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TABLE I1 
PERFORMANCE OF SEVERAL ORTHONORMAL SIGNAL DECOMPOSITION 

TECHNIQUES FOR GENERALIZED CORRELATION SOURCE 
MODEL GIVEN IN (27) 

‘Optimal QZlF based on e n e r g  compartmn\i] 
“Optimal Q\lF h a v d  on minimized aliasing enere! 17‘ 

VI. CONCLUSIONS 

A new objective performance measure for orthonormal signal 
decomposition is defined in this correspondence. The performance 
of several known decomposition techniques are compared and the 
results are interpreted. It is shown that the new measure NER com- 
plements the widely used energy compaction measure GTC and is 
consistent with the experimental results. 
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Mixed-Radix Discrete Cosine Transform 

Yuk-Hee Chan and Wan-Chi Siu 

Abstract-This note presents two new fast discrete cosine transform 
computation algorithms: a radix-3 and a radix-6 algorithm. These two 

Manuscript received November 21, 1991; revised January 4, 1993. 
The authors are with the Department of Electronic Engineering, Hong 

IEEE Log Number 921 1527. 
Kong Polytechnic, Hung Hom, Kowloon, Hong Kong. 

new algorithms are superior to the conventional radix-2 algorithm as 
they i) require less computational complexity in terms of the number 
of multiplications per point, ii) provide a wider choice of the sequence 
length for which the DCT can be realized and, iii) support the prime- 
factor-decomposed computation algorithm to realize the 2“3”-point 
DCT. Furthermore, a mixed-radix algorithm is also proposed such that 
an optimal performance can be achieved by applying the proposed ra- 
dix-3 and radix-6 and the well-developed radix-2 decomposition tech- 
niques in a proper sequence. 

I. INTRODUCTION 

Many fast algorithms [1]-[8] for the computation of the discrete 
cosine transform (DCT) have been proposed since its first intro- 
duction in [9]. However, most algorithms were proposed for the 
computation of a 2”-point DCT. Recently, Yang and Narasimha 
[lo], and Lee [ l  I ] ,  discussed a prime factor decomposed compu- 
tation algorithm such that one can deal with DCT with lengths other 
than 2” and therefore have a wider choice of the sequence length 
for which the DCT can be realized. 

In this note, a new radix-3 and a new radix-6 algorithm are first 
presented to compute a length-3”’ and a length-6” DCT respec- 
tively, Further analyses are then made on using the prime factor- 
decomposed computation algorithm and a suggested mixed-radix 
algorithm for the fast computation of the DCT. 

II .  RADIX-3 DISCRETE COSINE TRANSFORM 

The DCT [9] of a real data sequence { x ( i ) :  i = 0,  1, . . . N - 
I }  is defined by 

N -  I 

j ” ( 2 i 2 L  
X(k) = c x ( i )  cos 

r = O  

for k = 0, 1, . . . N - I .  (1) 

If N = 3”, where m is a positive integer, we can realize the 
following three formulations to obtain the DCT result of the se- 
quence { x ( i ) }  instead of realizing ( 1 )  directly. 

N , f -  I 

A(k) = X(3k) = c { a 3  + b, + c!}  COS 
, = o  

B(k) = X(3k + 1) + X(3k - 1) 
N / 3 -  I 

= c {(2a, - b, - c,)  cos CY, + (c, - b,) h sin a, )  
, = o  

C(k) = X(3k + 2) + X(3k - 2) 
N / 3 -  I 

= C {(2a,  - b, - c,)  cos 2aI  + (b, - c,) & sin 201,) 
, = a  

where 

a, = x ( i ) ,  b, = x(2N/3 + i), c, = x(2N/3 - i - l),  

a (2 i  + 1) 
2N 

a ,  = ____ and X(-i) = X(i) 

for i  = 0, 1, . . . N / 3  - 1. 
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Note that A @ ) ,  B ( k )  and C(k)  are all NIS-point DCT's. As B(0)  
= 2X(1) and C(0) = 2X(2), one can obtain the sequence {X(k): k 
= 0, 1 . . . N - I }  from { A ( k ) :  k = 0,  I ,  . . . N / 3  - l ) ,  { B ( k ) :  
k = 0, I ,  . . . N / 3  - I }  and { C ( k ) :  k = 0, 1, . . . N / 3  - I )  
with 2N/3 - 2 additions. Hence, one can realize an N-point DCT 
via the realization of three N/3-point DCT's. The overhead of this 
process involves the formation of input sequences of the three N / 3 -  
point DCT's. Specifically, to obtain the sequence {(2a, - b, - c,) 
cos CY, + (c, - b,) h sin a,: i = 0,  1 . . . N / 3  - I } ,  two multi- 
plications are required for each i. For the com utation of the se- 

. . . N / 3  - I},  since it can be rewritten as (2 cos CY, ((2a, - b, 
- c,) cos CY, + (b, - c,)  f i  sin a,) - (2a, - b, - c,): i = 0 ,  1 
* . . N / 3  - 1 ), only one additional multiplication is required for 
each i. Hence, generally, three multiplications are required for each 
i to obtain all three input sequences. However, when i = 1 / 2 ( N / 3  
- I ) ,  we have CY, = ~ / 6 .  In such case, two more multiplications 
can be saved during the computation of these items. 

