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Adaptive Bayesian Equalizer with Decision Feedback 
Sheng Chen, Member, IEEE, Bernard Mulgrew, Member, IEEE, and Stephen McLaughlin 

Abstract-A Bayesian solution is derived for digital commu- 
nication channel equalization with decision feedback. This is an 
extension to the maximum a posteriori probability symbol-de- 
cision equalizer to include decision feedback. A novel scheme 
of utilizing decision feedback is proposed which not only im- 
proves equalization performance but also reduces computa- 
tional complexity dramatically. It is shown that the Bayesian 
equalizer has an equivalent structure to the radial basis func- 
tion network, the latter being a one-hidden-layer artificial 
neural network widely used in pattern classification and many 
other areas of signal processing. Two adaptive approaches are 
developed to realize the Bayesian solution. The maximum 
likelihood Viterbi algorithm and the conventional decision 
feedback equalizer are used as two benchmarks to assess the 
performance of the Bayesian decision feedback equalizer. 

I. INTRODUCTION 

ANY digital communication channels are subject to M intersymbol interference (ISI) and can be character- 
ized by a finite impulse response (FIR) filter with an ad- 
ditive noise source [1]-[3]. At the receiver, the IS1 must 
be compensated in order to reconstruct the transmitted 
symbols, and this is referred to as channel equalization. 
The digital communication scenario is illustrated in the 
baseband discrete time model depicted in Fig. 1 .  

The channel, which is a convolution of the transmitter 
filter, the transmission medium, and the receiver filter, is 
modeled as a FIR filter with a transfer function 

n,- l  

A(2)  = c aiZ-i (1) 
i = O  

where n, is the length of the channel impulse response. 
The symbol sequence s ( k )  and the channel taps ai can be 
complex valued. In this study, channels and symbols are 
restricted to be real valued. This corresponds to the use 
of multilevel pulse amplitude modulation (M-ary PAM) 
[2] with a symbol constellation defined by 

s i = 2 i - M - 1 ,  1 l i l M .  ( 2 )  

Concentration on the simpler real case allows US to high- 
light the basic principles and concepts. In particular, the 
case of binary symbols ( M  = 2) provides a very useful 
geometric visualization of equalization process. s ( k )  is 
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Fig. 1. Schematic of a digital communication system. 

further assumed to be an equiprobable and independent 
sequence with the statistics 

where E[*]  denotes the expectation operator, U: is the 
symbol variance, and 6 (k )  is the Dirac delta function. The 
channel output is corrupted by an additive Gaussian white 
noise e ( k )  specified by the statistics 

where of is the noise variance. s ( k )  and e (k )  are assumed 
to be uncorrelated. Let the channel transfer function be 
normalized. Then the signal-to-noise ratio (SNR) is de- 
fined by 

SNR = o ~ / u ~ .  (5 )  

The task of the equalizer is to reconstruct the transmitted 
symbols as accurately as possible based on the noisy 
channel observations r ( k ) .  Various equalizers can be 
classified into two categories, namely, the symbol-deci- 
sion equalizer and the sequence-estimation equalizer. 

Two well-known symbol-decision structures are the 
transversal equalizer (TE) and the decision feedback 
equalizer (DFE). The structure of a generic TE is shown 
in Fig. 2. Essentially, the equalization process defined in 
Fig. 2 is one o f  using the information present in the ob- 
served channel output vector 

(6) 

to produce an estimate 3 ( k  - d )  of s (k  - d ) ,  where the 
integers m and d are known as the equalizer feedforward 
order and the decision delay, respectively. Traditionally 
this is viewed as an inverse filtering in which the equalizer 
forms an approximation to the inverse of the distorting 
channel [l] .  This consideration leads to the linear TE 

r(k)  = [ r ( k )  * r ( k  - m + l>lT 
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Fig. 3 .  Schematic of a generic decision feedback equalizer. Fig. 2.  Schematic of a generic transversal equalizer. 

(LTE), which consists of a linear filter 

m 

f i ( r (k ) )  = wTr(k) = c wir(k - i + 1) (7) 

where w = [wl * - wmIT are the feedforward filter’s coef- 
ficients. A decision slicer can then quantize the filter out- 
putfi(r(k)) into one of the symbol points defined in (2). 
A powerful technique to improve the equalization per- 
formance is to employ decision feedback. The structure 
of a generic DFE is illustrated in Fig. 3, where the integer 
n is known as the equalizer feedback order. This structure 
is obtained by expanding the inputs of the TE to include 
past detected symbols 

i =  1 

+(k - d )  = [$(k - d - 1) $ ( k  - d - n)]‘. (8) 

The conventional DFE [ 13 is based on a linear filtering of 
this expanded equalizer input vector and is defined by 

(9) 

where b = [bl - - bnIT are the feedback filter’s coeffi- 
cients. 

