
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 6, JUNE 1993 2265 

1053-587X/93$03.00 0 1993 IEEE 

Optimum Weighted Smoothing in Finite Data 

K. C .  Indukumar and V .  U. Reddy 

Abstract-In this correspondence, we consider a generalized smooth- 
ing problem and develop a procedure to obtain a set of optimum weights 
which gives minimum mean-squared error (MSE) in the estimates of 
directions of arrival of signals in finite data when the signals are ar- 
bitrarily correlated. Using the optimum weights, we study the opti- 
mum tradeoff between the number of subarrays and the subarray size 
for a fixed total size of the array. The computation of optimum weights, 
however, requires full knowledge of the scenario. Since exact DOA’s, 
powers, and correlations of signals are unknown a priori, we give a 
method to estimate these weights from the observed finite data. We also 
show through empirical studies that the optimum weights can be ap- 
proximated with Taylor weights which serve as near-optimum weights. 
Simulation results are included to support the theoretical assertions. 

I .  INTRODUCTION 

The performance of eigenstructure based direction-of-arrival 
(DOA) estimation algorithms degrades in finite data in the presence 
of both correlated and uncorrelated sources. In the case of infinite 
data with fully correlated sources, the degradation is due to the 
collapse of the signal subspace, while in the case of finite data 
only, it is due to subspace perturbation. In the presence of corre- 
lated sources in finite data, on the other hand, the effective corre- 
lation between the signals affects the sensitivity between the sub- 
spaces; as the correlation between the signals increases, the 
performance degradation increases. Spatial smoothing is usually 
suggested to recover the collapsed signal subspace [l] ,  and to re- 
duce perturbations and sensitivity in the subspaces [ 2 ] .  The per- 
formance of several DOA estimation algorithms, with and without 
spatial smoothing, has been studied in [3], [8], 161, [4]. In [4], [8], 
the authors have analyzed the finite data performance of MUSIC 
and minimum norm methods with spatial smoothing and derived 
expressions for the mean-squared error (MSE) in the DOA esti- 
mates. 

In this correspondence, we consider a generalized smoothing 
(weighting) problem and obtain optimum weights which give min- 
imum MSE in the DOA estimates. The optimization problem is 
formulated as a constrained minimization of the MSE function. The 
computation of optimum weights requires full knowledge of the 
scenario. Here, we suggest methods to estimate these weights and 
show through empirical results that precise knowledge of the sce- 
nario is not crucial. Though we consider root-MUSIC in our study, 
the analysis extends in a straightforward manner to other methods 
such as root-minimum norm. 

11. BACKGROUND 

Consider a linear equispaced array formed by K overlapping 
subarrays with M identical and omnidirectional sensors each. As- 
sume that signals from D far-field narrow-band emitters, denoted by 
s l ( t ) ,  x2(f), . . . , s D ( f ) ,  are impinging on the array from directions- 
of-arrival (DOA’s),  e, ,  &, . . . , O D ,  measured with respect to the 
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normal to the array. The signals are assumed to be zero-mean, sta- 
tionary, and complex Gaussian random processes and the additive 
noise is assumed to be be a zero-mean, stationary and white com- 
plex Gaussian random process that is uncorrelated from sensor to 
sensor and is independent of the signals. 

The data covariance matrix obtained from the data collected at 
the output of Zth subarray is given by [l]  

where A denotes the direction matrix with its columns given by 
a(0,) = [ l ,  exp ( j (27rd lX)  sin Of), . . . , exp ( j ( 2 7 r d / h ) ( M  - 1) 
sin e,)]’, i = 1 ,  2 ,  . . . , D. @ is a diagonal matrix with exp 
( j  (2 .xd lX)  sin el), . . * , exp ( j  (27rdlh) sin 0,) as its diagonal 
elements. S is the source covariance matrix, uf is the sensor noise 
power, d is the interelement spacing, and h is the wavelength of 
the incidence wave. 

