be expressed, 
similar to (3.4), as 0 2  = C ( T : ~ - ~ ' ,  where 0: is the variance 
of x ( n ) .  Thus 

0.5 M - I  
bk = b + 0.5 log2 (O:ka:) - - log2 (o:,a?). M i = o  

(3.16) 

(3.11) 

is the coding gain of the paraunitary convolver. The ar- 
gument M is a reminder that there are M subbands in the 
system. Substituting from (3.7) and (3.10), this becomes 

2-"a: C lg(n)I2 
(3.12) 

In this expression, u:k is the variance of the kth subband 
signal derived from the input x ( n ) ,  and a i  2 0 is related 
to the kth subband of the filter g ( n ) ,  And b is the average 
bit rate (3.1). Notice that IJ :~  and a: depend on the anal- 
ysis filter response Hk(ejw) .  

I) Optimum Bit Allocation: Under the average bit-rate 
constraint (3. l ) ,  we can maximize the coding gain by op- 
timally allocating the bits bk among subbands. The idea 
is very similar to the counterpart in subband coding [ 171. 
For this we note that the numerator of (3.12) is indepen- 
dent of the bit allocation. We only have to miminize the 
denominator. For this we invoke the arithmetic-geometric 

This is very similar to the expressions which can be found 
in [ 171, [ 181 for traditional subband coding systems. The 
difference is that the product a:ka: appears in the place 
of o : ~ .  Thus, the energy of the signal as well as the filter 
g(n)  in the kth subband determine the bits bk. (These for- 
mulas are similar to the case of subband coding with fre- 
quency weighting; see [17, p. 5321.) For high bit rate 
coding, the above expression is useful. As in subband 
coding, bk might turn out to be nonintegral, and some- 
times negative if b is not large enough. 

2) Optimum Coding Gain: The optimum convolu- 
tional coding gain is obtained when equality holds in 
(3.14), i .e.,  when all the terms on the left side of (3.14) 
are equal. The optimum value is 

2 
x 

(3.17) 

Notice that the above analysis holds for any filter-bank 
convolver with paraunitary polyphase matrix, regardless 
of the quality of the filter responses. The filter responses 
will in turn determine the values of CJ:~ and a; for fixed 
g (n)  and x (n) .  

Lemma 3.1: GPU,optimal(M) 2 1 regardless of the 
choice of paraunitary filters Hk (z). Moreover, 
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- 
a:k and the quantity ai are independent of k. 

term of a i .  

0 -h--) 
"2-1 - Proof: We will rewrite the optimal coding gain 

(3.17) by expressing a: in terms of aZk, and E, 1 g(n)I2 in E ( z )  
g(') (n) ' 

2 -1  M-1 __* The variance of the output of f?k ( z )  is also the variance q i +  

t M  - 
R (2) -IF 

+ - J Z  

where S,(ej") is the power spectral density of x ( n ) .  The 
paraunitary property E ( z ) ~ ( z )  = z implies 

M- 1 

2 IHk(f?i")12 = M .  
k = O  

By computing &a:k from (3.18) we therefore obtain 
- M - l  
1 
- C a:k = a:. 
M k = O  

(3.19) 

Next consider the signals generated by the filter bank 
in response to g ( n  - i )  (Fig. 5 ) .  Define the vectors 

g(Mn - 1 - i) 

g(Mn - M + 1 - i )  

(3.20) 

for 0 5 i I M - 1 .  The superscript i is a reminder that 
the input is g ( n  - i). Using the paraunitary property, we 
conclude [ 121 

Thus, in general, the gain can exceed unity for two pos- 
sible reasons. First the subband variances could be 
different for different k. And second, the quantity (Yk may 
not be the same in all subbands. 

Notice that the above proof uses the paraunitary prop- 
erty. The property GPU,optimal(M) L 1 cannot be claimed 
for a convolver based on an arbitrary filter bank (i.e., 
without paraunitary property). The appearance of the 
arithmetic-geometric mean ratio in the coding gain has 
been observed in other contexts in traditional subband 
coding applications. It has been formally proved for the 
case of ideal brick-wall filters and for the case of orthog- 
onal transform coding [ 171. Such an expression has also 
been used for other types of (nonideal) filter banks [28]. 
The true justification for such use is based on the paraun- 
itary property, as shown above and in [29]. 

Special Cases: Paraunitary filter banks are special 
cases of perfect reconstruction filter banks [2], [3]. How- 
ever, they cover a wide range of practical filter banks. In 
fact, some of the approximate reconstruction systems 
(viz., the pseudo-QMF banks [30]-[33]) are known to 
satisfy the paraunitary property "approximately" (see 
[34]), even though these approximate systems were de- 
veloped before paraunitary filter banks were reported. 

1) A special case of paraunitary systems, primarily of 
theoretical interest, arises when the filters &(e'") are 
equispaced ideal brick-wall filters as shown in Fig. 6. In 
this case 

if w E kth passband 

otherwise 
n n 

(3.24) 

c [gci'(n)]'g(')(n) = [g(i)(n)]tg(')(n). (3.21) 

The left-hand side is the energy En 1 g(n)I2. Combining 
this with the definition (3.8) of cui, we obtain 

Fk(ej") = Hk(ej") = 

Substituting (3.19) and (3.22) into (3.17), we arrive at 
1 M - l  1 M - l  c a; 

M k = O  

(3.23) 

Using the arithmetic-geometric mean inequality we con- 
clude that GPU,optimal (M) 2 1 ,  with equality if and only 

vvv if a: and a: are independent of k. 

and it can be shown that E(ej")  is paraunitary (see [12, 
sec. 6.2.21). In this case, we have 

n 

= M \ S,(e'") du/27r (3.25) 
kth band 

where S,,(ej") is the power spectrum of x ( n ) .  The system 
(3.24) will be called the ideal subband convolver (SBC). 

2) A second special case of theoretical interest arises 
when f&(z )  = z - ~  for all k. In this case the above results 
still hold (since E ( z )  = Z which is paraunitary); and the 
coding gain can be verified to be unity. 

3) Case of white input. Suppose x ( n )  is zero mean and 
white. Then ofk is identical for all k. This follows because 
paraunitariness implies in particular, that the energy 
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Fig. 6.  Magnitude response of ideal brick-wall analysis filters. Synthesis 
filters for perfect reconstruction have the same magnitude responses. 

iiT 1 f f k  (e’“) 1’  dw / 2 5 ~  is identical for all k (Appendix B). 
In this case, the coding gain can still exceed unity, be- 
cause CY: may not be identical for all k. 

