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SVD-Based Information Theoretic Criteria for 
Detection of the Number of DampedKJndamped 

Sinusoids and Their Performance Analysis 
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Abstract-Recently, Wax and Kailath developed information 
theoretic criteria for detection of the number of signals re- 
ceived by a sensor array. More recently, Fuchs developed a 
criterion, based on the perturbation analysis of the data auto- 
correlation matrix, for detecting the number of sinusoids. In 
this paper, following the information theoretic approach to 
model selection, we first develop criteria for detection of the 
number of dampedlundamped sinusoids. These criteria are 
matched to the singular value decomposition (SVD) based 
methods, such as modified forwardlhackward and forward- 
backward linear prediction, so well that the extra computations 
needed over and above those required for computing the SVD 
are marginal. Next, we develop an analytical framework for 
analyzing the performance of these criteria, following the as- 
sumptions made by Wang and Kaveh and the corrections given 
by Zhang et al. In the development of the analysis, we make 
some approximations which become better for large signal-to- 
noise ratio. Simulations are used to verify the usefulness of the 
analysis, and to compare the performance of our method with 
that of Fuchs. 

I. INTRODUCTION 

HE problem of estimating the parameters (i.e., fre- T quencies and damping factors) of sinusoids (damped/ 
undamped) in the presence of additive white noise is an 
important one and several methods have been recently 
proposed in this regard (see [5]). At high signal-to-noise 
ratio (SNR), all the existing methods perform equally well 
asymptotically. The problem, however, becomes very dif- 
ficult when the number of available data samples is small 
and/or the SNR is low. 

The forward-backward linear prediction (FBLP) 
method [6] is capable of resolving closely spaced sinu- 
soids with short data records if SNR is sufficiently high. 
For short data lengths and moderate SNR’s, the modified 
FBLP (MFBLP) method for undamped sinusoids [7], 
modified backward linear prediction (MBLP) method for 
damped sinusoids [8], and a recently proposed total least 
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squares (TLS) method [9] perform much better than most 
of the model-based methods. A quantitative accuracy 
analysis of the method suggested in [8] has been devel- 
oped in [17]. All these methods, i.e., MFBLP, MBLP, 
and TLS, require the knowledge of the number of sinu- 
soids a priori. In practice, however, this a priori knowl- 
edge is not available. We therefore need a technique to 
estimate this number from the observed data. 

One can use the method proposed in [lo] and [ 111 to 
estimate the number of sinusoids. But, it involves a sub- 
jective decision of the designer making it difficult to im- 
plement in practice. Criteria based on the application of 
information theoretic principles to model selection, intro- 
duced by Akaike (AIC) [12] and by Schwartz [13] and 
Rissanen (MDL) [ 141, have been recently developed [ 11 
for the detection of the number of signals received by a 
sensor array. More recently, Fuchs developed a criterion 
[2] based on the perturbation analysis of the data auto- 
correlation matrix for detecting the number of sinusoids, 
which is in some sense a subjective-based method. 

In this paper, following the information theoretic ap- 
proach, we first develop criteria for the detection of the 
number of dampedhndamped sinusoids. Next, we de- 
velop an analytical framework for analyzing the perfor- 
mance of the proposed criteria. In both cases, we make 
some approximations which become better when SNR is 
large. Simulations are used to verify the usefulness of the 
analysis. 

The paper is organized as follows. In Section 11, we 
develop the criteria. Section I11 gives the performance 
analysis of the proposed criteria and Section IV discusses 
simulation results. Finally, in Section V, we conclude the 
paper. 

11. DEVELOPMENT OF THE CRITERIA 
Consider N uniformly spaced data samples y(n) of M 

real sinusoids corrupted by additive white Gaussian noise 

y(n) = C aiearn sin (coin + +i) + u(n), 
M 

i =  1 

n = l , 2 ; - * , N  (2.1) 

where ai is the amplitude, ai is the damping factor, wi is 
the normalized angular frequency, and +i is the initial 
phase (assumed to be uniformly distributed in the interval 
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[0,  27rl) of the i th sinusoid. { v(n)} are zero-mean, inde- 
pendent and identically distributed real Gaussian random 
variables with variance (T 2 .  

For the observed data, the set of Lth order (2M I L I 
N - 2 M )  forward and backward linear prediction equa- 
tions, in matrix form, is given by 

. . . . .  . . . . . . . .  

Y ( 3 )  y ( L  + 1) 

Y ( 4 )  * y ( L  + 2 )  

* * * 

which can be expressed compactly as 

Ag = y  - E .  

Y E 

For FLP/BLP, the data matrix A ,  the predicted data vec- 
tory,  and the prediction error vector will be firstlsecond 
half (above/below dotted line) in ( 2 . 2 )  with sizes (N - L)  
x L ,  ( N  - L ) ,  and (N - L ) ,  respectively. 