A different class of equalizers is based on the principle 
of maximum likelihood detection of the entire transmitted 
symbol sequence. The optimal solution for this class of 
equalizers is the maximum likelihood Viterbi algorithm 
(MLVA) (see [4], [ 5 ] ,  and [2, Ch. 6 ] ) ,  which determines 
the estimated symbol sequence {$( l ) ,  $(2), - , i ( k ) ,  - 

fi(r(k),  Sf(k - d ) )  = wTr(k) + bTSf(k - d )  

. }  by minimizing the cost 

>’ J = c ( r ( k )  - c a$(k - i) . 
ca no-1 

(10) 

The MLVA provides the lowest error rate attainable for 
any equalizer when the channel is known but it is com- 
putationally very expensive. In practice, the adaptive 
MLVA employs a channel estimator to estimate a channel 
model and, consequently, it will deviate from theoretical 
performance due to errors in the channel estimate. For 
stationary channels, a fairly accurate channel estimate can 
be obtained, and it is possible to employ a long decision 
delay. Under such conditions, loss of optimality is neg- 
ligible. A new study [6] has shown that performance deg- 

k =  1 i = O  

radation of the adaptive MLVA becomes very serious for 
highly nonstationary channels, and this degradation is in- 
herent in the structure of the MLVA. 

The LTE does not achieve the full potential of the 
equalization process given in Fig. 2. The optimal solution 
for this structure can be derived using Bayes decision the- 
ory [7], [8], and this is known as the maximum a poste- 
riori probability symbol-decision equalizer [9]. This 
Bayesian TE can be implemented using a variety of adap- 
tive nonlinear structures based on artificial neural net- 
works [ lo]-[ 131. In particular, the radial basis function 
(RBF) network [14]-[17] can be shown to have an equiv- 
alent structure to the Bayesian solution and, therefore, it 
is an ideal means to realize the latter [12], [13]. The 
Bayesian TE offers significant performance gain over the 
LTE at the expense of a considerable increase in compu- 
tational complexity. In general, the Bayesian TE cannot 
achieve the performance bound set by the MLVA since it 
is only a symbol-decision equalizer. However the 
Bayesian equalizer is very robust in a highly nonstation- 
ary environment [6]. Using an adaptive clustering algo- 
rithm, it is capable of compensating nonlinear channel 
distortion [ 131. 

This present study derives the Bayesian solution for the 
symbol-decision structure with decision feedback defined 
in Fig. 3. A work published recently [18] describes a sim- 
ilar DFE scheme to our Bayesian DFE. We highlight how 
decision feedback can be utilized to reduce computational 
complexity dramatically. By adopting the Bayesian view, 
why decision feedback improves equalization perfor- 
mance has a clear geometric explanation. Issues of DFE 
design are discussed. Simulation is employed to compare 
the performance of the Bayesian DFE with those of the 
conventional DFE and the MLVA under the assumption 
of perfect knowledge of the channel. This provides theo- 
retical performance bounds for the corresponding adap- 
tive equalizers. The connections between the Bayesian 
equalizer and the RBF network are highlighted, and two 
adaptive schemes are presented for implementing the 
Bayesian equalizer. The first method identifies a channel 
model and uses this channel estimate to compute the chan- 
nel states required in the Bayesian solution. The second 
method estimates these channel states directly based on 
clustering technique. 
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11. BAYESIAN EQUALIZER WITHOUT DECISION 
FEEDBACK 

The optimal Bayesian solution for the structure of Fig. 
2 is summarized. This will provide insights into the issues 
such as why decision feedback improves performance and 
how it can be utilized to reduce computational complex- 
ity. The equalization process depicted in Fig. 2 can be 
viewed as a classification problem, which seeks to clas- 
sify an observation vector r ( k )  into one of the symbol 
points s,, 1 I i I M .  The transmitted symbols that influ- 
ence the equalizer decision at k are 

(11)  
This channel input sequence has n, = Mm+"o ' - l  combi- 
nations. In the absence of noise, the noise-free channel 
output vector 

s (k )  = [ s (k )  - * s ( k  - m - no + 211'. 

~ ( k )  = [?(IC) i ( k  - m + 111' (12) 

has n, corresponding outcomes. The set of these states, 
denoted as Rm,d,  can be partitioned into M subsets ac- 
cording to the value of s ( k  - d )  

Rm,d = U Rt:d (13) 
I c ~ c M  

where 

R::d = (P(k)(s(k - d )  = S , } ,  1 I i I M .  (14) 

The number of states in each R::d is nt )  = n, /M.  Because 
of the additive noise, the observation vector r (k)  is a sto- 
chastic vector. Each channel state is a conditional mean 
vector of r (k)  given s ( k ) .  