C. Coding Gain f o r  the Nonuniform Orthonormal 
Con volver 

In the nonuniform case, ( 2 . 2 4 )  gives the L-fold deci- 
mated version of the convolution. To obtain all samples 
of the convolution, we repeat this operation with g ( n )  re- 
placed by g ( n  - i), i.e., g k ( n )  replaced by g t ’ ( n )  for 0 
p i  5 L -  1 .  

With quantizers inserted as in Fig. l(a), we can replace 
them with noise sources qr ( n )  as in Fig. 4 .  With x ( n )  and 
g ( n  - i) used as the filter bank inputs, the error in the 
computation of Cr=-/ x k ( n )  * [ g g ’ ( - n ) ] *  is therefore 
Cy=-: q r ( n )  * [ g : ’ ( - n ) ] * .  Proceeding as before, we find 
the variance of this error to be 

M -  I 

Averaging over the L values of i, we obtain the average 
variance of the error q ( n )  in the convolution as . M - l  M -  I 

where 
L -  I 

a:  k ( M / L )  C C Igf’(n)I2.  (3 .28)  

Here we have used ( 3 . 4 ) .  The quantity U : ,  I is the “out- 
put error variance” of the convolver. The subscript I 
stands for “orthonormal” filter banks. 

The bit rate for the kth subband is b k / n k .  Assume that 
the total bit rate is constrained to be b. Then the bit rate 
constraint is 

r = O  n 

M -  1 

(3 .29)  

To obtain the optimal bit allocation, we can minimize 
U: ,  under the above constraint by use of the Lagrange 
multiplier method. That is, form the Lagrangian 4 = 
u : , ~  - X(Cy=-O’ b k / n k  - 6 )  and set &$/abk = 0. This 
results in the set of equations 

(3 .30)  
where D is a constant independent of k.3 Taking logarithm 

bk C - = b .  
k = o  nk 

22h‘ = Du.:,aink, 0 I k I M - 1 

’The fact that this represents a minimum rather than maximum can be 
verified in many ways. For example, one can verify in this case that the 
Hessian of the Lagrangian [ 3 5 ]  is a diagonal matrix with positive elements. 

and using ( 3 . 2 9 ) ,  we can evaluate the constant D to be 

(3 .31)  
22b 

Substituting this into (3 .30)  and taking logarithm, we ob- 
tain the following formula: 

- ’ log2 (ni U:, (Y 

bk = b + 0.5 log, ( n k o ; k a i )  - 0.5 ,x 
r = O  ni 

(3.32) 

for optimal bit allocation. Under this condition, the vari- 
ance of the k th quantizer noise is given by 

M -  1 

(3 .33)  

which is proportional to l / ( a i n k ) .  With optimum bit al- 
location, the output noise variance contributed by the kth 
quantizer (kth term in (3.27)) simplifies to c / ( D M n k ) ,  and 
is proportional to 1 / n k .  The total output noise variance is 

The convolutional coding gain, defined as G, ,optimal ( M )  

and (3 .34)  we obtain 
- - ui,dlrect/oi, I can now be calculated. Thus using (3 .10)  

Notice that these results reduce to those in Section 111-B 
if we set nk = M for all k .  Another special case of interest 
in many applications (speech and image coding) is the fil- 
ter bank with analysis filter responses resembling the one 
in Fig. 7. The responses have an octave spacing and cor- 
respondingly increasing bandwidths (constant Q filter 
bank). (The unequal filter heights are such that all filters 
have the same energy.) Such a system can be generated 
by use of a tree-structured system, where one of the two 
signals from the previous stage is further split into two in 
the next stage [ 5 ] ,  and so forth. The orthonormality prop- 
erty can be satisfied in such a system by use of 2 X 2 
paraunitary polyphase matrices at each level of the tree. 
The above theory can be applied for these systems, with 

no = nl  = 2n2 = 4n3 = * - . 
Lemma 3.2: G, ,optimal ( M )  2 1 regardless of the choice 

of the orthonormal filters Hk (2 ) .  Moreover G, ,optimal (M) 
= 1 if and only if uih and n k a i  are independent of k .  0 
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As before, the right-hand side is B sum of L nonnegative 
terms, and we obtain after some Simplification 

U -  1 M -  I 

C a: 2 II (nka:)'lnk (3.42) 

with equality if and only if nk 01 i has the same value for 

vvv lows immediately. 

k = O  k = O  ... 
0 

of  nonuniform filter banks. 
Fig. 7.  Magnitude responses of  ideal analysis filters, for a well-known class 

bI- 
all k .  using these inequalities in (3.38), the lemma fol- 

Proof4: We will first express the numerator in (3.35) 
in terms of the quantities in the denominator. By usitlg 
(3.18), and the property (2.19), we can deduce that 

M - l  - 2  " Xk 
a t =  c -. (3.36) 

\ ,  .. k = O  nk 

Furthermore, the total energy of g (n )  can be expressed as 
- M - 1  

lg(n)l* = -!- c ai. (3.37) M k = O  

(For this, just apply Parseval's theorem (2.27). With g ( n )  
replaced by g ( n  - i )  the left side of (2.27) is unchanged 
but gk(n)  gets replaced with gf ' (n) .  Using the definition 
(3.28) of ai, we obtain the desired result.) Using the 
above two expressions, we obtain 

D. The Special Case of Traditional Subband Coding 
( g ( n )  = 

The results derived above for the paraunitary con- 
volvers (uniform as well as nonuniform) can be used to 
derive the optimal bit allocation and coding gain for 
orthonormal subband coding systems, i.e., systems of the 
form in Fig. l(a). This is done by setting g (n )  = 6 ( n ) .  
Under this condition, the quantity g f' (n)  is the decimated 
impulse response hk (rink - i ) ,  where hk (n )  is the impulse 
response of the analysis filter Hk(z). Using the fact that 
the analysis filters have unit energy under the orthonor- 
mality constraint, one can verify that a: = M / n k .  Sub- 
stituting this we obtain the reconstruction error variance, 
i.e., variance of x ( n )  - X(n) in Fig. l(a). This can be 
obtained from (3.27) as 

U - l  a 2  

a;,l = c 3. (3.43) 
k = O  nk 

G,, optimal (MI = The optimal bit allocation rule (which minimizes the 
above expression) reduces to 

- 
log2 GJ;) 

bk = b + 0.5 log2 (a?k) - 0.5 ,E ~ (3.44) 
t = O  ni 

and the optimized coding gain becomes 
M -  I 

G l , o p t i m a l ( M )  = U -  I (3.45) 