In spatial smoothing (uniform weighting), the smoothed covari- 
ance matrix is computed as R = ( 1  / K )  Cf= I RI. The eigendecom- 
position of the matrix R is given by 

where the span of E,, formed by the set of orthonormal eigenvec- 
tors corresponding to the first D ordered eigenvalues, is referred to 
as the signal subspace and the span of EN, formed by the ortho- 
normal eigenvectors corresponding to the last ( M  - D )  eigenval- 
ues, as the noise subspace. A, is a diagonal matrix with D signal 
eigenvalues as the diagonal elements. Since the signal subspace is 
also spanned by the direction vectors it follows that 

where (.)” denotes Hermitian operation 

Root-MUSIC 191 
For a uniform linear array, a(0,) can be denoted by [ l ,  z,  . . . , 

zM]‘, where z = exp [ j  ( 2 a d l h )  sin e,]. Now, solving (3) for e,, 
i =  1, . . .  , D, is equivalent to determining D roots of the poly- 
nomial 

M -  I 

b,z-‘ F ( z )  = / =  -(M- I) 

where the coefficient bl is the sum of entries along the Zth diagonal 
of the matrix ENEi. In the finite data case, we choose D roots that 
lie closest to the unit circle and compute the DOA’s from the roots. 

Recently, an expression for the MSE in the estimated DOA’s in 
finite data with spatial smoothing is developed in [4]. The expres- 
sion is given by 

where the terms are defined as follows: 

pN = E,E; 
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( 5 )  

Here, N denotes the number of snapshots and h, denotes the data 
vector at the output of pth subarray. 

A. Weighted Smoothing 

In weighted smoothing, the smoothed covariance matrix is ob- 
tained by the weighted sum of all the subarray covariance ma- 
trices R = E;", l ulR',  where ul, l = l ,  2 ,  . . . , K ,  are the real and 
positive weights such that E;"= I uI = C,  a constant which is posi- 
tive. By setting the constant to unity one ensures that the source 
powers which appear as diagonal terms in S are unaltered [5], while 
off-diagonal terms which represent correlations between the signals 
are affected. The reason for keeping the weights real and positive 
is to guarantee the weighted sum of all positive definite matrices 
to be a positive definite matrix. 

The expression in [4] was developed for the uniform weighting 
case. Recasting this for the general weighting case, we have 

where 
. K  K 

and 

where ( - ) #  denotes pseudoinverse operation. The weights are cho- 
sen so as to minimize the MSE function while constraining them 
to be real and positive with their sum equal to unity. 

B. Optimum Weights 

We now wish to find the optimum weights U/, I = 1, 2, * * . , 
K ,  which yield minimum MSE. In general, the problem can be 
stated as 

min U TQu 
U 

subject to U Te = 1, U is real and positive (1 1) 

where e = 11, 1, . . . , 1IT. The pqth element of the matrix Q is 
given by 

[QI,, = Re { (a f lRpqa , ) (P:"RqpP: )  + (arR , ,P : ) (a :R ,P: ) l .  

( 1 2 )  
A constant factor, 

A 
(27rd cos B , v ~ ( u , ) P N v I ( u I ) ) I  ?k' 

is not shown in (12) since it will not affect the minimization. 

The constrained problem can be recast into an unconstrained 
problem with the variable substitution 

U, = y,y:/( I =  2 I yly?), 1 5 i 5 K .  (13) 

The unconstrained minimization problem is now given by 

min [ulu:, * . * yKyilQ'[yl~?,  . . . Y K Y i l T  (14) 
Y 

where (.)* and ( .)Tdenote conjugate and transpose operations, re- 
spectively, and the pqth element of Q' is given by 

lQ'lpq = Re { (arR , ,a , ) ( y rR ,y , )  + ( a ~ R P q ~ J ( a ~ R W y , ) )  (15) 

y, = ylyTAcP('- "ScP-"- ' )AH )#  u(w,). (16) 

Iterative methods, like the steepest descent method, Newton- 
Raphson method, and conjugate gradient method, can be used to 
solve such problems. We have used the steepest descent method to 
find the optimum weights. The update equation at nth iteration is 
given by 

(17) 

where g is the gradient vector (of the objective function) with nh 
element as 

with y, as 

Y(n) = Y(n - 1) - PgIy=y(n-l) 

[g], = [O . . . Y, . . . OIQ' 

+ [ Y l Y ?  

+ [ Y l Y T  

. . .  

. . .  

- -  
l o  

and 1.1 is a constant representing the step size. The pqth element of 
(aQ/ay,*) is given by 
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with 

A'v (mi) 

(20) 

Once we have the optimum value of y,  the corresponding optimum 
value of U can be obtained from ( 13). 