In MFLP, MBLP, and MFBLP methods, the matrix A 
is replaced by its 2M-rank approximant. This requires an 
a priori knowledge of the number of sinusoids or a method 
which derives this information from the given data. 

The Akaike's criterion for model selection selects the 
model which minimizes the AIC, defined by 

AIC = - 2  In ( f ( y (  e ) )  + 2d (2 .4)  

wheref( yl e )  is the maximum of the likelihood function 
of the observations and d is the number of free parameters 
in 8 .  The MDL criterion selects the model which mini- 

mizes the MDL, defined by 

MDL = - 2  In (f(y1 e ) )  + d In N (2 .5)  

where N denotes the number of observations in y (i.e., the 
length of the vector y). 

A. The Detection Criteria 
To apply the information theoretic approach, it is nec- 

essary to choose an appropriate family of density func- 
tions for the observed data y ( l ) ,  y ( 2 ) ,  * , y ( N ) .  From 
( 2 .  l), the data y ( n )  can be expressed as 

Y @ >  = x ( n )  + (2 .6)  
where x (n) is deterministic for a given set of initial phases 

Now recall that the samples of a signal consisting of M 
real sinusoids (dampedhndamped) satisfy a homogene- 
ous difference equation of order L 1 2M. The set of for- 
ward and backward homogeneous difference equations, in 
matrix form, is given by 

where A, and x are same as A and y,  respectively, with 
y (n) ' s  replaced by x ( n ) ' s ,  and g is the vector of coeffi- 
cients. We note here that the g in ( 2 . 7 )  belongs to an affine 
subspace. From ( 2 . 6 )  and ( 2 . 7 ) ,  we have 

y = A,g + 2, (2 .8)  

2, = [u (L  + 1 )  v ( L  + 2)  

C 6 1 .  

A,g = x (2 .7 )  

where (with superscript T denoting the transpose) 
* * * 

u ( N )  ~ ( 1 )  ~ ( 2 )  * u(N - L)IT. ( 2 . 9 )  

We may point out here that similar relation holds for FLP/ 
BLP excepting that A,, y and 2, are the respective half 
portions of those corresponding to FBLP. Since A,g is 
deterministic for a given set of initial phases { 4; } , the 
family of probability density functions for the vector y can 
be found from the density function of the vector U .  

We note from ( 2 . 9 )  that for ( N  - L) 2 ( L  + l),  some 
elements in 2, repeat making the covariance matrix of o 
rank deficient. Hence, the density function of z1 does not 
exist for this case. However, no problem arises for the 
case (N - L) < ( L  + 1) in FBLP and for any L in FLP 
and BLP. Since the MFBLP has been shown to perform 
better when L is in the range ( 2 N / 3 ,  3 N / 4 )  [ 7 ]  and these 
values of L correspond to the condition (N - L )  < ( L  + 
l ) ,  we assume in the following development that L is such 
that the density function of U exists. The development of 
the criteria for the case (N - L )  2 ( L  + 1) is discussed 
in [ 1 5 ] .  

Thus, the parametrized density function of y with pa- 
rameters g and a2 is given by 

f ( y (  g ,  02) = (27ra2)-"* 

( 2 . 1 0 )  
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where of A .  Substituting (2.17) into the norm-squared term in 
(2.16) and noting that 2-norm is invariant under unitary 

(2. 1) transformation, we get 2(N - L) for FBLP 

(N - L) for FLP and BLP. 2 .. 

In practice, we do not’ have the matrix A, and what is 11.112 = / /  O T y  - 0‘0 ( I 2 k  ) oTy ( 1  
available to us is the data-matrix A .  We now make an 
approximation by replacing A, with 2M-rank approximate 
of A .  Note that this approximation becomes better for large 
SNR and indeed, it becomes exact when noise is absent. 
Since the number of sinusoids is not known a priori, we 
assume that there are k sinusoids and replace A, in (2.10) 
by the 2k-rank approximate of A ,  which we denote by 
A 2 k .  Thus, the approximate family of density functions is 
given by ments of uTy 

0 0  
2 

(2.18) 

where h2k j s  the vector containing the last ( r  - 2k) ele- 

}2k elements 

} ( r  - 2k) elements. 
(2.19) OTY = (i2J 

Thus, (2.16) simplifies to 
(2.12) 

Now, consider the negative of the logarithm of (2.12) 

L‘k’(g, a2> = -1n g ,  a2N 

II Y - %kg112 In u 2  + = L In 27r + 
2 2 2a2  

(2.13) 

where 11 denotes the 2-norm. The ML estimates of g 
and a2  are the values of g and a* that minimize L@’(g, 
a2), and are given by 