* ( k=7 01' ) .  (3.38) 

rI (nka:)l/nk 

rI ( U : p  
To prove that this is 2 1, we rewrite k = O  

(3.39) 

where L is the lcm of {nk} and L = Pknk, as before. Since 

really a sum of L nonnegative terms (uio occurs p o  times, 
ai,  occurs p 1  times and so forth). Applying the arithme- 
tic-geometric mean inequality and simplifying, we con- 
clude that 

CkPk = Ck(L/nk) = L ,  the right-hand side in (3.39) iS 

M - l  -2  M - 1  

with equality if and only if all the aik are identical. Next, 
we can write 
M - l  . M - 1  

1 C a; = - C Pk(nk(Y:) (sincepknk = L).  (3.41) 
k = O  L k = O  

4This proof was suggested by T .  Chen, graduat& student, California In- 
stitute of  Technology. 

and can be rewritten, using the orthonormality of the anal- 
ysis bank (as in the proof of Lemma 3.2), as 

M -  I 

k = O  O;k/'k 

G , ,  optimal ( M )  = M -  I (3.46) 
IT (u:k)l'"~ 

k = O  

Clearly, GL,optimal(M) 2 1 with equality if and only if 
a:k is the same for all k (from Lemma 3.2). Since ai = 
M / n k  in this case, we see from (3.33) that the variance 
aik of the kth quantizer noise source is independent of k 
under optimal bit allocation, and is given by 

hi- 1 

i = O  
a;k = c2-2b rI ( C J ~ p ~ .  (3.47) 

However, the contribution to the output noise variance 
a:, , , coming from the kth quantizer (kth term in (3.43), 
is proportional to 1 / n k ,  
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Summarizing, the above expressions are applicable to 
any subband coder (possibly unequal decimation ratios, 
but maximally decimated) with orthonormal filters, under 
the noise model assumptions stated at the beginning of 
Section 111. Also see [29] for more details. The further 
special case where nk = M has been reported in many 
references in the past [ 171, [ 181, [28]. 

Some subtleties about basic assumptions: The above 
references assume ideal nonoverlapping subband filters 
(e.g., [17, p. 490, last paragraph) but, as the above anal- 
ysis shows, that assumption is not necessary; orthonor- 
mality (paraunitariness in the uniform case) is really suf- 
ficient. Another subtle fact is that, when the quantizer 
noise enters an expander ( t n ,  in Fig. l(a)), it does not 
remain wide-sense stationary, but becomes cyclostation- 
ary 1361. This issue is correctly accommodated by the fact 
that we have averaged the output noise variance (over L 
samples) when obtaining (3.27). 

In our derivations of the convolver coding gain, we as- 
sumed that the noise sources qk(n)  are white, and uncor- 
related with each other. Even these assumptions are not 
required in the subband coding case (i.e., the g ( n )  = 6 ( n )  
case). The orthonormality of the filter bank makes these 
assumptions unnecessary, as shown in [29] and [12, ap- 
pendix sec. C.4.21. On the other hand, it can be shown 
(Appendix C )  that if the noise sources q k  (n )  are white and 
uncorrelated, then (3.43)-(3.45) can be obtained simply 
by assuming that the filtersfk(n) have unit energy (that is, 
orthonormality is not necessary). Summarizing, the two 
sets of assumptions i) noise sources qk(n) are white and 
uncorrelated, and ii) filters are orthonormal are comple- 
mentary to each other. Either one is sufficient to validate 
(3.43)-(3.45)! 

IV. GENERAL ORTHOGONAL TRANSFORM CONVOLVER 
The optimal coding gain (3.23) depends on the choice 

of the paraunitary matrix E ( z ) .  A natural problem of in- 
terest here is the choice of optimal paraunitary B(z)  of a 
given degree J (for fixed number of channels M) which 
further maximizes the coding gain. In general this is a 
difficult problem, although some progress can be made in 
the special case where J = 0, i.e., E ( z )  is a constant 
unitary matrix T. This is shown in Fig. 8(a). We will now 
consider the optimization problem for this special case. 
This special case is particularly attractive because the 
analysis filters H k ( z )  have length I M  (which could be 
much smaller than the lengths of x ( n )  and g ( n ) ) .  In this 
case the complexity of implementing the analysis and 
synthesis filters is negligible (compared to the complexity 
of the convolutions xk ( n )  * g: ( - n ) ) ,  and can therefore be 
disregarded. However, significant coding gain can still be 
achieved, as we will demonstrate. 

With T taken to be unitary, i.e.,  T t  T = I ,  the system 
is a paraunitary perfect reconstruction filter bank [2]. This 
is similar to the orthogonal transform coding system [ 171. 
The convolution theorem (Theorem 2.1) clearly continues 
to hold in this case, and so do the coding gain expressions 

g(') (n) ' 
4 

2 -1 M-1 

1' I' 
q.+- 

(n) g (i) (n) 

(b) 

Fig. 8 .  The orthogonal transform convolver. (a) x ( n )  is input to the filter 
bank, and (b) shifted g ( n )  is input to the filter bank. 

of the previous section. A special case of this system is 
the DFT filter bank, where T is the DFT or the IDFT 
matrix. We will now address the problem of finding the 
optimal T that maximizes the coding gain (3.17) under 
optimal bit allocation. It will again be assumed that the 
signals x ( n ) ,  g ( n )  and the matrix Tare  real. We will first 
simplify the expression (3.17) by writing u:k and CY: di- 
rectly in terms of T. 

A .  Expressions for u:k and CY: 

as 
First refer to Fig. 8(a). Define the vectors f ( n )  and x (n )  

i ( n )  = 
x(Mn - 1) 

x(Mn - M + 1) 

(4.1) 

Then x ( n )  = T f ( n ) .  Assuming that x (n )  is WSS, the vec- 
tor processes f (n)  and x (n)  are WSS. Define the autocor- 
relations 

R,.,. = E [ f ( n ) f t ( n ) ]  and R,.. = E[x(n)x t (n) ] .  (4.2) 

Then 

R,.,. = TR,.,.T~. (4.3) 

The quantity u:k is the diagonal element [Rxxlkk so that the 
product of these (which appears in the denominator of 
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(3.17)) is given by how the traditional Karhunen-Loeve transform (KLT) is 
obtained [17]). Under this condition TPTt  is diagonal. 