( y, *cr - I 'Sb-0 - 1) ) ( ; y/y;*+ Us*-"- 1)  

I =  1 

111. NUMERICAL A N D  SIMULATION RESULTS 

In this section, we first give some examples to show that the 
optimum weights yield significantly lower MSE compared to spa- 
tial smoothing and then study the tradeoff between the number of 
subarrays and the subarray size. 

In the simulations, 200 independent trials were used to calculate 
the MSE. The DOA's of the sources were measured with respect 
to normal to the array, noise power was fixed at 0 dB, and the 
number of snapshots were fixed at 100. Throughout this section, 
we used - 10 log (MSE) as the MSE measure, and therefore, the 
higher the value of - 10 log (MSE), the lower is the MSE. 

A .  Optimum Weighting 

We considered a 3-source scenario with DOA's O", lo", and 
20°, and source powers of 20 dB each. We studied three different 
cases with correlation (assuming same value between any two 
sources) 0.95, 0.5, and 0. We assumed 7 subarrays with subarray 
size as 5 .  Note that for this subarray size, the DOA separation 
corresponds to approximately one third of the array beamwidth. 
The optimum weights were obtained by minimizing the MSE func- 
tion (formed with true powers, DOA's,  and correlations) using the 
steepest descent method with uniform weights as the initial guess, 
and the theoretical minimum value of the  MSE was determined by 
evaluating the MSE expression (given in (6)) with the optimum U. 
We may point out here that (6) represents the MSE function for a 
particular DOA, and hence, the minimization leads to a set of 
weights that minimize the MSE for the corresponding DOA. How- 
ever, it has been observed through extensive numerical results that 
the optimum weights are nearly independent of the choice of DOA. 

For the scenarios described above, MSE expression for 10" was 
used for determining the optimum weights. Tabel I gives these 
weights and the values of MSE evaluated from the theoretical 
expression and the simulations for the root-MUSIC. In the simu- 
lations, we used the weights given in the table. The results show 
that the simulation results are close to those of theoretical, and this 
validates the use of the theoretical MSE expression. The optimum 
weighting yields lower MSE compared to the uniform weighting in 
all the cases, i.e., with 0.95, 0.5, and 0 correlation. 

B. Tradeoff Between the Subarray Size and the Number of 
Subarrays 

In [4], based on the numerical results, it was concluded that 
the root-MUSIC performs best with full aperture, implying that 
smoothing at the expense of reduced aperture is not beneficial when 
the sources are not fully correlated. This, however, is not true as 
shown by the following example. We considered a 3-source case 
with DOA's and powers as in the above example and with corre- 
lation set to 0.95. The MSE for different subarray sizes and number 
of subarrays, keeping the total number of sensors constant at 24, 

is calculated for both the optimum and the uniform weighting and 
plotted the results in Fig. 1. In the figure, we have also included 
the CramCr-Rao bound (CRB) [6], computed for a 24-element uni- 
form linear array. We note the following from the figure: 

1) The MSE without smoothing (which corresponds to K = 1) 
is about 11 dB higher than the minimum value that we can obtain 
with smoothing (uniform and optimum). This establishes the fact 
that smoothing may be required to improve the performance of the 
root-MUSIC. 

2) The MSE with optimum weighting is close to the CRB for a 
wider range of number of subarrays compared to the uniform 
weighting. This shows that we have a wider choice of subarray 
combinations with optimum weighting. 

3) The improvement in the MSE with optimum weighting is 
larger when the tradeoff is in favor of a greater number of sub- 
arrays, as long as the subarray aperture is not too small. In a prac- 
tical scenario, the number of correlated sources is not known a 
priori, and therefore, the tradeoff in favor of a greater number of 
subarrays may be desirable. 

In the example considered, the CRB is close to the MSE obtained 
with spatial smoothing when the number of subarrays is in the range 
8 to 14, and hence, the improvement obtained with the optimum 
weighting is marginal in this range. However, in the scenarios 
where the MSE with spatial smoothing is farther away from the 
CRB, the improvement will be substantial with the optimum 
weighting. 

