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Abstract--M channel maximally decimated filter banks have 
been used in the past to decompose signals into subbands. The 
theory of perfect-reconstruction filter banks has also been stud- 
ied extensively. Nonparaunitary systems with linear phase fil- 
ters have also been designed. In this paper, we study parauni- 
tary systems in which each individual filter in the analysis 
synthesis banks has linear phase. Specific instances of this 
problem have been addressed by other authors, and linear 
phase paraunitary systems have been shown to exist. This prop- 
erty is often desirable for several applications, particularly in 
image processing. 

We begin by answering several theoretical questions pertain- 
ing to linear phase paraunitary systems. Next, we develop a 
minimal factorizdion for a large class of such systems. This fac- 
torization will be proved to be complete for even M .  Further, 
we structurally impose the additional condition that the filters 
satisfy pairwise mirror-image symmetry in the frequency do- 
main. This significantly reduces the number of parameters to 
be optimized in the design process. We then demonstrate the 
use of these filter banks in the generation of M-band ortho- 
normal wavelets. Several design examples are also given to val- 
idate the theory. 

I .  INTRODUCTION 
IGITAL filter banks have been used in the past to D decompose a signal into frequency subbands [1]- 

[ 121. The signals in different subbands are then coded and 
transmitted. Such schemes are popular for encoding data 
from speech and image signals. The process of decom- 
position and eventual reconstruction are done by what is 
termed as the “analysis-synthesis’’ filter bank system 
shown in Fig. 1. In this scheme, the Hi ( z )  are the analysis 
filters and Fi(z) are the synthesis filters. The boxes with 
1M denote the decimators, or the subsampling devices, 
whereas the boxes with t M  denote the expanders, which 
increase the sampling rate. Their definitions are as in [ 13, 

Fig. 2 is a representation of the subband coding scheme 
in terms of the polyphase matrices [3]. E ( z )  is the poly- 
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Fig. 1 .  A M-channel uniform filter bank 
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Fig. 2. A filter bank drawn in terms of the polyphase matrices 

phase matrix corresponding to the analysis filters, and 
R ( z )  is the polyphase matrix corresponding to the synthe- 
sis filters. The decimators and expanders have been moved 
across the polyphase matrices using the noble identities 
[3]. It has been shown that it is indeed possible to per- 
fectly reconstruct the original signal using such analysis- 
synthesis systems [5]-[ 121. In particular, this can be done 
by filters that have finite impulse response (FIR), and are 
hence guaranteed to be stable. One way to do this is to let 
R ( z )  = E - ‘  ( z ) ,  and then choose the matrix E(z )  so that 
both matrices are FIR. 

A .  Preliminaries 

Paraunitary systems: Another approach to design a 
perfect reconstruction system is to choose the matrix E ( z )  
to be a FIR “paraunitary” matrix. A matrix is said to be 
paraunitary [XI if it satisfies the equation 

B(z)E(z)  = I (1.1) 

where B(z) = E’(l/z*). The system can be guaranteed 
to have the perfect reconstruction property by having R ( z )  
= E(z) .  This paraunitary property can be traced back to 
classical network synthesis [ 141. 

0018-9464/93$03,00 0 1993 IEEE 



SOMAN er a l . :  LINEAR PHASE PARAUNITARY FILTER BANKS 3481 

Consider the synthesis bank of Fig. 1. The original sig- 
nal can be written in terms of the subband signals as 

M -  1 

x ( n )  = c C y k ( m ) f k ( n  - Mm).  (1 .2) 
k = O  m 

This can be viewed as a representation of the original sig- 
nal in terms of a doubly indexed set of basis functions 
qkm(n) = fk(n - Mm). It is known [lo], [13], [15] that 
this set of basis functions is orthonormal if and only if the 
polyphase matrix R ( z )  corresponding to these filters is 
paraunitary . 

Another feature of the paraunitary analysis-synthesis 
system is that the analysis and synthesis filters are simply 
time-reversed conjugate versions of each other, and in 
particular therefore, they are of the same length. 