In summary, the mathematical complexity of an N (= 3")-point 
DCT to be realized by this new algorithm is given by the following 
set of equations: 

quence {(2a, - b, - e,) cos 2a ,  + (b, - c,) J p  3 sin   CY,: i = 0 ,  1 

M(N-DCT) = N log, N - N + 1 

A(N-DCT) = 3N log, N - :(N - 1) 

for N = 3", m > 0. (4) 

111. RADIX-6 DISCRETE COSINE TRANSFORM 

If N = 6", where m is a positive integer, we can realize the 
following six formulations to obtain the DCT result of the sequence 
{ x ( i ) }  instead of realizing ( I )  directly. 

N/6- I 

, = o  
A ( k )  = X(6k) = c { a ,  + b, + c, + d, + e, + J )  

. cos (67r(2i,i 1)k) 

B(k)  = X(6k + 1) + X(6k - 1) 
N / 6 -  I 

, = o  
= {(2a, + b, + c, - d, - e,  - 2x) 

. cos 0, + (b, - c, + d, - e,)  h sin 0, )  

. cos (67r(2;; I)k) 

C ( k )  = X(6k + 2) + X(6k - 2) 
N / b -  I 

= {(2a, - b, - c, - d, - e, + 2J) 
r = O  

' cos 20, + (b, - c, - d, + e,) h sin 20,) 

. cos (67r (2i + 1)k) 
2N 

D(k)  = X(6k + 3) + X(6k - 3) 
N/6- I 

= {2(a, - b, - c, + d, + e,  - j) cos 30,) 
z = o  

6s (2 i  + 1)k 
* cos ( 2N ) 

E(k)  = X(6k + 4) + X(6k - 4) 
N/6- I 

r = O  
= c {(2a, - b, - c, - d, - e, + 2J) 

. cos 40, - (b, - c, - d, + e,) 4 sin 40,) 

' 'Os ( 2N ) 6 ~ ( 2 i  + I)k 

F ( k )  = X(6k + 5) + X(6k - 5) 
N / 6  - 1 

I - 0  
= {(2a, + b, + c, - d, - e,  - 2J) 

. cos 50, - (b, - c, + d, - e,)  4 sin 50,) 

fork = 0, 1, . . . N / 6  - 1 
. cos ( 6 ~ ( 2 i N +  1)k) 

where 

a, = x ( i ) ,  b, = x(N/3  - i - I ) ,  

c, = x(N/3 + i), d, = x(2N/3 - i - l), 

e, = x(2N/3 + i),J = x ( N  - i - l ) ,  

a(2 i  + I )  and X(-i) = X(i) 
0, = ~ 

2N 

f o r i  = 0, I ,  . . . N / 6  - I .  (6) 

Note that A ( k ) ,  B ( k ) ,  C ( k ) ,  D ( k ) ,  E ( @ ,  and F ( k )  are all N/6- 
point DCT's. Similar to the above section, one can obtain the se- 
quence {X(k): k = 0, 1 * . . N - I )  from { A ( k ) :  k = 0,  1 ,  * . . 
N/6  - l} ,  { B ( k ) :  k = 0 ,  1, 1 . . N/6  - l ) ,  { C ( k ) :  k = 0,  1, 
. . . N / 6  - I } ,  { D ( k ) :  k = 0, 1, . . N / 6  - l } ,  { E ( k ) :  k = 0 ,  
1, . . . N / 6  - 1 )  and { F ( k ) :  k = 0 ,  1 ,  . . . N/6  - 1 )  with 5N/6 
- 5 additions. In other words, one can realize an N-point DCT via 
the realization of six N/6-point DCT's. The overhead of this I-to-6 
decomposition process involves the formation of input sequences 
of the six N/6-point DCT's. For the computation of the sequence 
{(2a, - b, - c, - d, - e, + 2J) cos 40, - (b; - c; - d; + e;) 
h sin 40,: i = 0, 1 . . . N / 6  - l } ,  as it can be rewritten as ( 2  
cos 20i ((2q - b, - c, - d, - e, + 2L) cos 20i - (bi - c, - d, + 
e , )  h sin 20,) - (2a, - b, - c, - di  - ei + 2fi): i = 0, 1 . * . 
N / 6  - I} ,  only one additional multiplication is required for each 
i. Hence, in general, eight multiplications are required for each i 
to obtain all six input sequences. However, when N = 36, we have 
401 = ~ / 6  and 204 = s /4 .  In this case, we can further save one 
multiplication and three additions during the computation of these 
items. 