U;k = n (T4,..Tt)kk. (4.4) However, in our case, two positive definite matrices are 
involved. The problem of finding a single unitary matrix 
T that minimizes the product (4.8) does not appear to have 

If the matrices R,, and kzc are diagonalizable by the 

M -  1 M -  1 

k = O  k = O  

Next refer to Fig. 8(b). Define the vectors g (i) (n) and 
g"'(n) as in (3.20). We then have g(')(n)  = Tg("(n) .  a simple, known so!ution. 

Thus 

CY: = 

- - 

where 

M -  1 

C (g("(n) [ g " ' ( n ) ~ ~ ) ~  

(from the definition (3.8)) 

( T  i = O  n g ( ' ' ( n ) [ g ( ' ) ( n ) ] t T t )  kk 

i = O  n 

M -  1 

(TRgg Tt)kk (4.5) 

M -  1 

Rgg = c c g"'(n)[g(')(n)]t. (4.6) 

Summarizing, the convolutional coding gain (3.17) can 
be expressed as 

i = O  n 

0: c lmI2 
M -  1 

(4.7) 
The subscript TC stands for transform coding. The 
expression (4.7) holds under the optimal bit allocation 
condition (3.16). The unitary matrix T should be chosen 
so as to minimize the product in the denominator. 

B. Properties of the Matrices Rxx and Rgg 
The M X M matrix Rxx is the autocorrelation matrix 

derived from a scalar WSS process x ( n ) ,  and is therefore 
Hermitian, Toeplitz, and positive semidefinite. It is also 
positive definite unless x(n) is harmonic (i.e., the power 
spectpm is made of impulses 6 (U - Uk)) .  It can be shown 
that Rgg also has all these properties, i.e., the Hermitian, 
Toeplitz, and positive definite unless G(ej") is made of 
@pulses. (See Appendix D.) In fact it turns out that 
[Rgg]h = C,g ( n ) g  * (n  + k - m) so that it is a determin- 
istic autocorrelation matrix. 

The problem of finding the optimal transformation T 
therefore reduces to the following: given the M x Her- 
Vitian, Toeplitz and positive definite matrices R,, and 
Rgg, find a unitary matrix T such that 

M -  1 M -  1 

is minimized. 
Given a Hermitian positive definite matrix P ,  consider 

the product @=-: ( T P T t ) k k  where T is constrained to be 
unitary. It is known that this product is minimized if and 
only if the columns of T t  are eigenvectors of P .  (This is 

same unitary matrix T ,  then this T maximizes the coding 
gain. This condition for simultaneous diagonalization is 
equiva!ent to ejther of the followi!g t-wo conlditjons [37] : 

1) 5.. land Rgg commute, i.e., RxxRgg = RggRxx. 
2) RxxRgg is Hermitian. 
For the special case of 2 X 2 real matrices (i.e., M = 

2,  and x ( n ) ,  g ( n ) ,  and T are real), the above conditiolns 
are satisfied for the following reason: The matrices Rxx 
and Rgg are 2 x 2 symmetric Toeplitz, so that they are 
also circulant. But circulant matrices commute [38]. The 
two matrices are simultaneously diagonalizable by the 
unitary matrix 

T = - [  1 ' 1 .  
J3 -1  1 

(4.9) 

With this choice of T the coding gain reduces to 

(4.10) 
1 

GTC(2)  = J(1 - pf ) ( l  - p i )  

wherep, = E [ x ( n ) x * ( n  - l ) ] /uf ,  andp, = E , g ( n ) g * ( n  
- l ) / E n \  g(n)I2.  For example, if px = pK = 0.95 then the 
coding gain is GTC(2) = 10.26. 

C. Bound on the Coding Gain 
For a Hermitian positive definite matrix P ,  we have 

IIi,o [PIii 2 det P with equality if and only if P is di- 
agonal. Using this we see that the gain (4.7) is bounded 
as 

M -  1 

Uf  c lg(n>12 
- 

of Is(n)l2 
- GTC(M) I 

([det I?,..] [det figg])l/M (det [kxxkgg])"M' 
(4.11) 

V.  NUMERICAL EXAMPLES 
In the following examples, we will demonstrate the 

coding gains of the paraunitary convolvers. The signals 
x ( n ) ,  g(n ) ,  and the number of subbands M are chosen as 
follows: 

1) Number of subbands M = 6 in all cases. 
2) Many choices of g ( n )  are used, but all of these are 

such that G(e'") is low pass as demonstrated in Fig. 9.  
All choices have the same band edges. To obtain different 
stopband attenuations, we change the length of g(n ) ,  but 
retain the same bandedges for G(e'"). 

3) The input signal x ( n )  is taken to be an autoregres- 
sive process of order five (i.e., an AR(5) process). The 
autocorrelation coefficients R ( k ) ,  for 0 I k I 5, are ob- 
tained from [17, table 2.21 (low-pass speech source). 



VAIDYANATHAN: ORTHONORMAL AND BIORTHONORMAL FILTER BANKS 2123 

-20 On 
0.0 0 1  0.2 0.3 0.4 0.5 

Normalized frequency 

Fig. 9 .  A typical magnitude response of the filter g ( n )  used in the exper- 
iment. 
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Fig. 10. Demonstration of the coding gains of paraunitary convolvers. 

Where necessary, the power spectrum Sxx(eJ") is com- 
puted as S, (e'") = a/ 1 1 + ~ a,, ePjwnl where a,, are 
the autoregressive coefficients (obtainable by solving the 
optimal fifth-order linear-prediction problem [ 171). 

Fig. 10 shows the coding gain of the paraunitary con- 
volver (with optimal bit allocation) as a function of the 
stopband attenuation of G(e'"), for three cases. The top- 
most curve corresponds to the ideal SBC convolver. In 
other words, the analysis and synthesis filters are as in 
Fig. 6 (ideal brick-wall filters (3.24)). The bottom curve 
is for the DCT convolver, that is an orthogonal transform 
convolver (Fig. 8) in which the matrix T is taken to be 
the 6 X 6 DCT matrix. (Four types of DCT matrix have 
been defined in the literature; we have used the one in [17, 
(12.157)] .)' The middle curve shows the upper bound 
(4.11) for the orthogonal transform convolver. It is inter- 
esting to note that the DCT system is only about 0.5 dB 
worse than the bound. The ideal brick wall SBC con- 
volver is significantly better than the DCT convolver. The 
DCT convolver, however, is very simple to implement 
(much less expensive than good filters approximating the 

5The motivation for the use of the DCT is that in traditional speech cod- 
ing, it is known to be an excellent substitute for the optimal (KLT) trans- 
form. 

ideal SBC filters). In all the above cases the coding gain 
improves with the attenuation of G(e'") because the 
AM/GM ratio in (3.17) improves. 