Bayes decision theory [7], [8] provides the optimal so- 
lution to the general decision problem and is applicable 
here. Compute M Bayesian decision variables 

n ( l )  
5 

q , ( k )  = C p f ) p c ( r ( k )  - rf)), 1 5 i 5 M (15) 
J = l  

where rf) E R::d, pi'' are the a priori probabilities of r!) 
and p e  ( - ) is the probability density function (pdf) of e ( k )  
= [ e @ )  - - e ( k  - m + l)]'. Each q , ( k )  is the condi- 
tional pdf of r (k)  given s ( k  - d )  = s,. Since all the chan- 
nel states can be assumed to be equiprobable, all the p:) 
are equal, and the noise distribution is assumed to be 
Gaussian, (15) can be expressed explicitly as 

n ( l )  

q r ( k )  = 2 a exp ( - l lr(k)  - r f )112/2a3,  
J =  1 

1 I i l M  (16) 

where a is p!) (27r02)-~'~  multiplied by an arbitrary pos- 
itive constant. The minimum-error-probability decision is 
defined by 

f ( k  - d )  = sf if q$(k)  = max { q , ( k ) ,  1 I i 5 M } .  

(17) 

The Bayesian decision procedure effectively partitions the 
m-dimensional observation space into M decision regions. 

When r(k) appears in the i th region, the decision s^(k - 
d )  = si is made. 

In particular, the Bayesian solution for M = 2 reveals 
some geometric insights of the equalization process. In 
the binary case, (17) can be rearranged as 

s ^ ( k  - d )  = sgn ( fB(r(k)>> = sgn (72(k) - (18) 

where sgn ( e )  is the signum function and fB(-) can be 
referred to as the Bayesian decision function. The set 

{ r l f B ( d  = 01 (19) 

defines the optimal decision boundary, which is a hyper- 
surface in the observation space. Because the LTE can 
only realize a hyperplane decision boundary, a perfor- 
mance gap always exists between the Bayesian TE and 
the LTE. The previous simulation results [13] suggested 
that the Bayesian decision boundary is relatively insensi- 
tive to the noise variance. This is because a small change 
in af  hardly causes any change in the decision boundary 
( 1  9).  This is important because in practice only an esti- 
mate of the noise variance is available. 

It is interesting to compare the Bayesian TE with the 
RBF network. The RBF network [14]-[17] is a one-hid- 
den-layer neural network. Each hidden node in the net- 
work has a radially symmetric response around a node 
parameter vector called a center, and an output node is a 
linear combiner. The overall response of the RBF net- 
work with m inputs and a single output node is defined as 

f l h  

. ~ ( r ( k ) )  = wi+(IIr(k) - ciI12/pi) (20) 

where nh is the number of hidden nodes, ci are the 
m-dimensional RBF centers, pi are the positive scalars 
known as the widths, wi are the weights, and + ( * )  is the 
node's nonlinearity. The Bayesian TE in the binary case 
has an identical structure to the above RBF network. 
Given the channel, it is known how to assign all the net- 
work parameters. The number of hidden nodes is equal to 
the number of channel states and RBF centers are placed 
at these states. The node's nonlinearity is chosen as + ( x )  
= exp (-x) and all the widths are set to p = 2ua. The 
weights can be fixed to either CY if the corresponding cen- 
ters ci belong to RE,)d or -CY if ci belong to R i l d .  Each 
hidden node implements a conditional pdf for a given state 
and the overall network response realizes precisely the 
Bayesian decision function fB ( e ) .  The Bayesian TE for 
the general M-ary PAM case can be realized by an ex- 
tended RBF network depicted in Fig. 4 .  The network has 
two layers. The first layer consists of M subnets, each 
realizing a Bayesian variable in (16). The second layer is 
a MAXNET [19], which selects the maximum Bayesian 
decision variable and thus implements the Bayesian de- 
cision (17). 

An example is given to illustrate the characteristics of 
the Bayesian TE. Consider the channel 

(21) A ( z )  = 0.4084 + 0 . 8 1 6 4 ~ - '  + 0 .4084~- '  
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with 2-ary PAM symbols. For the purpose of a graphical 
display, assume m = 2 and let d = 1. All the combina- 
tions of s (k)  and the channel states are listed in Table I. 
The states of Rt ) l  and R$t)l are plotted in Fig. 5 using the 
“square” 0 and “cross” X respectively. The Bayesian 
decision boundaries for two given SNR’s are also plotted 
in Fig. 5 .  It is evident from Fig. 5 that the decision 
boundary of the Bayesian TE does not depend critically 
on the noise variance. This example represents a kind of 
worst scenario. The performance for this channel is mainly 
limited by the fact that a state of Rf ) l  and a state of Rg)l 
are coincident. In the next section it is shown how deci- 
sion feedback overcomes such a difficulty. 

The superior performance of the Bayesian TE over the 
LTE is at the cost of computational complexity. The dom- 
inant factor is that n, can be quite large, and a comparison 
of (16) with (7) confirms that the Bayesian TE requires 
significantly more computation than the LTE. This prob- 
lem can be alleviated using the parallel RBF network im- 
plementation. It is highly desirable if only a small subset 
of the channel states is required to compute the Bayesian 
decision at each sample k ,  and this can actually be 
achieved with decision feedback. 