~, 

(2.15) 

where the superscript denotes pseudoinverse. Observe that 
the ML estimate g is the minimum-norm solution for the 
predictor coefficient vector in MFLP/MBLP/MFBLP with 
the assumption that the number of sinusoids is k .  We may 
point out here that the above estimates also follow from 
the development in [7], [8]. From (2.14), (2.15), and 
(2.13), we get 

To determine the number of degrees of freedom in the 
vector g ,  consider (2.15). Combining this with (2.17) and 
(2.19), we get 

g = P (  C G l C  ) 
(2.21) 

which shows tkat is the linear combination of the first 
2k vectors of V,  implying that S has 2% degrees of free- 
dom. We note here that the columns of I/ remain the same 
and that indeed g is a linear combination of a varying 
number of them, hence the indicated number of degrees 
of freedom. Thus, under the assymption of k sinusoids, 
the number of free parameters in 8 = (g ,  C 2 )  is (2k + 1). 
Using this value in place of d and r in place of N in (2.4) 
and (2 .5 ) ,  and combining with (2.20), we obtain 

AIC (k) = r 1 + In 27r + In ~ ‘ i h 2 k ” 2 ]  + 2(2k + 1) I 
(2.22) 

I I 
To simplify the last term in (2.16), we use the SVD of - 

+ (2k + 1) In r .  (2.23) 

B. Computational Load of the Criteria A2k 

/f2k = 0 ( 0 )  p T  (2.17) 

where 0 and P a r e  the unitary matrices of size r X r and 
L X L,  containing the left and right singular vectors, re- 
spectively, of A and C2k is a 2k X 2k diagonal matrix 
whose diagonal elements are the 2k largest singular values 

The method requires one SVD computation of A and 
evaluation of 11h2k112 for different values of k. The com- 
putation of Ilh2k()2 can be implemented recursively as fol- 
lows. 

through SVD, computeAthe squares 
of the elements of U T y  and store them. Let (UTy);  denote 

0 0  

After evaluating 
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the ith term of o T y .  We can then use the following re- 
cursions to evaluate llh2k112: 

I > '  - 

(2 .24)  

r 
' 2  1. ( 2 . 2 5 )  k =  1 , 2 ; - *  - -  

Thus, the additional computations needed over and above 
those required for the SVD calculation are marginal. In 
contrast, the method proposed by Fuchs [ 2 ]  requires com- 
putations for 1 )  estimating the autocorrelation matrix of 
the observed data, 2 )  eigen-decomposition of the auto- 
correlation matrix, 3 )  estimating the covariance matrix of 
the perturbed eigenvalues of the autocorrelation matrix, 
and 4)' computing the chi-squared (denoted as x 2 ,  random 
variable. Clearly, this method's computational load is 
much higher than ours. Furthermore, Fuchs method in- 
volves testing of chi-squared random variable against a 
threshold, thus requiring a subjective decision of the de- 
signer. However, it is the first dedicated method to this 
problem and the resulting test is theoretically justified 
asymptotically in the number of data. 

Each of the criteria, ( 2 . 2 2 )  and ( 2 . 2 3 ) ,  is evaluated for 
different values of k and the k for which the criterion at- 
tains minimum is taken as the estimate of the number of 
sinusoids as given by that criterion. Now, the issue is up 
to what value of k should we evaluate the criteria. 

We note that as k increases, the norm square of the vec- 
tor h2k, Ilh2k112, decreases and reaches zero value when k 
= r / 2 ,  resulting in the minimum value for both the cri- 
teria at r / 2 .  We therefore have to restrict k to less than 
r / 2 .  Normally, k should be varied up to L / 2  since an Lth 
order predictor can handle up to L / 2  real sinusoids. In 
practice, however, the predictor order L is chosen signif- 
icantly higher than the minimum required value 2M,  and 
it is usually selected such that the data matrix A is nearly 
square (when the modified methods are known to perform 
well). For such values of L ,  we suggest the evaluation of 
the criteria from k = 1 to L / 3 .  In our study, we also 
consider a reasonably small value' of L which gives rise 
to an overdetermined set of equations in ( 2 . 3 ) .  For this 
value of L ,  we suggest the search up to L / 2 .  We should, 
however, point out that when L is chosen such that ( N  - 
L )  L ( L  + l ) ,  we need to use certain linear transforma- 
tions in the development of the criteria if we are working 
with MFBLP (see [ 1 5 ] ) .  Though we have not considered 
such a case in the following analysis, it can be handled 
easily by modifying the intermediate steps. 

'This case is considered because of the remark made by one of the re- 
viewers. 