In the above experiment suppose we take g (n) = 6 ( n ) .  
Then the coding gain of the convolver is equal to the cod- 
ing gain of the traditional subband coding system. For the 
ideal SBC filters, this value is G = 6.72 dB, and for trans- 
form coding with DCT this is 5.3 dB (consistent with ex- 
periments on speed coding; for example, see [17, p. 5421). 
Thus, the large additional gain seen in Fig. 10 is contrib- 
uted by the filter G ( e i w )  participating in the subband con- 
volver. 

We have not shown plots of the coding gain with re- 
spect to the number of channels M ,  as it does not reveal 
more insights than what is already known in subband cod- 
ing practice [ 171, [ 181, [39]. 

VI. BIORTHONORMAL FILTER-BANK CONVOLVERS 
While this paper was being reviewed, it was pointed 

out by S. -M.  Phoong (graduate student, California Insti- 
tute of Technology) that a previous paper by this author 
had an example of a "filter-bank convolution theorem" 
in hidden form (see the figures in [2, p. 841). Further- 
more, while it assumed the filter bank to have perfect re- 
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construction, the example worked just fine even without 
orthonormality ! 

This motivated the author to generalize the results of 
Section I1 for arbitrary filter banks: Consider again Fig. 
l(a), where &(z) and Fk(z )  denote the analysis and syn- 
thesis filters, respectively, of an Mchannel filter bank with 
subband decimation ratios nk. Assume maximal decima- 
tion, i.e., / n k  = l .  It can be shown (Appendix B) that 
the perfect reconstruction property (i.e., a ( n )  = x ( n )  in 
Fig. l(a)) is ensured by the condition 

(Fk ( z )  H,,, (z))lnt.,, = 6 (k - m) (biorthonormality) 

(6.1) 
where nk,m = gcd (nk,  n,). The above property, called 
biorthonormality, reduces to (2.18) in the orthonormal 
case because of the condition Fk ( z )  = f l k  (2). We will now 
prove the following result. 

Theorem 6. I :  Biorthonormal convolution theorem. Let 
the two signals x (n )  and g (n )  be passed through the two 
different analysis filter banks as shown in Fig. 11. As- 
sume that {Hk (2)) and {Fk (z)} are, respectively, the anal- 
ysis and synthesis filters of a maximally decimated bior- 
thonormal filter bank with decimation ratios nk. Then the 
convolution x (n )  * g (n )  is related to the convolutions of 
the subband signals xk (n) and gk (n )  as follows 

U -  1 

(x (n )  * g(n>)lL = c (xk(n) * gk(n))lpa 
k = O  

(6.2) 

where all notations are as in Section 11-B, that is, L = lcm 
0 

Proofi If the subband signals xk(lt) are passed 
through the synthesis bank (as in Fig. l(a) with quantizers 
ignored), then the perfect reconstruction property ensures 

{nk} and L = nkpk. 

U -  1 

x ( z )  = c Xk(Znt)Fk(Z). (6.3) 
k = O  

Now, if we interchange each analysis filter & ( z )  with the 
corresponding synthesis filter, the perfect reconstruction 
property is not affected (since (6.1) remains valid). Thus, 
if the subband signals &(n)  in Fig. l l (b)  are passed 
through a synthesis bank with filters &&), we get back 
g ( n ) .  That is, 

U -  I 

G ( z )  = c G ,  ( z  ”) H ,  (2). (6.4) 
m = O  

Computing X ( z ) G ( z )  from these, and proceeding as in 
Theorem 2.2, we get 

U -  1 

( x ( z )  G(z))lr.  = c (xk(Z)Gk(Z))ipk (6.5) 
k = O  

which proves (6.2). vvv 

Comments 
1) Thus, we can convolve the two signals by decoupled 

convolutions in the subbands, provided we use the anal- 

. . 
~ - F Z i ~ - +  9 M-l(n) 

(b) 
Fig. 11. Pertaining to the convolution theorem for biorthonormal filter 

banks. (a) Decomposition of x ( n ) ,  and (b) decomposition of g ( n ) .  

Fig. 12. Implementation of the biorthonormal convolver. 

ysis bank to decompose one signal x ( n )  and the synthesis 
bank to decompose the other signal. 

2) Obtaining all samples. To obtain all the samples of 
x ( n )  * g ( n ) ,  we have to repeat (6.2) with shifted versions 
of g ( n  - i). In practice, this can be done indirectly. For 
example, consider the uniform case, where the orthonor- 
mal system was implemented as in Fig. 3. The modified 
implementation for the biorthonormal case is shown in 
Fig. 12, where the box labelled “convolver” computes 
&(z)Xk(zu).  For the nonuniform case, we can obtain an 
implementation by first converting the filter bank to a uni- 
form system as described in Appendix B-3. 

3) Note that, unlike in Theorems 2.1 and 2.2, we di- 
rectly obtain the convolution x (n )  * g ( n )  rather than the 
correlation x ( n )  * g * (--n). 
4) For the special case of orthonormal filter banks, 

Fk(z) = Rk(z).  so the two signals x ( n )  and g ( n )  are de- 
composed by { Hk (2)) and { f& (z)} , respectively. This is 
similar to decomposing x ( n )  and g* (-n) with the same 
analysis bank Hk (I), so that Theorem 2.2 is obtained as a 
special case. 

5 )  Coding gain. For the biorthonomal case, we have 
omitted the derivation of bit allocation and coding gain 



VAIDYANATHAN: ORTHONORMAL AND BlORTHONORMAL FILTER BANKS 2125 

formulas. The derivation requires some modifications of 
the previous sections. Appendix C will be of some help 
in the derivation. 

VII. CONCLUDING REMARKS 
In this paper we have introduced convolution theorems 

for filter bank transformers. Both uniform and nonuni- 
form decimation ratios were considered, and orthonormal 
as well as biorthonormal cases were addressed. All the 
theorems are such that the original convolution reduces to 
a sum of shorter, decoupled, convolutions in the sub- 
bands. That is, there is no need to have cross convolution 
between subbands. 

For the orthonormal case, expressions for optimal bit 
allocation and the optimized coding gain were derived. 
The contribution to coding gain comes partly from the 
nonuniformity of the signal spectrum S,, (e’”),  and partly 
from nonuniformity of the filter spectrum 1 G ( e  ’”) 12. With 
g ( n )  taken to be the unit pulse function 6(n) ,  the coding 
gain expressions reduce to those for traditional subband 
and transform coding, many of which are well known. 