111. BAYESIAN EQUALIZER WITH DECISION FEEDBACK 
The equalization process defined in Fig. 3 can ob- 

viously be considered as a classification problem, and 
Bayes decision theory can be applied to derive its optimal 
solution. First note that it is sufficient to employ a feed- 
back order 

n = n, + m - 2 - d .  (22) 

The feedback vector j f ( k  - d )  has nf = M“ states. Denote 
these feedback states as s j , j ,  1 I j I n f .  A subset of the 
channel states R i : d  defined in (14) can further be parti- 
tioned into nf subsets according to the feedback state 

R i : d  = U RE:d,j (23) 
1 s j s n f  

TABLE I 
SYMBOL AND CHANNEL STATES FOR CHANNEL 0.4084 + 0.81642-I + 

0.4084z-* WITH BINARY SYMBOLS. d = 1 ,  m = 2, and n = 2, 
BOLDFACED NUMBERS: GIVEN FEEDBACK sf,, = [ I  I]‘ 

s ( k )  s ( k  - 1) s(k - 2) s ( k  - 3) P(k)  i ( k  - 1) 

1 
1 
1 
1 

- 1  
- 1  
- 1  
-1  

1 
1 

- 1  
- 1  

1 
1 

- 1  
- 1  

1 
- 1  

1 
- 1  

1 
- 1  

1 
- 1  

1.6332 
1.6332 
0.8164 
0.8164 
0.8164 
0.8164 

-0.0004 
-0.0004 

1.6332 
0.8164 
0.0004 

- 0.8  1 64 
1.6332 
0.8164 
0.0004 

-0.8164 

1 - 1  1 1 0.0004 0.8164 
1 - 1  1 - 1  0.0004 -0.0004 
1 - 1  - 1  1 -0.8164 -0.8164 
1 - 1  - 1  - 1  -0.8164 -1.6332 

- 1  - 1  1 1 -0.8164 0.8164 
- 1  - 1  1 - 1  -0.8164 -0.0004 
- 1  - 1  - 1  1 -1.6332 -0.8164 
- 1  - 1  - 1  - 1  -1.6332 -1.6332 

I I \  I I I 

-2  t 1 
-3  ’ I I I \ I  I I 

-3 -2 -1 0 1 2 3 
r (k) 

Fig. 5 .  Bayesian decision boundaries for channel 0.4084 + 0.8164z-’ + 
0.4084z-* with binary symbols. Dashed line: SNR = 10 dB, solid: SNR 
= 15dB. 

with 
(9 R m , d , j  = {i.(k)ls(k - d )  = si fI j f ( k  - d )  = ~ f , ~ } ,  

l r j I n P  (24) 

The number of states in each R i : d , j  is n!; = nr) /nP Un- 
der the assumption of correct feedback vector 3f(k - d ) ,  
the M Bayesian decision variables given j f ( k  - d )  = s f j  
are 

vi(kljf(k - d )  = SLj )  

rI$$ 

= C a exp (-IIr(k) - rf)I12/20:), 
I =  1 

1 r i 1 M  (25) 

where rf’ E Ri:d , j .  The conditional Bayesian decision is 
obtained by substituting v i  ( k l j f ( k  - d )  = s ~ , ~ )  for vi(/?) in 
(17). 

It is interesting to see that the feedback vector is used 
to reduce the number of channel states needed in decision 
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making. Without feedback, all the n, channel states are 
required to compute the M decision variables. As a result 
of feedback, only a fractional number of these states, n,/nf 

, are needed to compute the decision variables. 
The reduction factor in computational complexity owing 
to decision feedback is actually larger than nj because a 
DFE requires a smaller feedforward order m than that 
which is required without decision feedback. The im- 
provement offered by decision feedback has a simple geo- 
metric explanation. A group of the M conditional subsets 
R i ! d , j ,  1 I i I M ,  is related to any other group of the M 
conditional subsets R i ! d , , ,  1 I i 5 M ,  by some linear 
transformation. Specifically, a point in R$:d,j is related to 
a corresponding point in R t : d , ,  by a coordinate transla- 
tion. This transformation is determined by s f j  and sj,r via 
the channel model (l), and it does not alter geometric dis- 
tance. It is thus sufficient to consider just a group of the 
M conditional subsets when examining the symbol error 
rate of the Bayesian DFE. It is apparent that the minimum 
distance among the M conditional subsets R$!d, j ,  1 I i 
I M ,  is larger than that among the M full subsets R$!d, 
1 I i I M .  This is why decision feedback improves per- 
formance. 