111. PERFORMANCE ANALYSIS OF THE 
PROPOSED CRITERIA 

In this section, we develop an analytical framework for 
analyzing the performance of the criteria derived in Sec- 
tion 11. To develop a common framework for both crite- 
ria, we denote the RHS of ( 2 . 2 2 )  and (2 .23)  as 

1 + In 2 a  + In - "h2*"2]  + p ( k )  (3 .1)  

where p ( k )  is the bias correction. 
Let HM denote the hypothesis that the true number of 

sinusoids is M .  Then the probabilities of underestimating 
and overestimating the number of sinusoids, given Hw, 
are defined, respectively, as 

Pw = P ( M  < MI Hw)  (3.2)  

PF = P ( M  > MI Hw)  (3 .3)  

where P (  .) denotes the probability of an event and M de- 
notes the estimate of M .  Following [ 3 ]  and [4], we make 
the assumptions as below: 

P ( h  I M - 21 H w )  << P ( M  = M - 11 HM) (3 .4)  

P ( h  I M + 21 Hw)  << P ( M  = M + 11 H w ) .  (3 .5)  

It has been found via extensive computer simulations that 
the above assumptions are indeed true for the MDL cri- 
terion when the SNR is moderate and higher. 

Define the probability of error P ,  as 

where Pw is the probability of miss and PF is the proba- 
bility of false alarm. Following the development as in [4], 
we can show that 

P ,  = P ( B J  + P ( B ~ )  - P ( B ,  n B') (3 .7)  

where the events Bl  and B2 are given by 

BI: 9 ( M  - 1) < 9 ( M )  (3 .8)  

B2: 9(M + 1) < 9 . M ) .  (3 .9)  

In the sequel, we do not show the conditioning on Hw as 
this has already been reflected in the specification of the 
events. 

From ( 3 . 1 )  and ( 3 . 8 ) ,  we have 

1 + ln27r + ln- l i h 2 M " 2 ]  + p ( M ) )  (3.10) 
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which can be simplified as 

(3.11) 

Similarly, combining (3.1) and (3.9), we get 

, e ( ~ ( M +  I ) - p ( M ) ) / r  - 1 . (3.12) 1 
To evaluate P ( B J  and P(B2) ,  we need to determine the 
density functi9ns of the quotients in (3.11) and (3.12). 

Note that U is the matrix containing the left singular 
vectors of A or the matrix containing the eigenvectors of 
AAT/L. Now, consider 

1 1 1 1 1 
L L L L L 
- A A ~  = - A,A; + - A,A; + - A,A; + - A,A; 

(3.13) 
where A, and A,  are the signal only and noise only parts 
of A ,  respectively. For moderate values of L, second and 
third terms become relatively small as the SNR increases. 
For a finite but moderate SNR, the fourth term is closer 
to a2Z in the FLP/BLP case than in the FBLP case be- 
cause of the following. In FBLP case, (1 /L)A,AT consists 
of four ( N  - L) X ( N  - L) block matrices where the two 
diagonal blocks will be closer to a2Z and the other two 
off-diagonal blocks contain an element such as (1 /L)v2 ( e )  

in addition to cross terms in alternate positions. On the 
other hand, in FLP/BLP case, (l/L)A,A: is simply the 
firdsecond diagonal block of the FBLP. In the special 
case of no noise, the last three terms in (3.13) vanish. 

Keeping the above arguments in view, we make the fol- 
lowing approximation: 

1 1 
L L 
- A A ~  = - A , A ~  + O ~ I  (3.14) 

which is more justifiable in the FLP/BLP case than in the 
FBLP case. For the given initial phases of the sinusoids 
and noise variance, the RHS of (3.14) is known and its 
eigenvector matrix, say U ,  can be determined. Thus, U is 
independent of the noise realization. Thus, for the given 
initial phases of the sinusoid:, U can be treated as con- 
stant. Now, approximating U to U in (3.11) and (3.12), 
and noting that y (n )  is Gaussian with mean x(n) and 
variance a’, we have 

E [ ( U T y ) i ]  = E [ u T y ]  = u T E [ y l  

= uTr. 1 I i I r (3.15) 

var ( ( ~ ‘ y ) , )  = E [ U  Tuu ‘U, 1 = u T ~ [ v v  T ]  U, 

= a2,  1 I i I r. (3.16) 

Note that x, like A,, depends on the initial phases of the 
sinusoids. 

Under the hypothesis HM, the eigenvectors u I ,  u2, 
. . .  , U 2 M  span the true signal subspace and the remaining 
u2M+17 U 2 M t 2 ,  * * , U ,  span the true noise subspace. It 
therefore follows that 

E [ ( U T y ) , l  = uTx, 1 I i I 2 M  (3.17) 

and 

E [ ( U T y ) , ]  = uTx = 0, 2M + 1 I i I r .  (3.18) 

Further, from the orthogonality of the singular vectors, 
we get 

cov ( (UTY) ,  9 (U’Y),) 

= E[u;uuTU,]  = u;E[uuT]U, = 0, 

1 I i , j  I r ,  i # j .  (3.19) 

Since y is Gaussian, (3.19) implies that the components 
of (U‘y)  are independent. 