The filter-bank convolver has about the same compu- 
tational complexity as a traditional convolver, if the anal- 
ysis bank has small complexity compared to the convo- 
lution itself. Such, indeed, is the situation in the special 
case of the orthogonal transform convolver (Fig. 8) where 
the analysis filter bank has filter lengths 5 M (number of 
bands). In spite of this simplicity, the coding gain obtain- 
able can already be quite significant. Even though there 
is no closed form expression for the optimal orthogonal 
convolver matrix T, we could derive an upper bound for 
this (for fixed M), and the DCT matrix offers a gain very 
close to this bound for the case of speech signals. 

A .  Putting Things in Perspective 
The power of orthogonality in the reduction of double 

summations into single ones has been used over and over 
again, in all fields of science and engineering. And yet, 
only very special cases of convolution theorems have been 
reported in the past. To explain the reason for this, let us 
switch for a moment into heuristic mode, and imagine that 
the samples of two sequences xI (n) and x2 (n - i )  (where 
i is a fixed shift index) are collected into vectors xI and 
x2. Let T b e  a unitary transformation (i.e., T t T  = I), and 
let y ,  = Txl and y2 = Tx2. Then the unitariness implies 
yiy, = x i x I .  (This is essentially Parseval’s relation.) 
Starting from this and varying i ,  one could obtain “con- 
volution type of theorems.” The reason why this is not 
as simple as it looks is due to the sizes of the vectors and 
matrices. If all of these are infinite dimensional then the 
result is of little use. In the finite size case, we have to 
account for the fact that the size grows after convolution 
(or use circular convolutions; see below). So the “border 
effects” are crucial. In fact, well-known convolution 
theorems differ from each other primarily in the way they 
handle this issue. 

The most well-known (perhaps earliest) successful con- 

volution theorems were based on the traditional continu- 
ous and discrete time Fourier transforms. Then came the 
circular convolution methods [ 131, which work for finite 
length sequences (which can be imagined periodic). They 
can be nicely adopted to perform finite linear convolu- 
tions (or infinite length ones, by sectioning). The circular 
convolution theorems, however, hold only for special 
types of orthogonal transforms, with the “primitive root 
property” (see [40, sec. I]). Examples are the DFT and 
the number theoretic transforms [40]. 

On the other hand, for certain types of orthogonal trans- 
forms, such as the discrete cosine and sine transform 
(DCT, DST), the convolution theorems are more compli- 
cated. See [41]-[44], and references at the bottom of [43, 
p. 4591. In these situations, one starts with a finite length 
sequence, and constructs a symmetric or antisymmetric 
sequence (nearly two times longer) to which the transform 
is applied. The details depend on the type of DCT and so 
forth (there are at least four known types). For more ar- 
bitrary orthogonal transforms, it appears that convolution 
theorems have not been reported earlier. 

It seems, therefore, that the really nontrivial issue in 
any kind of convolution theorem has to do with the fact 
that we wish to use finite transforms (computable in finite 
time), and need to take care of border effects one way or 
the other. The details of this depend on the coefficients of 
the transform matrix (DFT, DCT, etc.) and the type of 
convolution (linear, circular, etc.). 

In all these earlier techniques, the attempt is always to 
convert “convolution” in one domain into point by point 
multiplication in the other domain. The result presented 
in this paper, however, differs in this respect. Thus, once 
we pass into the subband domain, we perform “subband 
by subband convolution.” If we view the filter bank as a 
transformer from time to time-frequency , then the trans- 
form domain quantities are xk (m) (Fig. 1 (a)) where (m, k) 
is the time-frequency index. We perform convolution with 
respect to “time” m and add up the results for all “fre- 
quencies” k. In other words, we do not perform point by 
point multiplication in the (m, k) domain. This is why the 
theorems work for any type of inputs (infinite or finite); 
and all convolutions are infinite length, linear convolu- 
tions. As we have shown, these results work for all in- 
vertible filter banks-orthonormal, biorthonormal, non- 
uniform, and so forth. Further details of the filter-bank 
coefficients have essentially no role. 

B. Generalizations, and Open Problems 
The results of this paper naturally lead us to ask if the 

convolution theorems are true for other types of filter 
banks, e.g., those with rational decimation ratios. Using 
a vector space approach, the results have been generalized 
1451, and hold even for multidimensional filter banks with 
arbitrary, nonuniform, rational decimation matrices. 

Some issues still need to be addressed. For example, in 
the 1D orthogonal convolver of Section IV, it is still of 
some theoretical interest to find the best unitary T that 
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minimizes (4.8) (i.e., maximizes the coding gain). A sec- 
ond problem is the derivation of the bit allocation and 
coding gain formulas for the biorthonormal case. A third 
problem is the application of these ideas to subband adap- 
tive filtering [46], [47]. In these techniques one usually 
has to allow "cross terms" between subbands; it might 
be worth trying to reconfigure the adaptive filtering sys- 
tem so that the decoupling of the subbands can somehow 
be exploited. 

A fourth problem is the extension of the results to the 
case of continuous time orthonormal wavelet transforms. 
It is well known [7] that a large class of signal x , ( t )  can 
be expressed in the form 

k ,  m 
x a ( t )  = x D W  (k ,  m>$k.m(t) (7.1) 

filters such that these synthesis filters give perfect recon- 
struction). This means (similar to (2.12b)) 

M -  I 

x ( n )  = C C a k ( l ) h ( n  - nkZ) (B. 1) 
k = O  I 

for any x ( n ) ,  for appropriate choices of ( Y k ( l ) .  Thus, in 
order to have perfect reconstruction, it is necessary for the 
set of basis functions { & r ( n ) }  A { f k ( n  - n k l ) )  to be 
"complete." We shall assume that this is the case. 

We now show that if the analysis filters H,(z) are cho- 
sen to satisfy the following condition: 

C f , ( n  - n, i )hk( -n  + n k l )  
n 

= 6 ( k  - m)6(1 - i )  (biorthonormality) (B.2) 

where $ k , , ( t )  are a class of orthonormal basis functions 
derived from a wavelet function $( t )  by dilations and 
shifts: 

then the filter bank has perfect reconstruction. Note that 
the left side of the above equation, viewed as a function 
of I, is the nk-fold decimated version of the convolution 
f , (n  - n , i )  * hk(n) .  Thus, taking z transforms, (B.2) is 

(7.2) equivalent to 
Here ( m ,  k )  can be regarded as the transform domain 
(time-frequency domain). Notice that, unlike the filter (ZPinmFm(Z)Hk(Z))lnt = Z-'6(k - m). (B.3) 
bank case, we have an infinite number of values of k here. 
It will be interesting to find convolution theorems for this 
kind of orthonormal decompositions. 