These geometric properties of the DFE are illustrated 
using the channel and the equalizer structure specified in 
Table I. The subset states given feedback sf,j = [l 1IT 
are emphasized in boldface in Table I. These subset states 
and the corresponding conditional Bayesian decision 
boundaries for two given SNR’s are depicted in Fig. 6.  
The cases for the other three feedback states can be ob- 
tained by three coordinate translations of Fig. 6. Because 
of feedback, considerably fewer states are used in com- 
puting fe(-) .  The degree of nonlinearity of the optimal 
decision boundary is milder and therefore easier to real- 
ize. Comparing Fig. 6 with Fig. 5 ,  it is clear that decision 
feedback greatly increases the minimum distance between 
the two classes of channel states. In particular, there is no 
coincidence of channel states corresponding to the differ- 
ent classes. For this example, when the noise level is ex- 
tremely high and is therefore the dominant factor over ISI, 
the conditional Bayesian decision boundary becomes al- 
most linear. This suggests that, for this example, the con- 
ventional DFE will have a similar performance to the 
Bayesian DFE under extremely poor SNR conditions 
( e  10 dB for binary symbols). For more realistic SNR 
levels, the Bayesian DFE always performs better than the 
conventional DFE because the latter can only form a lin- 
ear boundary. 

The structure of a DFE is specified by equalizer delay 
d, feedforward order m, and feedback order n. Given the 
channel characteristics, there are practical rules in design- 
ing a Bayesian DFE. The basic structure parameter of the 
Bayesian DFE is d, which specifies the number of states 
required for computing decision variables and thus deter- 
mines computational complexity. Given d, it can be 
proven that m = d + 1 is sufficient. That is, a Bayesian 
DFE of m = d + 1 has the same performance as those of 
m > d + 1 (see the Appendix). Substituting this result 

- - ~ d +  1 

-1.5 -1 - 0 . 5  0 0.5 1 1.5 2 2 . 5  
r (k) 

Fig. 6. Conditional Bayesian decision boundaries for channel 0.4084 + 
0.8164z-’ + 0.4084z-* with binary symbols and given feedback [ l  11‘. 
Dashed lines SNR = 5 dB, solid: SNR = 15 dB. 

into (22) gives rise to the corresponding feedback order n 
= n, - 1. 

An implication of m = d + 1 is that, when equalizer 
delay is d = 0, m = 1 is sufficient for the Bayesian DFE. 
In this case, only the current observation r(k) is used as 
the equalizer feedforward input. The channel states be- 
come scalars and each conditional subset given Q(k) = 

then reduces to a simple form, consisting of M decision 
variables 

s ~ , ~ ,  R (0 , ,o , j ,  contains only a scalar ry). The Bayesian DFE 

vi(k)ij(k) = ~ f , ~ )  = (r(k) - r:’)’, 1 I i 5 M (26) 

and a minimum detector 

i ( k )  = s: ifv?(kl$j(k) = sj,j) = min {v,(kliff<k) = sJJ), 

1 I i I M } .  (27) 

In particular, for the binary case, the conditional Bayesian 
decision function is 

fe(r(k)lij(k) = s ~ , ~ )  = ( r (k )  - rj1))2 - (r(k) - r?))’. 

(28) 

In the binary case, it can be verified that 
, - r; (1) I = 21~01, 1 I j I ny (29) 

The channel is assumed to be normalized so that (a01 < 
1 .  The theoretical error probability of the simple Bayesian 
DFE (28) under the assumption of correct decisions being 
fed back can be shown to be 

( 2 ~ ) - ’ / ~  exp (-r2/2)  dr. (30) 

For the ideal channel having no IS1 and a unit channel 
gain, the error probability in detecting binary symbols is 
known to be Q (1 / U , ) .  Compared with this ideal case, the 
Bayesian DFE (28) assuming that correct decisions are 
fed back has a degradation of 10 log,o(ai2) dB in SNR 
due to ISI. 

A pragmatic rule in selecting equalizer delay, which is 
often adopted in the conventional DFE, is to set d = n, 
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con .  d e t  . -?- 
Bay. d e t  . t 

MLVA-4 €k- 
MLVA-15 +& 

- 

- 

- 

- 

- 1. For the Bayesian DFE, this rule of setting d has a 
rational explanation. In the extreme case of d = 0, the 
decision delay covers the first channel tap a. and the 
equalizer performance is shown to depend on energy of 
ao. It can be imagined that in general the equalizer per- 
formance depends on energy of the channel taps a. to a d  

covered by the decision delay. Increasing d improves per- 
formance but there is no need to use d > nu - 1. The 
maximum delay d = nu - 1 is sufficient to achieve all the 
performance potential. However, reducing d in turn re- 
duces equalizer complexity, and the minimum complexity 
is achieved when d = 0. In practice, a compromise be- 
tween complexity and performance can be obtained as fol- 
lows. If most of the channel energy can be counted in the 
channel taps a. to a,, the equalizer delay is set to d = U ,  
where U I n, - 1. 