Now, consider 

1 1  

(3.20) 

It is easy to see that SI is a noncentral x 2  random variable 
with 2 degrees of freedom. Replacing q ,  X, and n in (A.4) 
(see Appendix A) with sl, XI, and 2, respectively, the 
density function of SI is obtained as 

e - ~ ~ / 2 a 2  -X1/202 

2a2 fS,(Sl) = 

O I S l < a J  (3.21) 

where 

Now, consider the random variable T 1 .  From (3.16), 
(3.18), and (3.19), it follows that Tl is a x 2  random var- 
iable with ( r  - 2M) degrees of freedom and, hence, its 
density function is given by 

t ( r - 2 M ) / 2 -  le-ri /2a2 

fTi  ( f l )  = 
I 

(2u2)(r-2M)/2 r ~ 

(3.23) 

( Z Z M )  
0 5 t ,  < aJ. 
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Since Si and T I  are independent, the density function of 
Z ,  = & / T I  is given by 

m 

fz, ( 2 , )  = s, t l h ,  (tl Z d f T ,  ( t l )  dtl (3.24) 

which, using (3.21) and (3.23), can be simplified to 

r - 2M r - 1 1  

(? r - 2M + I )  (e + 2 )  
2 + 

2 . 4  

0 I 2 1  < 03. (3.25) 

Observe that fi, (2 , )  resembles Rician distribution whose 
peak location from the origin is proportional to the non- 
centrality parameter A,  /.'. 

From (3.11) and (3.20), we have 
P ( B , )  = ~(z, < e(P(W-P(M-'))/r - 1) 

e ( ~ ( M ) - ~ ( M -  l ) ) / r -  1 

f z ,  (21) 4,. (3.26) 

Substituting (3.25) in (3.26) and evaluating the integral 
numerically, we obtain P ( B , )  for a given set of initial 
phases of the sinusoids. 

Now, consider the density function of the quotient in 
(3.12). Let 

= so 

1 2  

(3.27) 

Here, S2 and T2 are x 2  random variables with 2 and ( r  - 
2 ( M  + 1)) degrees of freedom, respectively. Hence, the 
density functions of S2 and T2 are given by 

e-s2 / 2 0 2  

0 I s2 < 03 (3.28) f S 2 @ 2 )  = 7$- 

and 

, ? - 2 ( M +  l ) ) / 2 -  1 , - r 2 / 2 0 2  

0 I t2 < W .  (3.29) 

Using the fact that S2 and T2 in (3.27) are independent, 
the density function of Z2 can be shown to be 

0 I 2 2  < 00. (3.30) 

From (3.12), (3.27), and (3.30), the probability of the 
event B2 is given by 

p(B2) = p ( Z 2  > e ( P ( M + l ) - P ( M ) / r  - 1) 

- - e - ( r - 2 ( M +  I ) ) ( p ( M +  I ) - P ( M ) / ~ ~ .  (3.31) 

Note that P(B2)  does not depend on the signal and noise 
powers; it depends only on the penalty and r (cf. (2.11)). 

Consider now the probability of the event ( B ,  f l  B2). 
From Appendix B, 

P ( B 1  fl B2) I P(Z3  < e ( p ( W - p ( M - ' ) ) / r ) P ( B 2 )  (3.32) 

where 

Since SI and S2 are independent, the density function of 
Z3 can be shown to be 

(3.34) 

From (3.31) and (3.34), (3.32) can be evaluated numeri- 
cally for a given set of initial phase angles of the sinu- 
soids. 

Combining (3.7), (3.26), (3.31), (3.32), and (3.34), 
the bounds for the probability of detection (Po = 1 - P,), 
given by 

0 I 23 < 00. 

1 - P ( B , )  - P(B2) 

I Po 5 1 - P(B1) - P(B2) 

+ P(Z3 < e ( P ( M - P ( M -  l ) ) / r ) p ( B  2), (3.35) 

can be evaluated. 
Note that the bounds for P, are functions of the initial 

phase angles of the sinusoids, which are assumed to be 
uniformly distributed in the interval [0, 2n]. We evalu- 
ated these bounds choosing various sets of initial phase 
angles in the interval [0, 2a] and then determined the un- 
conditional probability of detection through numerical in- 
tegration. To clarify this further, consider the case of two 
sinusoids. Without loss of generality, let the initial phase 
of one of the sinusoids be zero and the phase of the other 
sinusoid be 4. Let PD,  denote the probability of detection 
with these initial phases. Then, the unconditional proba- 
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bility of detection, denoted as P,,,,,), is given by 

(3 .36)  

since 4 is assumed to be uniformly distributed in [0, 2x1. 
To obtain Po(,,,) numerically, we vary the phase 4 in steps 
of A 4  (say) covering the range 0 to 2 a ,  and determine the 
probability of detection at each of these steps, and then 
use the numerical integration technique to evaluate the def- 
inite integral part of (3 .36 ) .  