Quantization: In a practical subband coding system, 
both the filter coefficients, as well as the subband signals 
are quantized. It has been shown [3], [16] that there exist 
structures which retain the paraunitary property inspite of 
coefficient quantization. The perfect-reconstruction prop- 
erty is however lost, when the signals in each subband are 
quantized. A paraunitary system still has some important 
features in the presence of subband quantization: 

1) We can obtain bounds on the overall reconstruction 
error in terms of the quantization errors in each subband, 
no matter what the frequency responses of the filters are 

2) We are assured that the only error is due to signal 
quantization. 

The coding gain [18] is often used as a criterion for 
judging the performance of these practical subband cod- 
ing schemes. 

M-band orthogonal wavelets: The relation between the 
M-channel paraunitary system and M-band orthogonal 
wavelets has been shown recently in [19], [20]. M-band 
wavelets have also been shown to provide a more compact 
representation of signals than the traditional binary wave- 
lets [21]. The M-band wavelet is obtained by cascading 
the M-channel paraunitary system in a infinite tree-struc- 
ture. Using a linear phase paraunitary system therefore 
gives us (with further conditions, see Section VI) an or- 
thonormal basis of linear phase wavelets. This will be 
demonstrated later in this paper. 

1171. 

B. Previous Work on Linear Phase Perfect 
Reconstruction Systems 

In several applications, and particularly in image cod- 
ing, it is desirable to have each filter in the system to be 
a linear phase filter. This would not be necessary if there 
were no subband quantization, which is not a case of prac- 
tical interest. The problem of designing two-channel lin- 
ear phase, nonparaunitary, perfect reconstruction sys- 
tems has been discussed in the past [22], [23]. However, 
for the two channel case, it can be shown that if a para- 
unitary system has linear phase filters, it is degenerate, 
i .e.,  the filters can be no better than a sum of two delays 
[3]. For M-channel paraunitary systems, linear phase 

property has been demonstrated in certain special cases, 
by Princen and Bradley in [24] and by Malvar in [25]. In 
[25], the author gives examples of linear phase Lapped 
Orthogonal Transforms (LOT), which have been shown 
to be order one paraunitary systems of a specific form. In 
[24] too, the filters mentioned correspond to a special type 
of paraunitary systems of order one. The more general 
case of linear phase paraunitary systems of larger degrees 
was addressed for the first time by Vetterli and Le Gall in 
[26]. The authors derive systems of higher degree from 
those of smaller degree by multiplication with certain 
types of paraunitary matrices, when the number of chan- 
nels is even. For the four-channel case, the authors give 
judicious examples of such building blocks. 

A structure is said to be minimal [lo], if it uses the 
minimum number of delay elements to implement the par- 
ticular transfer function. Completeness of a structure on 
the other hand implies being able to factorize a given lin- 
ear phase paraunitary system in terms of the proposed 
structure. Another important consideration while design- 
ing filters by optimization is being able to characterize the 
building blocks in terms of a minimal number of free pa- 
rameters. None of the earlier works addresses any of the 
above three issues. We shall address them in this paper. 
We will also present, for the first time, design examples 
of linear phase paraunitary systems of higher degrees. 

C. Aim of the Paper 
This paper attempts a thorough study of linear phase 

paraunitary$lter banks. In particular, the following is the 
new contribution of this work: In Section 11, we develop 
the theory of linear-phase paraunitary systems, and prove 
several new results. For the case where the number of 
channels M is even, we present a factorization of the lin- 
ear-phase paraunitary filter bank that is minimal as well 
as complete for a large class of filter banks important from 
a practical standpoint in Section 111. In Section IV, we 
further structurally impose the constraint that the filters 
be pairwise symmetric around n / 2  in the frequency do- 
main. This significantly reduces the number of variables 
to be optimized in the design. In Section V, we provide a 
cascade structure for linear-phase paraunitary systems 
when M is odd, and prove that it is minimal. In Section 
VI, we apply the above ideas to generate symmetric, or- 
thonormal, M-band wavelets. The issue of regularity [ 181, 
[12] is addressed. Finally in Section VII, we present some 
design examples of near-perfect reconstruction linear 
phase systems, based on formulating the filter bank design 
problem as a constrained optimization problem. Such a 
time-domain approach to filter bank design has also been 
proposed in [ 121. 