Computer simulation is used to compare the perfor- 
mance of the Bayesian DFE with those of the MLVA and 
the conventional DFE. The MLVA is implemented as a 
Viterbi algorithm with a fixed decision delay. The coef- 
ficients of the conventional DFE are set to their optimal 
values defined by the Wiener solution [20]. In the simu- 
lation, perfect knowledge of the channel is assumed, and 
the symbol error rates obtained are the theoretical bounds 
for the corresponding adaptive equalizers. 

In the first example, binary symbols are used and the 
channel is defined by 

A ( z )  = -0.2052 - 0.5131~- '  + 0.7183~-' 

+ 0 . 3 6 9 5 ~ - ~  + 0 . 2 0 5 2 ~ - ~ .  (31) 

The Bayesian and conventional DFE's both had a struc- 
ture of d = 4, m = 5 and n = 4, respectively, and the 
decision delay of the MLVA was set to 4 and 15, respec- 
tively. Fig. 7 compares the error rates of the three equal- 
izers. The number of samples used for computing a sym- 
bol error rate was lo6 to lo7 depending on the SNR. Under 
severe noise conditions (SNR < 7 dB), the Bayesian DFE 
and the conventional DFE had a similar performance but 
the former generally performed better than the latter. For 
example, at an error probability level of lop4 ,  the 
Bayesian DFE offered almost a 1.5 dB improvement in 
SNR over the conventional DFE. From Fig. 7, it can be 
seen that the Bayesian DFE achieved the same perfor- 
mance as the MLVA with the same delay of 4. The latter 
achieved a slightly better performance with a larger de- 
cision delay. The error rates of the Bayesian and conven- 
tional DFE's given in Fig. 7 were obtained with detected 
symbols being fed back. Clearly this is the more realistic 
scenario. The equalizer decisions cannot be guaranteed to 
be 100% correct, thus when an error is made, error prop- 
agation will result. The effects of error propagation can 
be investigated in simulation by comparing the error rates 
obtained using correct symbols and detected symbols as 
feedback, respectively. This is demonstrated in Fig. 8,  
where it is seen that error propagation resulted in a very 
small performance loss for this example. 

- 6 '  I I I I I ' I I 
0 2 4 6 8 10 12 14 1 6  18 

S i g n a l  t o  Noise R a t i o  (dB) 

Fig. 7. Performance comparison for channel -0.2052 - 0.5131zC1 + 
0 . 7 1 8 3 ~ - *  + 0 . 3 6 9 5 ~ - ~  + 0 . 2 0 5 2 ~ - ~  and 2-ary PAM symbols. con./Bay. 
det.: conventionaUBayesian DFE with d = 4,  m = 5 ,  n = 4, and detected 
symbols being fed back. MLVA-d: MLVA with decision delay d. 
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Fig. 8. Effects of error propagation for channel -0.2052 - 0 . 5 1 3 1 ~ - ~  + 
0.7183zY2 + 0.3695z-' + 0 . 2 0 5 2 ~ - ~  and 2-ary PAM symbols. con./Bay.: 
conventional/Bayesian DFE with d = 4,  m = 5, and n = 4. det./cor.: 
detected/correct symbols being fed back. 

The second example employs 4-ary PAM symbols and 

A ( z )  = 0.3482 + 0 . 8 7 0 4 ~ ~ '  + 0 . 3 4 8 2 ~ ~ ~ .  (32) 

The Bayesian and conventional DFE's were defined by d 
= 2, m = 3, and n = 2, and the decision delay of the 
MLVA was chosen as 2 and 10, respectively. Fig. 9 de- 
picts the error rates of the three equalizers while Fig. 10 
illustrates the effects of error propagation on the Bayesian 
and conventional DFE's. For this example, the Bayesian 
DFE had almost 3 dB improvement in SNR over the con- 
ventional DFE at an error probability level of The 
MLVA offered superior performance when a long deci- 
sion delay was employed. From Fig. 10, it can be again 
seen that the performance loss due to error propagation 
was not very serious and that the Bayesian DFE was less 
affected by error propagation compared with the conven- 
tional DFE. 

the channel 

IV . ADAPTIVE IMPLEMENTATION 
The realization of the Bayesian equalization perfor- 

mance depends on knowing the channel states. Two adap- 
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Fig. 9. Performance comparison for channel 0.3482 + 0 . 8 7 0 4 ~ ~ '  + 
0 . 3 4 8 2 ~ ~ ~  and 4-ary PAM symbols. con./Bay. det.: conventional/ 
Bayesian DFE with d = 2, m = 3,  n = 2, and detected symbols being fed 
back. MLVA-d: MLVA with decision delay d. 
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channel model 6 ,  it is straightforward to compute the 
channel states required in the Bayesian DFE. 