1 2* 
= d4 

IV. SIMULATION RESULTS 

In this section, we present some simulation results to 
demonstrate both the effectiveness of our method and the 
usefulness of the analysis. 

To demonstrate the effectiveness of our method com- 
pared to that of Fuchs [ 2 ] ,  we considered the same ex- 
ample as the one in [ 2 ] .  The data samples were generated 
from 

y ( n )  = J20 sin 2 a h n  + &sin ( 2 a h n  + 4) + v ( n ) ,  

n =  1,2;.. , N  

choosing the normalized frequencies f, and f2 as 0 . 2  and 
0 . 2  + 6, respectively, with 6 = 1 / N  or 1 / 2 N ,  and the 
noise variance, u2 ,  as unity. The number of samples N 
was chosen as 64. We used the FBLP formulation with L 
= 32 (Fuchs used the same formulation for estimating the 
autocorrelation matrix). The phase of the second sinusoid 
was varied randomly from trial to trial in the interval [0, 
2 a ]  and the seed for the noise sequence was selected ran- 
domly in each trial. We performed 50 Monte Carlo trials 
and determined the number of times the criteria attained 
the minimum value at different values of k (see Tables I 
and 11). Note from the tables that the MDL criterion de- 
tected correctly 42  times out of 50 when 6 = 1 / 6 4  and 
20 times out of 50 when 6 = 1 / 1 2 8 ,  while the Fuchs 
method gives 18 and 9 times out of 20 ,  respectively, for 
6 = 1 / 64  and 6 = 1 / 128 (these results are taken from 
[ 2 ] ) .  This shows that the two methods perform similarly. 
The simulation results also show that the detection per- 
formance of the MDL is much superior to that of AIC, 
and that the penalty (or the bias correction) used in AIC 
is too low to hold the criterion from leaning towards higher 
model order. 

We now present some simulation results to demonstrate 
the usefulness of the analysis developed in Section 111. 
The undamped sinusoids case is considered first. 

A. Case i): Undamped Sinusoids 
The data model used is given by 

y ( n )  = J20 sin 2 a f i n  + J20 sin ( 2 a h n  + 4) + v ( n ) ,  

n = 1 , 2 ,  , N 

where the frequencies fi and f2 were selected as in the 
previous example with 6 = 1 /64, and the variance of the 

TABLE 1 

FBLP FORMULATION ( N  = 64, L = 32, f, = 0.2,  fi = 0.2 + 1/64, 
MONTE CARLO RUNS = 50) 

DETECTION PERFORMANCE OF THE PROPOSED CRITERIA WITH 

k 0 1 2 3 4 5 6 7 8  

AIC 0 0 1 4 7 3 7 7 6 6  
MDL 0 1 4 2  7 0 0 0 0 0 

TABLE I1 

FBLP FORMULATION ( N  = 64, L = 32, fl = 0 . 2 . h  = 0.2 + 1/128, 
MONTE CARLO RUNS = 50) 

DETECTION PERFORMANCE OF THE PROPOSED CRITERIA WITH 

k 0 1  2 3 4 5 6 7 8  

A I C O 6 1 2 8 5 4 6 4 5  
MDL 0 26 20 1 0  2 1 0  0 

TABLE 111 
DETECTION PERFORMANCE OF T H E  CRITERIA FOR N = 64 A N D  L = 22 

( fl = 0.2 , f i  = 0.2 + 1/64, MONTE CARLO RUNS = 500) 

Po,,,, (in percentage) 

SNR = 5 dB SNR = 10 dB 

Analysis Simulation Analysis Simulation 
FLP FLP FLP FLP 

AIC 81.99 64.0 81.99 68.8 
MDL 95.94 89.4 95.94 93.8 

noise, U * ,  was chosen to give the desired signal-to-noise 
ratio (SNR), defined as SNR = 10 loglo 1 0 / u 2 .  Both FLP 
and FBLP formulations were considered in this example. 
In each case, we considered two values of L (predictor 
order). 

Tables 111 through V give the probability of detection 
(in percentage), obtained from the simulations and the 
analysis. The simulation results were obtained from 500 
Monte Carlo trials. In each trial, we chose randomly the 
seed for the noise realization and for the initial phase in 
the interval [0, 2 a ] .  For the analytical result, 4 was var- 
ied uniformly in steps of a / 18 and the conditional PDi 
was computed for each setting of 4 as discussed in the 
previous section. The unconditional probability of detec- 
tion was then evaluated from these 36 conditional results 
through the numerical integration as described in the last 
section (see the discussion in the last paragraph of Section 
111). We may point out here that the value of P ( Z 3  < 

- P ( M -  ' ) ) I r )  P(B2)  was negligibly small and hence the 
probability of detection was essentially determined by 
P ( B , )  and P ( B 2 ) ,  which are now (for all practical pur- 
poses) the probabilities of miss and false alarm, respec- 
tively. 