Note that the realization of a 6-point DCT module requires four 
nontrivial multiplications and 16 additions (see Appendix). Hence, 
the mathematical complexity of the proposed algorithm is given by 
the following equations: 

M(N-DCT) = 

A(N-DCT) = 4N log, N - $ N + 1 

N log6 N - 2 N 

for N = 6", m > 1. 

(7) 

Iv. COMPARISON AMONG RADIX-2, 3, AND 6 ALGORITHMS 

Figs. 1 and 2 show the computational effort per point required 
for the realization of the DCT with different radix algorithms. Our 
radix-3 algorithm requires smaller numbers of multiplications/ad- 
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0 I 1 I 

100  10' 102 10' 

LENGTH 

Fig. 2 .  Comparison of the numbers of additions per point among the 
radix-2, radix-3 and the prime-factor-decomposed algorithm (PFA) with 
the proposed radix-3 algorithm radix-6 algorithms. 

ditions per point compared with the radix-2 algorithm when length, 
N ,  is small. In particular, the virtual breakeven point is at N = 200 
when the number of multiplications per point is concerned. This 
symptom is due to the fact that the realization of the length-3 DCT 
module is more efficient than that of the length-2 DCT module while 
the decomposition overhead required for the radix-3 algorithm is 
larger than that for the radix-2 algorithm. On the other hand, our 
proposed radix-6 algorithm requires the least computational com- 
plexity among three algorithms whether the number of multiplica- 
tions or additions per point is concerned. In fact, when N is suffi- 

I -\ .̂1"'", , 

Fig. 3 .  Flowgraph of a 9-point DCT 

ciently large, the radix-2 algorithm becomes more efficient than the 
radix-6 algorithm. However, this virtual breakeven point occurs at 
N = 1.69 X lOI3 when the number of multiplications per point is 
concerned, which would imply cases that are far from the practical 
considerations. 

Basically, both radix-3 and radix-6 algorithms are decimation- 
in-frequency algorithms and therefore their computation structures 
are as simple as that of a radix-2 decimation-in-frequency algo- 
rithm such as Lee's algorithm [ I ] .  Fig. 3 shows the flowgraph of 
the realization of a 9-point DCT. Similar flowgraphs can be ob- 
tained for the realization of the 6"-point DCT's, which applies the 
radix-6 algorithm. Note, that the two proposed algorithms not only 
show their superiority in terms of the computational efficiency 
compared with the radix-2 algorithms, they also provide a wider 
choice of sequence lengths. Typically, a zero-padding technique 
has to be applied to realize a DCT of size N # 2". The existence 
of these algorithms provides a considerable reduction of this un- 
necessary computational effort. Fig. 4 shows the computational ef- 
fort in  terms of the number of the multiplications required to realize 
the DCT of different lengths when various algorithms are used. 

V .  MIXED-RADIX ALGORITHM 

By making use of the 1-to-3 and the 1-to-6 decomposition al- 
gorithms proposed in the above sections and those well-developed 
1-to-2 decomposition techniques, an efficient mixed-radix algo- 
rithm can be developed to realize an N-point DCT for any N = 
2"3" (where m ,  n > 0). Note that the decomposition overhead var- 
ies according to the transform length even though the same decom- 
position algorithm is applied. This variation in overhead is due to 
the fact that some additional saving in computation can be achieved 
during the decomposition of some special lengths. For example, if 
one performs a 1-to-6 decomposition on a DCT with length N = 6 
x 3" (where m > 0), then from (5) and (6), we have 2t!Ii = a / 6  
if i = 1 / 2 ( N / 6  - 1). In this case, we can further save two mul- 
tiplications and one addition compared with the normal case for N 
= 6k ( k  > 2) as we have the following: 

J 3  
A,  cos 20, + B, J3 sin 20, = - (A, + B,)  

2 

and 

A,  cos 40, - B, h sin 46, = :(Al - 3BJ 

where 

A,  = (2a, - b, - c, - d, - e,  + 2j),  B, = (b, - c, - d, + e,) .  