IV. METHODS TO ESTIMATE OPTIMUM WEIGHTS 

In this section, we show how optimum weights can be estimated 
when exact knowledge of DOA's,  correlations, and powers of 
sources is not available. This is motivated from the observation that 
the MSE function is not sensitive to the weights around the opti- 
mum point. 

We suggest two methods to determine the near-optimum weights. 
In the first method, the estimates of scenario parameters are ob- 
tained from the finite data which are then used in the numerical 
minimization. In the secoed method, the optimum weights are ap- 
proximated with suitable Taylor weights. 

A.  Method1 

1) Obtain the estimates of DOA's,  e , ,  i = 1, . . * , D ,  using 
uniform weighting. 

2) Compute the estimates of noise power and signal covariance 
matrix from 6: = average of (M-D) smallest eigenvalues of the 
covariance matrix R ,  formed from the total array of ( K  + M - 1) 
elements, and 

s = ( A " ~ ) - ' A H ( f f  - p z ) A ( A H A ) - I ,  

where A(K+ M -  ,) is the direction matrix formed from the esti- 
mated DOA's.  

3) Replace the true values with the estimated values and obtain 
weights by minimizing the MSE function numerically. 

For the scenario considered earlier with 0.5 correlation, the es- 
timates of the optimum weights (computed as above) for 5 ,  7 and 
9 subarrays, with subarray size fixed at 5, are shown in Table 11. 
The table gives true optimum weights and its estimates, and theo- 
retical MSE's for these two sets of weights. We should point out 
here that the estimates of DOA's,  noise powers, and signal co- 
variance matrix (steps l and 2) were obtained from one data real- 
ization. Note the closeness between the estimated and true opti- 
mum weights and the corresponding MSE's. 
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TABLE I 

dB, NOISE POWER = 0 dB, SUBARRAYS = 7, SUBARRAY SIZE = 5, SNAPSHOTS = 100, MONTE CARLO RUNS = 200) 
MSE WITH OPTIMUM AND UNIFORM WEIGHTING FOR ROOT-MUSIC (SOURCE DOA'S o", lo", AND 20", SOURCE POWERS = 20 

Uniform Smoothing Optimum Smoothing 
Correlation 

Between Any Theoretical Simulated Optimum Theoretical Simulated 
Two Sources - 10 log (MSE) - 10 log (MSE) Weights - 10 log (MSE) - 10 log (MSE) 

0.0649 
0.0965 ::zizi 13.0566 dB 

0.2220 (CRB = 22.9730 dB) 13'3761 dB 0.95 11.4156dB 11.5433 dB 

0.1051 
0.0700 
0.0600 
0.1173 ::;;:; 23.1846 dB 

0.2094 (CRB = 30.9540 dB) 22'4108 dB 0.5 18.5328 dB 17.4883 dB 

0.1295 
0.0686 
0.0708 
0.1264 

0 20.0867 dB 20.4337 dB 
23.7179 dB 

(CRB = 32.4347 dB) 24'2277 dB 
0.1948 
0.1264 
0.0708 

For the 3-source uncorrelated scenario used in Section 111-A, we 
computed the optimum weights and determined the sidelobe level 
such that the corresponding Taylor weights were closest to the op- 
timum weights in the mean-square sense. This sidelobe level was 
found to be -38 dB. Table 111 gives the theoretical values of MSE 
with uniform weights, optimum weights, and -38 dB Taylor 
weights for various combinations of DOA's, source powers (as- 
sumed to be equal), and correlations. Note that the Taylor weights 
were fixed in all the cases while the optimum weights were deter- 
mined for each scenario. 

The results show that the MSE performance with Taylor weights 
is very close to that with optimum weights in all the scenarios, 
implying that the Taylor weights determined from the approximate 
knowledge of the scenario serve as near-optimum weights for a 
range of scenarios that are moderately different from the approxi- 
mate. 

CRBOUND 

* CORRESPONDS TO NO SMOOTHING 

40 42 t 
36 Ilj 
34 t ' 1 '  
32; i i i c io i2 14 16 is io 

number of subarrays 

Fig. 1. Optimum tradeoff between subarray size and number of subarrays 
for root-MUSIC (source DOA's: 0", IO", and 20", source powers = 20 
dB, noise power = 0 dB, correlation between any two sources = 0.95, 
total array size = 24, number of snapshots = 100). 