We note the following from the results of the tables. 
The predicted value of probability of detection is closer 
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TABLE IV 

(f, = 0.2,  f2 = 0.2 + 1/64, MONTE CARLO RUNS = 500) 
DETECTION PERFORMANCE OF THE CRITERIA FOR N = 64 A N D  L = 32 

Po,,,, (in percentage) 

SNR = 5 dB SNR = lOdB 

Analysis Simulation Analysis Simulation 

FLP FBLP FLP FBLP FLP FBLP FLP FBLP 

AIC 80.31 83.68 54.0 28.2 80.31 83.68 56.6 29.2 
MDL 94.00 97.69 88.4 82.4 94.02 97.69 91.0 83.8 

TABLE V 

(f ,  = 0.2, f2 = 0.2 + 1 /64, MONTE CARLO RUNS = 500) 
DETECTION PERFORMANCE OF THE CRITERIA FOR N = 64 A N D  I!. = 42 

Po,,,, (in percentage) 

SNR = 5 dB SNR = 10dB 

Analysis Simulation Analysis Simulation 
FBLP FBLP FBLP FBLP 

AIC 81.89 31.2 82.22 32.4 
MDL 94.44 81.0 96.18 85.4 

to the simulated value when the SNR is larger. This is 
expected since the approximations we made in the anal- 
ysis become better for larger SNR. In the case of AIC 
criterion, the predicted values differ widely from those of 
the simulated. This is because the assumption made in 
(3.5) is not satisfied in this case, as is evident from the 
results of Tables I and 11. 

Consider the results for FLP and FBLP, given in Ta- 
bles 111 and IV for two different values of SNR. The an- 
alytical value of Po remains same when the SNR is in- 
creased to 10 dB, keeping the value of L fixed. The 
reasons for this are as follows. Recall that P(B2)  depends 
only on the penalty and r (which is (N - L) for FLP and 
2(N - L) for FBLP), and hence, does not change with 
SNR. Now, refer to P ( B , )  given by (3.26). Recall that 
fi, ( z , )  resembles Rician distribution whose peak location 
from the origin is proportional to the noncentrality param- 
eter X l / a 2  (see (3.25)). For the cases under considera- 
tion, this parameter is very large for SNR = 5 dB, imply- 
ing that the location of the peak is very far from the origin. 
On the other hand, the upper limit of the integral in (3.26) 
is closer to the origin. Consequently, the value of the in- 
tegral, and hence P ( B , ) ,  is nearly equal to zero (as ob- 
served during the analytical evaluation). Any further in- 
crease in the SNR will not cause any noticeable change in 
P(B, )  and as a result, Po remains nearly the same when 
we increase the SNR. 

In the case of FBLP with L = 42 (see Table V), the 
value of PD increases when the SNR is increased to 10 
dB. This increase is obviously caused due to the reduction 
in P ( B , )  since P(B,) is independent of the SNR. In this 
case, the noncentrality parameter is not very large for SNR 
= 5 dB, and hence, the increase in this parameter value 

due to the enhanced SNR causes a reduction in the value 

Now consider the effect of increase in the predictor or- 
der (L)  on the theoretical value of PD. The results of the 
Tables 111 to V show that Po decreases with increasing L. 
The reasons for this are as follows. A closer examination 
of the expression for P(B2)  (cf. (3.31)) reveals that its 
value increases when r decreases. A similar effect takes 
place with P (B, )  even though it is difficult to see this from 
the expressions (3.25) and (3.26). Since an increase in L 
causes a decrease in r ,  it immediately follows from the 
above that Po decreases with increasing L. 

We may point out here that the theoretical and simu- 
lated values of Po (for MDL) are closer in the case of FLP 
than in FBLP for the reasons given in the paragraph pre- 
ceding the approximation (3.14), i .e.,  for a given L and 
SNR, the approximation is more justifiable in FLP/BLP 
case than in FBLP case. Further, the SNR of 5 dB is very 
close to threshold SNR of the MFLP method for the sce- 
narios considered in Tables 111 and IV. To estimate the 
threshold SNR, we have applied the MFLP method to the 
same 500 data realizations as those used in the detection 
criteria and determined the mean square error perfor- 
mance in the estimates off, andf2 for different values of 
SNR. Though our criteria can be applied at lower values 
of SNR than the threshold, the analysis will not be useful 
in that region. Away from the threshold SNR, the pre- 
dicted values are close to the simulated, particularly in the 
FLP/BLP case. To support this further, we considered a 
scenario with closer spacing, fi = 0.2 and f2 = 0.2 + 
1 / 128. Table VI gives the results for this case which show 
the closeness between the theoretical and simulated val- 
ues of Po for MDL. Once again, the SNR of 15 dB is 
approximately equal to the threshold SNR of the MFLP 
method for the scenario of Table VI. 

of P(B1). 