Table I shows the overhead involved for the decomposition when 
various decomposition algorithms are applied to decompose an 
N-point DCT. Typically, for a given length-N( = 2"3") DCT, there 
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PFA( +mdu-3) 

5 
16 
29 
44 
76 
112 
137 
188 
272 
328 
448 
569 
640 
764 
1Mo 
m 
1477. 
1744 
2189 
2368 
2924 
3328 
39M 
48M 
5312 
64% 
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olMlrdir 

4 
14 
28 
40 
71 
104 
130 
178 
2% 
311 
428 
544 
608 
714 
1MQ 
1211 
14a3 
1 W  
2110 
22a 
Z M  
3200 
3 m  
4559 
5152 
6012 

.._ .. . 

.. .. / 

1-to-6 

i 

r M . 2  4 N - 6  N = 6 ~ 3 ~ ;  m>O 

4 ~ 3 - 1  4 N - 8  N = 1 ~ x 3 ~ ;  mzO 

4% 4 N .  5 N = 2"x6x3", mrO ; n > l  

MIXED RADIX 
RADIX-? 
RADIX- 1 
RADIX-b 

i 1 

100  10 '  102 I O '  

LENGTH 

Fig. 4. Number of multiplications required for the computation of a DCT 
of specific length by making use of various algorithms. 

TABLE I 
ARITHMETIC OPERATIONS O V E R H E A D  FOR S E L E C T E D  DECOMPOSKTION 

ALGORITHMS APPLIED T O  A N  N-POINT DCT 

Conditions 

1-IC-2 N = Zm; m > l  

1-1-3 
3N . 2 N = 2 " ~ 3 ~ :  mn>0 

are a number of approaches to realize this DCT when the mixed- 
radix algorithm is applied as there are many choices of decompo- 
sition sequences. From our analysis, i t  is found that the most effi- 
cient decomposition sequence of a length-A'( = 2"'3") DCT is in the 
form of 

{2"-" 6") if m z n 

{6"'3"-m} i f n  > m 

where ( X k  Yx} means that the DCT is realized through the follow- 
ing procedures: i) to perform the I-to-X decomposition technique 
recursively on the length-Xk Y x  DCT to obtain X k  length-Yx DCT's, 
ii) to perform the 1-to-Y decomposition technique recursively on 
all length-Yx DCT's to obtain length-Y DCT's and iii) to realize 
all length-Y DCT modules. 

Table I1 shows the comparison between our mixed-radix algo- 
rithm and the prime-factor-decomposed algorithm (PFA) [ 111. 
Note that our radix-3 algorithm has already been applied to greatly 
enhance the performance of the PFA in [ 1 11. It shows that the per- 
formance of the mixed-radix algorithm is always better than that 
of the PFA even though the PFA has already made use of the most 
efficient radix-3 and radix-2 algorithms. Specifically, the proposed 
mixed-radix algorithm always requires smaller numbers of both 
multiplications and total computational operations for the DCT re- 
alization. On the other hand, as our mixed-radix algorithm involves 
mainly a recursive decomposition, it is much more structural than 
that of the PFA. Complicated data management and data routing 
algorithms can be avoided. 

TABLE I1 
COMPARISON OF THE COMPUTATIONAL COMPLEXITY BETWEEN THE MIXED- 

RADIX ALGORITHM R A D I X - 3  ALGORITHM 

N 

6 
12 
18 
24 
36 
48 
54 
77. 
% 
108 
144 
162 
192 
216 
288 
324 
384 
432 
486 
576 
648 
768 
8M 
977. 
1152 
12% 

PFA( +md.au-3) 

16 
49 
94 
U 3  
241 
337 
4% 
589 
817 
1033 
U93 
17% 
1921 
2389 
3211 
4057 
4417 

6808 
7297 
9085 
w8J 
12145 
1ym 
16321 
20113 

nzs 

mM-radix 

16 
49 
90 
U 3  
232 
337 
414 
571 
817 
964 
1357 
1710 
1921 
72.51 
3145 

4417 
5149 
6570 
1153 
8371 
9985 
11593 
14140 
160)3 

3m 

VI. CONCLUSIONS 

In this note, we first present a new radix-3 and a new radix-6 
algorithm to compute a length-3"' and a length-6m DCT respec- 
tively. The number of multiplications per point of these new al- 
gorithms show their superiority in mathematical complexity com- 
pared with that of radix-2 algorithms when N is small. They also 
provide a wider choice of the sequence lengths for which the DCT 
can be realized and support the prime-factor-decomposed compu- 
tation algorithm to reduce the computational complexity. A mixed- 
radix algorithm is also presented, which gives the optimal perfor- 
mance in terms of the number of operations and the data managing 
requirements. 