APPENDIX A 
EQUIVALENCE OF (2.15) AND (2.17) 

C h ( n ) f : ( n  + nk(l  - i)) = & ( I  - i) 

If k = m we can rewrite (2.15) as 

n 

and (2.17) as 

n 

Evidently these imply each other. 
Next let k # m. First assume that (2.15) holds. Recall 

nk,m = gcd (nk,  n,). Thus, there exist integers a and b 
such that nka - n, b = nk ,m.  Therefore, given any integer 
p there exists integers 1 and i such that nk 1 - n, i = nk, , p .  
Thus the left-hand side in (2.17) can always be rewritten 
to resemble the left-hand side of (2.15). Since k # m,  
this left-hand side is indeed zero, so that the left-hand side 
of (2.17) is zero as well. Conversely, let (2.17) be true. 
Given a pair of integers I, i we can always write nkI - 
n,i = nk,,p for some integerp. So the left side of (2.15) 
can be rewritten to resemble the left side of (2.17). Since 
k # m, (2.17) says that this is zero, so that the same 
follows for (2.15). 

APPENDIX B 
NONUNIFORM FILTER BANKS 

I .  Biorthonormality and Per$ect Reconstruction 
Consider the nonuniform maximally decimated system 

of Fig. l(a). Suppose the synthesis filters have the poten- 
tiality for perfect reconstruction (i.e., there exist analysis 

Suppose we choose the filter bank input to be x (n )  = f, (n 
- n, i ) ,  that is X ( z )  = z-'""'F, ( z )  for some m, and some 
i .  Then (B.3) implies that the decimated output of the 
analysis filter Hk (z) is zero, fork # m. And the decimated 
output of Hm(z )  has the z-transform z-'. If this set of sig- 
nals is passed through the synthesis bank, the !econ- 
structed output has z-transform z-""F, ( z ) .  That is X ( z )  = 
z-'~'"F,(z) = X ( z )  indeed. Since the filter bank is linear 
(though time varying), we conclude that any input x ( n )  of 
the form (B.l) is perfectly recovered, i.e., f ( n )  = x ( n ) .  

= gcd (nk,  n,). Then we 
can rewrite the condition (B.2) to obtain 

As in Section 11-B, let 

(F, (z)Hk ( z ) ) ~ ~ ~ , ,  = 6 (k  - m) (biorthonormality). 

(B.4) 

The proof is similar to the one in Appendix A. 
Summarizing, the biorthonormality condition (B .4) en- 

sures perfect reconstruction for any x ( n ) .  It is also clear 
from (B.4) that if we interchange each &(z)  with the cor- 
responding Fk ( z ) ,  the perfect reconstruction property is 
preserved. 

2. Orthonormality 
Recall the definition of orthonormality from Section 

11-B. If the synthesis filters are orthonormal (i.e., 
(F , (Z)Fk(Z)) l , , k , ,  = 6 (k  - m ) )  then we see from (B.4) that 
the choice of analysis filters H,(z) = Fm(z) gives perfect 
reconstruction. We will now prove the generalized poyer 
complementary property (2.19). For this, note that X ( z )  
in Fig. 1 (a) (ignoring quantizers) can always be expressed 
as 

M -  1 m - 1  

nk m = O  
X(Z) = C Fk(z) - C Hk(ZWl)X(ZWTt) (B-5) 

k = O  
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where W,,, = . A perfect reconstruction system is, 
in particular alias-free (i.e.,  terms with m # 0 vanish) so 
that this gives 

Perfect reconstruction implies that this is unity. Substi- 
tuting Hk ( z )  = Fk ( z ) ,  we immediately obtain (2.19). 

3. Equivalent Uniform Filter Bank 

Let L = Icm {nk}, and L = nkpk as usual. It can be 
shown [21, Fig. 31 that the M-channel nonuniform filter 
bank of Fig. l(a) can be redrawn as an L channel maxi- 
mally decimated uniform system (i.e., with equal deci- 
mation ratios L in all channels). The M sets of analysis 
and synthesis filters { H k ( z ) ,  F k ( z ) } ,  of the nonuniform 
system are replaced with the L sets of filters { H ; ( z ) ,  
F ;  ( z ) }  in the uniform system. Since L > M unless all nk 
are identical, we say that { H ; ( z ) ,  F ; ( z ) }  is the "bigger 
system. " This equivalence can sometimes be exploited to 
derive useful conclusions [2 11, [22]. 

To obtain the equivalent uniform system, consider the 
kth channel shown separately in Fig. 13(a). It can be re- 
drawn as shown in Fig. 13(b). This follows from the fact 
that a pk-channel uniform filter bank with analysis filters 
z-' and synthesis filters z ' ,  0 I i I Pk - 1, has perfect 
reconstruction. Fig. 13(b) can further be redrawn as in (c) 
by the use of noble identities [2], and by using L = nkpk. 
Thus, the kth channel can be expanded into Pk channels. 
Altogether we therefore have ckpk = L channels with de- 
cimation ratio L in each channel. An integer k in 0 I k 
I M - 1 and an integer i in 0 I i I p k  - 1 uniquely 
identify the analysis and synthesis filters of the uniform 
system as zY"',Hk ( z )  and zlnhFk ( z ) .  The nonuniform system 
is denoted by {Hk(z), F k ( z ) ,  nk} where 0 I k I M - 1 ,  
and the uniform system by { H i  ( z ) ,  F ;  ( z )  , L }  , where 0 I 
k I L - 1. The equivalence of the two systems means 
that, for a given input x(n), the output i ( n )  is the same 
for the two filter banks. 

Fact B.1: Consider the following properties of the 
nonuniform system { Hk ( z ) ,  Fk ( z ) ,  nk} . 

1) i ( n )  = x(n) (perfect reconstruction). 
2) F k ( z )  = gk(z), i .e.,fk(n) = h,*(-n) (time reversal 

3) (Fk (z)!,, (z)),,,,, = 6 (k - m) (biorthonormality). 
4) (Fk(z)F, (z))~,,,,,,, = 6 (k - m) (orthonormality). 
If any one of these properties is true, then the corre- 

sponding property holds for the uniform system { H ; ( z ) ,  
0 

Proof: Proofs are required only for properties 3 and 

property 1 ' 

F ;  ( z ) ,  L } .  The converse is also true. 