B. Case ii): Damped Sinusoids 

The data model used is given by 

y ( n >  = J20e-0-1n sin 27r0.2n 

+ sin (27r0.24n + 4)  + u(n) ,  

n = l , 2 ; . . , N  

where the variance of the noise, a2, was chosen to give 
the required SNR, defined as 10 log,, 1 0 / a 2 .  Unlike case 
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TABLE VI 
DETECTION PERFORMANCE OF THE CRITERIA FOR N = 64 A N D  L = 32 

(f, = 0 .2 , f i  = 0.2  + 1/128, MONTE CARLO RUNS = 500) 

PD(,,, (in percentage) 
SNR = 15 dB 

Analysis Simulation 
FLP FLP 

AIC 80.31 58.6 
MDL 94.01 87.8 

TABLE VI1 
DETECTION PERFORMANCE OF THE CRITERIA WITH 

BLP FORMULATION ( N  = 64, L = 32, MONTE CARLO 
RUNS = 500) 

PDc,,, (in percentage) 
SNRo = 20 dB 

Analysis Simulation 

AIC 80.31 53.2 
MDL 94.02 89.0 

SNR, refers to the SNR of zeroth sample. 

i), the SNR here refers to that of the zeroth sample and 
not to the average over the entire data record. We there- 
fore refer to this as zeroth sample SNR and denote it by 
S N b .  We considered the BLP formulation with N = 64 
and L = 32. 

Table VI1 gives the values of Po obtained from the sim- 
ulation and analysis. The results show that the predicted 
value is closer to that of the simulated for the MDL case 
and it differs widely from the simulated in the case of AIC 
for the same reason given in case i). 

We may point out here that the SNR value of 20 dB 
may appear rather large. But, this is the SNR of zeroth 
sample computed as 10 loglo (square of the sample am- 
plitude/2)/a2. For the sinusoid with damping factor 
-0.1 considered here, the SNR of 32nd sample is -7.8 
dB and that of the 64th sample is -35.5 dB. Also, as in 
the case of FLP, we have estimated the threshold SNR of 
the MBLP method for this scenario, and SNRo = 20 dB 
is slightly above the threshold value. 

V. CONCLUSIONS 
In this paper, following the information theoretic ap- 

proach to model selection, we first developed criteria for 
detecting the number of dampedhndamped sinusoids. 
These are so well matched to the SVD-based methods of 
spectral estimation that the additional computations re- 
quired over and above those needed for the SVD calcu- 
lation are marginal. The detection performance of these 
criteria is compared to that of Fuchs [2] and the results 
show that MDL criterion, developed in the paper. per- 
forms nearly same as the Fuchs method. However, Fuchs 
methods requires much more computations. Next, an an- 
alytical framework has been developed for predicting the 
detection performance of the criteria. In the development 
of the analysis, we made some approximations which be- 

come better for large SNR. Simulation results show that 
the theoretically predicted values of probability of detec- 
tion and those of simulation are close with FLP/BLP for- 
mulation even at moderate values of SNR. 

APPENDIX A 
- , n and assume that 

they are statistically independent. Then, the density func- 
tion of w = Cl= w'/a2 is noncentral x 2 ,  having n de- 
grees of freedom with the noncentrality parameter h / a 2  
= Cl= p : / 0 2  [16], and is given by 

Let wi - N ( p j ,  a2) ,  i = 1, 2 ,  

where 

O I W < 0 3  (A.2) 

with I' denoting the gamma function. Substituting (A.2) 
into (A. l ) ,  we get 

1 + 

O I W < O o .  (A.3) 

Now, the density function of a2w = q (say) immediately 
follows from (A.3) as 

+ - - ( $ J 2  1 1  
n(n + 2) 2! 

0 5 q < O o .  (A.4) 

APPENDIX B 

of the event (B ,  n B2) is given by 
From (3.11), (3.12), (3.20), and (3.27), the probability 
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where we used the fact that Tl = S2 + T2. It is easy to 
verify that 

p (say). e ( ~ ( M ) - ~ ( M -  l))lr - 1 = e ( p ( M +  l ) - p ( M ) ) / r  - 1 = 

(B.2) 
Substituting (B.2) into (B. 1) and simplifying, we get 

s2 

T2 
< p and - > p )  

S2,  T2 and p are + ve 

- P  - < -  (2 3 
S P ( 2 -  1 < i) P P (2 > .) 

Denoting Z3 = S , / S 2  and substituting for p from (B.2) 
into (B.3), we get 

P ( B ~  n B ~ )  I P ( Z ,  < d p ( W - ~ ( ~ -  ‘ ) ) ~ P ( B ~ ) .  ( ~ . 4 )  
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