The number of combinations of s , (k )  is ns,, = M"". 
Denote these input states as sa, ,  and the corresponding one- 
dimensional channel states as r j ,  where 1 I i s ns,o. A 
scalar state rj is just the conditional mean of the noisy 
observation r ( k )  given s,(k) = and a clustering pro- 
cedure can be used to update the scalar channel states. At 
sample k, if s,(k) = sa, , ,  r, is adjusted according to 

r , (k)  = r,(k - 1 )  + p * ( r ( k )  - ri(k - 1)) (36) 

- 
x -1 - 
rl 
rl rl 

R 
LI 

LI 
0 LI 

2 -2 

14 -3 

- 

- 

2 -4  

s -5 - 

- - 
0 4 

I I I -6 
5 10 15 2 0  25 3 0  

S i g n a l  t o  Noise R a t i o  ( d B )  

Fig. 10. Effects of error propagation for channel 0.3482 + 0.8704z-' + 
0.3482zY2 and 4-ary PAM symbols. con./Bay.: conventionaliBayesian DFE 
with d = 2, m = 3, and n = 2.  det./cor.: detectedicorrect symbols being 
fed back. 

tive schemes are available to obtain these vector states 
[12], [13]. The first method estimates the channel model 
explicitly based on, for example, the least mean square 
(LMS) algorithm and uses the channel estimate to calcu- 
late the channel states. The second approach estimates the 
channel states directly based on a clustering algorithm. 

The convergence properties and computational require- 
ments of the LMS channel estimator are well known [3], 
[20]. Define the channel estimate as 

U ( k )  = [B,(k)  * * Bn0 1 @)IT (33) 

s,(k) = [s(k)  s ( k  - nu + l)]? (34) 

and introduce the estimator input vector 

The LMS channel estimator is then given as 

1 (35) 
E(k) = r (k )  - dT(k  - l)s,(k) 

U(k) = U ( k  - 1) + pE (k)s,(k) 

where CL is an adaptive gain. During data transmission, a 
decision-directed and delayed version of (35) can be em- 
ployed to track time-varying channels [ l ] ,  [3]. Given the 

where the adaptive gain 0 I p I 1.0. For time-varying 
channels, it is necessary to continuously update r, during 
data transmission. This can be achieved using the follow- 
ing decision-directed version of (36). If & (k - d )  = s,. i, 

r , (k )  = r , (k  - 1) + p * ( r ( k  - d )  - r , (k  - 1)) (37) 

where d,(k - d )  = [ i ( k  - d )  . . . i ( k  - d - n, + 1)IT. 
Once the scalar states ri ,  1 I i I ns , , ,  are obtained, it is 
straightforward to expand them into the set of the vector 
states Rm,d.  

The computational load for the LMS channel estimator 
or the clustering scheme is very low. Additional process- 
ing is required to convert the channel estimate into the 
vector channel states or to expand the scalar states into 
the vector states. This is not costly especially when it is 
implemented in parallel. The computational load for com- 
puting the set of the conditional Bayesian decision vari- 
ables (25) is given in Table 11. From Table 11, it is seen 
that the computational complexity is an order of M d + ' ,  
which represents a significant reduction in processing 
complexity compared with M"" which is required for the 
Bayesian TE (16). In the special case of d = 0, the com- 
putational requirements reduce to the minimum. Assume 
that the Bayesian DFE with d = 0 employs the adaptive 
clustering scheme (36), and the conventional DFE with 
the same structure of d = 0, m = 1,  and n = nu - 1 uses 
the LMS algorithm for adjusting its coefficients. Table I11 
compares the computational requirements of these two 
adaptive equalizers. 

Because the number of the channel taps is smaller than 
that of the scalar channel states, the adaptive scheme based 
on a channel estimator requires a shorter training period 
than the clustering approach. Thus the former is better 
suited for time-variant channels. The clustering scheme 
does not assume the linear model (1) and is immune from 
nonlinear distortion. When significant nonlinear distor- 
tion is present in the channel, the estimated channel states 
based on a linear model will deviate from the true states, 
causing performance loss. Real-time identification of a 
nonlinear channel model is a difficult task. This problem 
also exists in the adaptive MLVA where an adaptive 
channel estimator is required. The clustering approach 
does not suffer from this difficulty. It always converges to 
the set of the true channel states regardless of whether the 
channel is linear or nonlinear. 
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TABLE I1 

(d > 0 )  

estimated scalar channel states obtained using the cluster- 

cases, the dashed lines indicate the true values of the 
Additions Multiplications exp ( - r )  Evaluations channel states and the trajectories were averaged over en- 

sembles of 50 different runs. 

COMPUTATIONAL LOAD OF COND1TlO". BAYESIAN DECISION VARIABLES 
ing (36) with an adaptive gain 0.6. In both 

M d +  I 2 X (d + 1) X M d + '  - M (d + 2) X M " + '  

V. CONCLUSIONS 
A novel Bayesian DFE has been derived for digital 

communications channel eaualization. It has been shown 
TABLE 111 

COMPARISON OF COMPUTATIONAL COMPLEXITY (d  = 0)  

how decision feedback is utilized to improve equalizer 
performance as well as to reduce computational complex- 

Equalizer Multiplications Additions 

Conventional DFE with LMS 2 x n , + 1  ity. The selection of the three structure parameters, 
Bayesian DFE with clustering M + l  + namely the equalizer delay, the feedforward order and the 

2 x nu 
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1.5 

1 
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Fig. 11. Trajectories of estimated states based on channel-estimator scheme 
over ensembles of SO different runs. Channel 0.7255 + 0.5804z-' + 
0.3627z-* + 0 . 0 7 2 4 ~ - ~  with binary symbols. SNR = 15 dB. 