{L, ; (n)}  = {fm(n - % i ) I >  

4. For this consider the set of sequences 

0 5 m 5 M -  1, -00 I i I 00 

(B. 7) 

Fk(z(z) 
P k  

2" k 

z - " k m A z n k  

(C) 

Fig. 1 3 .  Redrawing a nonuniform filter bank as a uniform filter bank. (a) 
The kth channel, (b) the redrawn version, and (c) expanded version of the 
k th channel. 

p, branches f l  

appearing in (B.2). For the uniform L-channel system, the 
corresponding set of sequences are 

{fm(n + jn,n - Li)}, 0 I j I pm - 1, 

-m I i 5 00. 0 I m I M - 1, 

Since L = nmpm, this set is the same as 
(B.8) 

{fm(n + nm(j - ipm))}, 0 I j I P m  - 1, 

0 I m I M - 1, -m I i I 03. (B.9) 
Clearly the two sets of sequences (B.7) and (B.9) are 
identical. A similar statement follows for the analysis fil- 
ters as well. Consequently, the uniform system ( H k ( z ) ,  
Fk ( z ) ,  nk} is biorthonormal if and only if the uniform sys- 
tem {HL ( z ) ,  F ;  ( z ) ,  L} is biorthonormal. Identical reason- 

vvv 
Fact B. 2: For a nonuniform maximally decimated sys- 

tem with analysis filters H k ( z ) ,  synthesis filters Fk(z ) ,  and 
decimation ratios nk, consider the following three prop- 
erties: 

ing can be given for orthonormality. 

1) i ( n )  = x(n) (perfect reconstruction). 
2) Fk(z )  = H k ( z ) ,  i .e.,fk(n) = h t ( - n )  (time reversal 

property). 
3) (Fk (z)pm ( ~ ) ) i , , ~ , ~ ,  = 6 (k - m) (orthonomality). 
If any two of these is true, then the remaining property 

is also true. 0 
Proof: For the uniform case (i.e., nk = M for all k )  

this has been proved in [12] (Theorem 6.2.1). For the 
nonuniform case this follows by defining the uniform L 

0 

APPENDIX C 
ON THE WHITE, UNCORRELATED ASSUMPTION 

We will show that if the quantizer noise source @(n) 
due to kth subband quantizer (Fig. 4) is white, and if the 
noise sources are uncorrelated for different values of k ,  

channel system as above, and invoking Fact B. 1. 
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- AJz) - 
(C) 

Fig. 14. (a) The kth branch of the synthesis bank with a noise source at 
its input, (b) insertion of a delay and a decimator, and (c) rearrangement. 

then the expression (3.43) for output noise variance holds, 
as long as Fk(z) have unit energy. Fig. 14(a) shows the 
kth synthesis filter branch, with qk(n) as its input. 

In the presence of the expanders (denoted tnk in the 
figures) the total output noise q(n)  is not wide-sense sta- 
tionary (WSS), unless the filters Fk(z) are ideal [36]. In 
order to handle this situation, imagine that the function 
z m  and a decimator L are inserted at the output as shown 
in Fig. 14(b). Using L = nkpk we can redraw this as in 
Fig. 14(c). Then the system indicated Ak(Z) in the figure 
is a linear time invariant system with impulse response 
fk(nkn + m ) ,  i.e., it is a polyphase component of Fk(z). 
(See "polyphase identity" on [12, p. 1331.) Since the 
decimators (1Pk) retain the WSS property of random pro- 
cesses, it is clear that the decimated output noise q(Ln + 
m) is WSS. Using standard techniques, and the assump- 
tions that the sources qk(n) are jointly WSS, zero-mean 
white, and uncorrelated for different values of k ,  the vari- 
ance of q(Ln + m) is 

M -  I 

where u t  is the variance of qk(n). We have to average 
this for 0 I m I L - 1 ,  to obtain a constant answer. 
Thus, 

1 M - l  L - l  
U :  = Average output noise variance = - c u t  L k = O  m = O  

Ifk(nkn + m)I2- (C.2) 

Since L = Pknk, this simplifies to 

This indeed reduces to 
M - l  2 

+ c 2 (C.4) 
k = O  nk 

when each filter fk (n )  has unit energy. 
Summarizing, the expressions (3.43)-(3.45) for the 

subband coder are true under the assumptions that i) the 
quantizer noise sources qk(n) are white, and uncorrelated 
for different k ,  and ii) the synthesis filters Fk ( z )  have unit 
energy. 

APPENDIX D 
NONSINGULARITY OF R,., AND Rgg 

Since R.,. is the autocorrelation matrix obtained from a 
scalar WSS process x ( n ) ,  it is positive semidefinite. It is 
therefore positive definite if and only if it is nonsingular. 
If t!is matrix is singular, then there exists U # 0 such that 
U+R,,U = 0 ,  i .e.,  E [ ~ u + P ( ~ ) ~ ~ I  = 0, i .e.,  v + ~ ( n )  = 0. In 
other words, there exists an FIR filter V ( z )  A u t  + u;"z-' 
+ * - + z-@'- I )  such that the output in response 
to the WSS process x ( n )  is zero. Thus if Sxx(e'") denotes 
the power spectrum of x(n), then the power spectrum of 
the output is S,,(e'")IV(eJ")(2 = 0. Since the FIR filter 
V ( z )  can have at most M - 1 zeros on the unit circle, this 
means that the power spectrum has the form Sxx(e'") = 
c k =  I Cks(w - wk), i.e., x i n )  i s  a harmonic process. Thus, 
unless x ( n )  is harmonic, R,,. is positive definite. This is a 
well-known fact [48], and is reviewed here only for com- 
pleteness. 

Next consider Rgg defined in (4.6). Using the definition 
of g"'(n)  in (3.20) we see that 

M -  1 

M -  1 

[&I,, = c c g(Mn - i - p )g* (Mn - i - q)] 
r = O  n 

where R,, ( k )  is the (eterministic autocorrelation of the 
sequence g (n) .  Thus Rgg is a determiqistic autocorrelation 
matrix and has all the properties of R,.. . It can be written 
as 

Rgg = c 
n 

.g(n - M + 1) 

* [g*(n)  g*(n - 1) * * g*(n - M + l)]. (D.2) 

If this is singular, then there exists a vector c # 0 such 
that ctRg& = 0. Thus, for each n in (D.2), we must have 

where at least one ci is nonzero. Proceeding as in the pre- 
vious paragraph, we see that this happens only if G(e'") 
is either zero or made of at most M - 1 impulses. 

c tg  (n) + cTg(n - 1) + - * c i - , g ( n  - M + 1) = 0, 
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