D. Notations 
Bold-faced quantities denote matrices and vectors, as 

in A and x. AT, A-' and Tr(A)  denote the transpose, the 
inverse, and the trace of the matrix A ,  respectively. A 
subscript on a matrix indicates its size, when the size is 

. 
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not clear from the context. Reserved symbols for special 
matrices are as follows: Z is the identity matrix. The ma- 
trix J N  is the antidiagonal matrix of size N x N .  For ex- 
ample, the antidiagonal matrix of size 4 is 

0 0 0 1  

J4 = [’ 0 1 0 0  ‘1. (1.3) 

1 0 0 0  

r o  o o 11 

L i  o o OJ 
0 will denote the null matrix, whose size will be clear 
from the context. V, will denote a special diagonal matrix 
of size K X K ,  with alternating +l’s on the diagonal, 
starting with + 1 .  

A superscript asterisk as inf * (n)  denotes conjugation. 
Consider a transfer function A ( z ) .  It can be written in 
terms of its M polyphase components [27] as follows: 

~ ( z )  = ao(zM) + z - ’ a l ( z M >  

+ . . . + z - ( M - l )  a,+- I (zM). (1.4) 
This is known as Type I polyphase. Let H , ( z ) ,  i = 0, 
. . .  , M - 1 ,  be a set of analysis filters. They can be 
written as 

M -  1 

Hk(z )  = C z - ‘Ek l ( zM)  k = 0, * . * , M -  1 
f = O  

The matrix E ( z )  = [Ek, I (z)] is called the polyphase matrix 
of the analysis filters. A set of filters H k ( z )  whose poly- 
phase matrix is paraunitary are said to form a paraunitary 
system (1.1). Throughout this paper, we will deal with 
real, causal, and FIR systems. Given such a system E(z )  
of order N ,  we can write it explicitly as 

~ ( z )  = e(O) + e ( 1 ) z - ’  + e(2)z-’ 

+ . . .  + e ( N ) z - N ,  e(N)  # 0. (1.5) 

The analysis filters typically have order M ( N  + 1) - 1. 

11. THEORY OF LINEAR PHASE PARAUNITARY SYSTEMS 
In order to obtain factorizations of linear phase parauni- 

tary systems, we first need to obtain a characterization of 
their polyphase matrix which reflects the linear phase 
property of the individual filters. Consider a set of M 
paraunitary transfer functions whose polyphase matrix 
E ( z )  satisfies the property [26] 

D Z - ~ E ( Z - ’ ) J M  = E ( z )  (2.1) 
where N is the order of the paraunitary matrix E ( z ) .  Such 
a polyphase matrix corresponds to a set of filters which 
have linear phase. The matrix D is a diagonal matrix 
whose entries are +l’s ,  the + l ’ s  in those rows which 
correspond to symmetric filters and -1 ’s  in those that 
correspond to antisymmetric filters. The filters described 
by this equation have the same center of symmetry ( ( N  + 

It is conceivable that there are linear phase paraunitam 
l ) M  - 1)/2.  

systems which cannot be characterized as in (2.1).  One 
example is that of the “delay chain,” wherein the anal- 

However as said earlier, obtaining factorizations requires 
us to impose constraints on the polyphase matrix of the 
filters, and (2.1) represents a large class of filter banks 
important from a practical standpoint. In this paper, we 
will consider only those systems that can be described by 
(2.1).  We will also show several good design examples 
based on such systems. 

The linear phase constraint in conjunction with the 
paraunitary property imposes interesting conditions on the 
filters. The paraunitary property implies orthonormality 
of the impulse response to its own shifted versions [IO], 
[15] and the linear phase property implies that the filters 
are time-reversed versions of themselves (upto a factor of 
+ l ) .  This, for example, imposes a restriction on the 
length of the filters. 

Fact I :  Let F, ( z )  be a set of M linear phase paraunitary 
filters of length L each with (0) # 0. Then, L # 1M + 
1 for any integer 1 2 1 .  

Pro08 The orthonormality condition on the filters 
[ 101 in particular implies, 

ysis filters are simply H,( z )  = z-I, i = 0, * , M - 1 .  

m 

c f;(n) f?(n  - 1M) = 6 ( i ) .  (2.2) 

If the length of the filters is L = 1M + 1 ,  in view of linear 
phase property this means that 

(2.3) 

implying that 6 (0) = 0. Hence the length L # IM + 1 
0 

The perfect reconstruction condition also imposes a 
constraint on the number of symmetric and antisymmetric 
functions in the filter bank. This is stated in the following 
theorem: 

Theorem I :  Consider a M-channel linear phase perfect 
reconstruction system. 