V. CONCLUSIONS 

We have considered a generalized weighting in the subarray co- 
variance averaging problem, and presented a method to obtain op- 
timum weights which give minimum MSE in the DOA estimates. 
Since the computation of optimum weights requires apriori knowl- 
edge of scenario parameters, we suggested methods to determine 
near-optimum weights. Using numerical results we have shown that 
the near-optimum weights perform as good as the optimum weights, 
and they can be determined from the approximate knowledge of the 
scenario. 

B. Method II  

In this section we show how Taylor weights can be used as near- 
optimum weights. The computation of Taylor weights [7] requires 
three parameters: number of weights, number of sidelobes having 
equal amplitude, and the desired sidelobe level. We have chosen 
the number of weights as the number of subarrays and the number 
of sidelobes having equal amplitude as 2 , '  and determined an ap- 
propriate sidelobe level for which the Taylor weights approximate 
the optimum weights in the mean-square sense. 
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TABLE I1 

lo”, AND2O0, SOURCE POWERS = 20 dB, NOISEPOWER = 0 dB, CORRELATIONBETWEEN A N Y  Two SOURCES = 0.5, SUBARRAY 
MSE VALUES WITH THE TRUE OPTIMUM WEIGHTS A N D  THEIR ESTIMATES FOR THE CASE OF ROOT-MUSIC (SOURCE DOA’S: 0”. 

SIZE = 5 ,  SNAPSHOTS = 100) 

Theoretical Number of 
Subarrays Weights - 10 log (MSE) 

5 True 0.1221.0.213n, 0.2994.0.2267, o.1300 18.7981 dB 
18.3815 dB 

23.1846 dB 7 True 0.0600, 0.1173, 0.1991, 0.2161, 0.2094, 0.1295, 0.0686 
22.9569 dB Estimates 0.0640,0.1206,0.2145,0.2196,0.2147.0.1118,0.0549 

9 True 0.0391. 0.0776, 0.1350, 0.1632. 0.1842, 0.1599, 0.1300, 

0.0414, 0,0800, 0.1366, 0.1622,0.1805, 0.1489, 0.1333, 

Estimates 0.1224, 0.2356, 0.3262, 0.2054, 0.1103 

25.8056 dB 

25.7258 dB 

Estimates 0.0739, 0.0371 

0.0756, 0.0413 

TABLE 111 
THEORETICAL MSE WITH UNIFORM, TAYLOR (-38 dB), AND OPTIMUM WEIGHTS FOR ROOT-MUSIC (NOISE POWER = 0 dB, 

SUBARRAYS = 7, SUBARRAY SIZE = 5, SNAPSHOTS = 100) 

Optimum 
Between Any Source Weighting Weighting Weighting 
Correlation Uniform Taylor 

DOA’s Two Sources Powers -10 log (MSE) - 10 log (MSE) - 10 log (MSE) 

30 dB 29.1333 dB 35.5223 dB 35.9374 dB 
O“, I O “ ,  0.5 20 dB 18.5328 dB 22.9606 dB 23.1846 dB 

10 dB 04.9319 dB 05.5921 dB 05.9399 dB 

30 dB 31.5506 dB 39.3925 dB 40.2570 dB 
0 20 dB 20.0867 dB 23.4805 dB 23.7178 dB 

I O  dB 04.2192 dB 04.2193 dB 04.5455 dB 

30 dB 38.1907 dB 43.4277 dB 43.7572 dB 
0.5 20 dB 27.9937 dB 32.8244 dB 33.1 157 dB 

10 dB 16.4000 dB 19.2125 dB 19.5458 dB 

30 dB 39.0146 dB 46.5696 dB 47.5345 dB 
0 20 dB 28.7374 dB 34.9904 dB 35.6143 dB 

IO dB 16.6468 dB 18.9175 dB 19.0794 dB 

and 20” 

0“. 15”, 
and 30“ 
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Observation Noise and Zero Loci of a Time 
Series Model 

Kuniharu Kishida, Sumasu Yamada, and Nobuo Sugibayashi 

Abstract-The properties of zeros of time series models are examined 
in a linear stochastic system with white Gaussian observation noise. 
Each zero has a locus in the complex plane as the variance of obser- 
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