1 
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Samples 
Fig. 12. Trajectories of estimated states based on clustering scheme over 
ensembles of 50 different runs. Channel 0.7255 + 0.5804~-I + 0.3627z-* 
+ 0 . 0 7 2 4 ~ - ~  with binary symbols. SNR = 15 dB. 

The behaviors of the two adaptive schemes are illus- 
trated using the channel 

A ( z )  = 0.7255 + 0.5804~-~ + 0 . 3 6 2 7 ~ ~ ~  + 0 . 0 7 2 4 ~ ~ ~  

(38) 
with binary symbols and SNR = 15 dB. The trajectories 
of the estimated scalar channel states obtained using the 
LMS channel estimator (35) with an adaptive gain 0.1 are 
plotted in Fig. 11. Fig. 12 shows the trajectories of the 

feedback order, has been discussed. The relationship be- 
tween the Bayesian equalization solution and the RBF 
network has been highlighted. Two adaptive schemes have 
been presented for implementing the Bayesian DFE. The 
scheme based on a channel estimator requires a shorter 
training period while the clustering scheme offers greater 
immunity to nonlinear channel distortion. 

In terms of computational complexity, the Bayesian 
DFE is generally more complex than the conventional 
DFE but is simpler than the MLVA. Theoretical perfor- 
mance of the Bayesian DFE assuming a known channel 
has been compared with those of the MLVA and the con- 
ventional DFE. Better performance of the Bayesian DFE 
over the conventional DFE has been demonstrated. The 
simulation results have suggested that the performance of 
the Bayesian DFE is comparable to that of the MLVA 
with an equivalent short decision delay. However, the 
MLVA provides the best theoretical performance when it 
employs a sufficiently large decision delay. 

For highly nonstationary channels such as multipath 
mobile radio fading channels, a new study has demon- 
strated that the adaptive Bayesian DFE is actually supe- 
rior over the adaptive MLVA. This has recently been sub- 
mitted for publication [6]. This study also extends the 
current Bayesian DFE to the general case of complex-val- 
ued channels with quadrature amplitude modulation 
scheme. 

APPENDIX 
THE PROOFS OF MINIMAL FEEDFORWARD ORDER 

Assume that m > d + 1. Let gf(k - d )  = SS,~ and 
consider rj') E R i ! d 3 j  where 

The squared distance between r (k)  and rj') is 
d 

U) - r i f y  

m -  1 

+ v = d +  c 1 ( r ( k  - U )  - rj!t)* 

m -  1 

= U$)+ l , l ( k )  + ( r (k  - U )  - 
v = d +  1 
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The feedback is assumed to be correct, that is, 

$(k - d )  = [ s (k  - d - 1) * * . s ( k  - d - n)lT 

where n = n, + m - 2 - d.  For any r f )  E RL:d,j and 
I l i S M ,  

fl“ - 1 -~ 

rl,” (;) = c aus(k - v 
u = o  

For any ry) E RE:d,j and 
m - 1  

&(k)  = c 
v = d +  

- U), d + 1 5 v 5 m - 1. 

(A3) 
I i c: M ,  introduce 

Thus for any ry) E R::d,j and 1 s i I M, 

w:: / (k)  = u:)+l,/(k) + & ( k ) .  (‘45) 
The conditional Bayesian decision variables given $(k - 
d )  = sf,j are 

n$j 

~;(kI+(k - d )  = sf,j> = a exp ( -  a g ! / ( k ) / ~ ) ,  

1 l i . M  (A61 
where a is an arbitrary positive scalar, p = 2a: and n:,) 
is the number of states in R:!d.j. Substituting (A5) into 
(A6) yields 

~i(klif(k - d )  = sf,j) 

4) 
= / =  I QI exp ( - ~ w / P )  exp <-a!)+ , , , ( Q / P )  

ti I‘, 

= C 6 exp ( - a z ) + l , , ( ~ ) / p ) ,  I I i 5 M 
1 = 1  

(‘47) 

where f i $  is the number of states in R:)+l ,d , j  and (Y is a 
positive scalar. This proves that the Bayesian DFE of a 
feedforward order m = d + 1 has the same conditional 
decision variables as those of feedforward order m > d 
+ 1. 

In the above proofs, the number of states in R$)+ l , d % j  

has first implicitly been multiplied by a factor of M - d  - ’ 
so as to match the number of states in RE:d,j, and then 
reduced to the original A:;. This is obviously allowed 
since ti is an arbitrary positive scalar. 
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