1 )  If M is even, there are M/2 symmetric, and M/2 
antisymmetric filters. 

2) If M is odd, there are (M + 1)/2 symmetric and (M 
- 1)/2 antisymmetric filters. 

This result has been proved in [28] for the special case 
where the order of the paraunitary matrix E ( z )  is one. The 
proof therein is based on subspace techniques, and more- 
over, does not extend to the case where E(z )  has an ar- 
bitrary order. The result has been stated explicitly as an 
assumption in [26]. We provide below a formal proof that 
this is indeed true. Note, that the result is not restricted 
to paraunitary filter banks. 

Proof; Consider (2.1). The trace of the matrix D 
holds the key to the number of symmetric and antisym- 
metric filters in the system. Using the fact that the matrix 
E ( z )  is invertible, we have 

n =  -m 

f ;  (0)f;” (0) = 0 

for any integer 1 I 1 .  

Tr(D) = Tr(zNE(z)JME-I(z-’))  (2.4) 



SOMAN er al . :  LINEAR PHASE PARAUNITARY FILTER BANKS 3483 

We have used the fact that Tr(AB)  = Tr(BA).  The left 
hand side of this equation is constant. Hence its value can 
be found by evaluating the right hand side for one value 
of the variable z .  Putting z = 1 in the above equation we 
get, 

Tr(D) = T r ( E - ' ( l ) E ( l ) J M )  = T r ( J M )  (2.6) 

with the antidiagonal matrix J M  as in (1.3). Therefore, it 
can be verified that Tr(D)  = 0 if M is even, and Tr(D)  
= 1 if M is odd. Hence there are an equal number of 
symmetric and antisymmetric functions if M is even, 
whereas if M is odd, there is one extra symmetric 
function. 0 

In particular, the above theorem implies that all the fil- 
ters cannot be zero phase. The proof of the above theorem 
also implies a interesting constraint on the order of the 
linear phase polyphase matrix E ( z )  when the number of 
filters M is odd. 

Corollary 1: If the number of channels M is odd, the 
order N of the polyphase matrix E(z )  cannot be odd. 

Pro08 Consider (2 .5) ,  and let N be odd. If one eval- 
uates the right hand side of this equation at z = -1 in- 
stead of z = 1, we get, 

Tr(D) = T r ( ( - l ) N E - l ( - l ) E ( - l ) J M )  = - T r ( J M ) .  

(2.7) 

This, along with (2.6) would imply that T r ( J M )  = 0, but 
this is not possible since M is odd. Hence we get a con- 

0 
An interesting consequence of imposing the paraunitary 

constraint on an M-channel filter bank is that it guarantees 
that if the first M - 1 filters are linear phase, the last filter 
is also linear phase. This is formally stated in the follow- 
ing theorem. 

. . , M 
- 1 be paraunitary, and let the first M - 1 of them have 
linear phase. Then the last one is guaranteed to have lin- 
ear phase. 

Before we prove the theorem we will prove a lemma 
which will help us in the proof. 

Lemma 1: If M - 1 functions of a FIR paraunitary sys- 
tem are known, the last one is uniquely determined (upto 
a factor of the form (e">zlM).  

Proof: Let F,(z) ,  i = 0, , M - 1 form a FIR 
paraunitary system. Let, if possible, U ( z )  be another FIR 

forms a paraunitary system. Let E ( z ) ,  the polyphase ma- 
trix corresponding to this modified set of paraunitary 
functions, be partitioned as 

tradiction, proving that N cannot be odd. 