APPENDIX 

A 6-point DCT on input sequence {xi: i = 0, 1 . * . 5 )  is defined 
as 

5 

X ,  = c x ,  cos 4 (2i + l ) k  
r = O  12 

fork  = 0, 1 . . . 5 .  

The relation 

fork  = 0, 1, 2 

enables the even-indexed outputs to be obtained via a 3-point DCT 
and three extra additions. For odd items, namely, { X , :  k = 1, 3, 
51,  three multiplications and nine additions are required for their 
realization as follon 

('42) 
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t, = to - tz; 

t 5  = - (f, + 2 t , ) ;  

x, = 13 + t 5 ;  

4 

x, = - (t, - t , ) ;  
2 

x5 = 13 - r5 .  

Note that the realization of a 3-point DCT requires one multi- 
plication and four additions. Hence, four multiplications and 16 
additions are required for the realization of a 6-point DCT. 
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The Feedback Adaptive Line Enhancer: A 
Constrained IIR Adaptive Filter 

Jue Chang and John R. Glover, Jr. 

Absfracf-A new adaptive line enhancer (ALE) structure, called the 
Feedback ALE (FALE), is presented and is shown to be a constrained 
IIR adaptive filter. Extensive simulations show that the FALE gives a 
higher sine-to-broadband ratio (SBR) gain and smaller sine estimation 
error than does an equal-order ALE; conversely, the order of the FALE 
can be much lower than the ALE to achieve equivalent performance. 
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Primary Input d(k) Broadband Output e(k) 

T 
I 

Narrowbland Output + O < U < l  

Fig. 1 .  The configuration of the FALE. When CY = 0, the FALE simplifies 
to the ALE. 

I. INTRODUCTION 

The adaptive line enhancer (ALE). as shown in Fig. 1 with a = 
0, is a well known configuration of the adaptive filter [ l ] ,  [2]. Its 
purpose is to separate the sinusoidal component of its input from 
the broadband component without having a reference for either in- 
dividually and without having a priori knowledge of the sinusoidal 
frequency. The bandwidth of the converged filter is determined by 
the number of weights in the filter. When the sine-to-broadband 
ratio (SBR)’ at the primary input d ( k )  (SBRin) is high, the gain of 
the resulting FIR filter at the sinusoidal frequency is very close to 
unity, making separation easy. It tums out, however, that the ALE 
gives poorer performance when the SBRin is low. In this case the 
gain of the FIR filter at the frequency of the sinusoid is much less 
than unity, resulting in poorer separation of the sinusoidal and 
broadband components. 

Griffiths [3] proposed a modification which involves setting the 
coefficient a in Fig. 1 to unity after convergence has been achieved 
for the ALE. This configuration was tested as an adaptive oscil- 
lator to track the instantaneous frequency of the input signal. How- 
ever, our simulations show that the output of the adaptive oscillator 
either has strong amplitude modulation or dies out under different 
values of p .  Moreover, it does not track well at all when the si- 
nusoidal frequency drifts. 

In this correspondence we present a new configuration which is 
a compromise between the original ALE and the adaptive oscillator 
[4]. As shown in Fig. 1, we use a weighted average of the primary 
input d ( k )  and the filter output y ( k )  as the reference input to the 
adaptive filter; i.e., 0 < a < 1. By varying the feedback constant 
a, we have a continuous transformation from the ALE (a = 0) to 
the adaptive oscillator (a = 1 ) .  The motivation behind the new 
configuration, called the feedback ALE (FALE), was to achieve 
some of the benefits of a noise canceller with a separate pure si- 
nusoidal reference [ 5 ]  in  cases when a self-referencing ALE is nec- 
essary. 

Simulations show considerable improvement in the sine estima- 
tion error and the SBR at y ( k )  over those obtained with the ALE. 
At the same time, the stability problem of the adaptive oscillator 
is eliminated. Under some assumptions, predicted results fit the 
simulations quite well. In the following sections, we will describe 
the FALE in detail and provide simulation results, and we will offer 

‘In the sense of a line enhancer, the sinusoidal component is seen as 
signal, which is being enhanced over the broadband noise, producing the 
signal estimate at the filter output y ( k ) .  Of course, viewed as a self-refer- 
encing noise canceller [I], the same configuration removes the sinusoidal 
component, now seen as interference, from the broadband signal, produc- 
ing the signal estimate at the error output e ( k ) .  Therefore, to avoid con- 
fusion we define and use a term called sine-to-broadband ratio (SBR). 
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