Theorem 2: Let a set of filters F,(z),  i = 0 ,  

. . 

function, which along with F j ( z ) ,  i = 0,  . . . , M - 2  

This means that the row vector U ( Z )  has as its elements 
the polyphase components of the filter U ( z ) .  Since E ( z )  
is unitary on the unit circle, U (e'") is uniquely determined 
upto a scale factor of the form Hence, by analytic 
continuation, U ( z )  = A ( z M )  F M -  ( z ) ,  where A ( z )  is all 

pass. It can be verified that the condition det ( E  ( z ) )  = 
delay, which is necessary for paraunitariness, implies that 
A ( z )  = (e je)z lM.  Hence, given M - 1 functions of an FIR 
paraunitary system, the last function is determined upto a 

I7 
Using this lemma, we can now prove Theorem 2. 
Proof of Theorem 2: Let E ( z )  be a paraunitary poly- 

phase matrix corresponding to a set of filters that have 
linear phase. Let E l  ( z )  be the polyphase matrix of size (M 
- 1) x M corresponding to the first M - 1 filters in the 
system, and let U ( z )  be the row vector whose elements are 
the polyphase components corresponding to the last filter 
U ( z )  of the system. Now, (2.1) can be rewritten as 

factor of the form ( e j ' ) ~ ' ~ .  

This means that the row vector U (2) has as its element the 
polyphase components of the filter v(z ) ,  which is the 
time-reversed version of U ( z )  (upto f 1). Now, since all 
matrices on the left hand side of this equation are para- 
unitary, the matrix on the right hand side of this equation 
is also paraunitary. But the first block of this matrix is 
E l ( z ) .  This means by Lemma 1, that v ( z )  = ~ z ' ~ u ( z ) .  
But since v(z )  is also the time-reversed version of the 

0 filter U ( z ) ,  it implies that U ( z )  has linear phase. 

111. FACTORIZATION OF LINEAR PHASE PARAUNITARY 
SYSTEMS FOR EVEN M 

In this section, we will first derive a cascade-form 
structure for synthesizing linear phase paraunitary sys- 
tems. Our theory will provide an interpretation for the 
condition mentioned in [26]. We will then prove the main 
result of this section, namely, every linear phase parauni- 
tary system described by (2.1) can be factored in terms of 
the proposed structure. 

The synthesis procedure consists of two steps. In the 
first step, we propagate the property that the set of filters 
generated be painvise time-reversed versions of one an- 
other. This means that they are related as h;(n)  = 

Notice that the sum of two sequences related as above 
is symmetric, and their difference is antisymmetric. Fur- 
thermore, any linear combination of symmetric (antisym- 
metric) sequences is symmetric (antisymmetric). In the 
second step, we add an orthogonal block which performs 
these operations on the pairwise symmetric sequences to 
obtain filters that have linear phase. 

The reason for this two step approach is that, it can be 
shown that it is not possible to propagate the linear-phase 
property itself by addition of further building blocks. 

Consider Fig. 3.  The pairwise time-reversed property 
implies the following relation between the filters: 

hh- 1 -k(n) ,  k = 0, ' , M -  1. 

H , ' M - I - k ( ~ )  = z - ( ( ~ + ' ) ~ - ' )  f f h , k ( z - ' ) ,  

k = 0, * * , L - 1 (3.1) 
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H ; ,o  (2) * 
c 

K , L - I ( Z )  * 

H :, L (z) z=M ~ 

- - 
Z -M 

Z - M .  
- - Hm: M.l(Z) 

+H :+I. o(z) 

+Hm:I, L - ~ z )  

we are interested in obtaining a paraunitary polyphase 

phase paraunitary filters, i.e., satisfying (2.1). Let E(z )  

straint (3.8), it can be shown (by substitution and simpli- 

matrix E ( z )  of order N corresponding to a set of linear 

= SF(z ) ,  where S is a orthogonal matrix. Under the con- 

fication) that E ( z )  satisfies (2.1) if and only if STDS = 

Hence, the following product gives linear phase para- 

+ 

H A , ,  L(z) JIM. 
Kmt - 

+ unitary polyphase matrix: 

E(z )  = SPTNPA (z)  PTN - I P A  (z)  P . . . P A  (z)  PTO P 
a+!k:l, M p )  

Z - ‘ ” ’ ’ J M F ~ + ~ ( Z - ’ ) J ~  = F,+~(Z). (3.5) 

Using (3.4) in (3.2), we obtain the following equation: 
(3.12) 

Z - m  JM A ( Z )  K i  + I F m  + I ( Z  - I >  JM where W = ( A , + 1  + C,+,) /2  and U = ( A , + I  - 
C, + /2.  Thus T,  + I is orthogonal if and only if the two 
matrices W and U are orthogonal. The orthogonal ma- 
trices Wand U can be completely characterized by ( ? I 2 )  
rotations each [29]. 

On the other hand, it can be shown that a unitary matrix 
S satisfies the condition STDS = JM if and only if it can 
be written as 

= A (Z - l )  K L  + 1 F m  + 1 (~1. 
By imposing (3.5), and using the identity A(z)JMA(z) = 
z - ’ J M ,  we see that the necessary and sufficient condition 
on K, + is, K, + J M K i  + I = J M .  By partitioning K, + 

as ($ g), we can verify that the necessary and sufficient 
condition for (3.5) to hold is that the matrix K ,  + be of 

so 0 
the form 

S = ( 1 / J 2 )  ( ) J M / 2 )  (3.13) 

where So and S I  are orthogonal matrices of size M/2 X 
M/2 (Partition S into four blocks, sustitute in S T D S  = 

“ ). (3.6) 0 SI I M / ~  - J M / ~  
J M / ~  C ’ J M / ~  J M / z A ’  J M / Z  

Km+l = 

Thus, K, + can be rewritten as 
JM and simplify). S can hence be parameterized by 

We now come to the main result of this section, which 
Km+l = 

(3.7) is the converse of the previous result. 
\ I  

Theorem 3: Let E ( z )  be a FIR linear phase paraunitary 
matrix, satisfying (2.1).  Then it can always be factored 
as in (3.11), where A(z) = !- I~~,~),  and T; and P 
are as in (3.10). 

Proofi The rest of this section deals with the proof 

where A ,  + = A ‘ ,  and C, + I = C’ JMI2.  
It can be verified that a matrix KO with a form similar 

to that described above can be used to initialize the pro- 
cess. 

corresponding to a set of filters that are pair-wise time- 
reversed versions of one another i.e.,  

Given a paraunitary polyphase matrix F(z )  Of Order N ,  of the above theorem. The reader may skip over to the 
next section without loss of continuity. 

The proof of the theorem will use the definition of 
z - ~ J M F ( z - ’ ) J M  = ~ ( z )  (3.8) “balanced vectors” which we now propose: 
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I I .  

Fig.  4. An equivalent structure for the linear phase paraunitary system. 

Dejnition: A vector y is said to be "balanced" if it is 
orthogonal to its own flipped version, i.e., it satisfies the 
equation 

yTJMy = 0. 

The significance of balanced vectors has been explained 
in Appendix A. 

Proof of the Theorem: In this case we are given a ma- 
trix E(z )  satisfying (2.1). The first step is to show that 
from this linear phase paraunitary matrix, we can always 
get a polyphase matrix F ( z )  whose filters are pairwise 
time-reversed versions of one another [satisfying (3.8)]. 
For this, let S be any matrix of the form given in (3.13), 
where So and SI are arbitrary orthogonal matrices. Then 
it can be shown by substitution that the product F ( z )  = 
S T E ( z )  satisfies (3.8). 

Now we need to show that the matrix F ( z )  can always 
be factored into the required form. This is achieved by 
performing the "order-reduction'' process as outlined be- 
low. Let 

F,,, + 1 ( z )  = f m  + I (0) + fm + I (1)z - I  + f,,, + I (212 -* 
+ . . .  +f,,+1(m + l ) P + l ) ,  

fm+I(m + 1) f 0. (3.14) 

We will show that there exists F,,,(z) of the form 

F,,,(z) = f m ( O >  +f, , , ( l)z-I  +f,,,(2)z-2 

+f,,,(m>z-", f m ( m )  f 0 (3.15) 

and satisfying the required properties. Let F,,, + (z) satisfy 
(3.5). Specifically, we will now show that it can always 
be written as 

Fm + I (z)  = PTm + 1 PA (z)  Fm ( z )  (3.16) 

+ . . .  

where F,,,(z) satisfies (3.2), and the matrices P ,  T,,, + and 
A(z) have the form described earlier. Paraunitariness of 
F,,,(z) follows by noting that 

Fm(z) = A W 1 )  P T ; +  I PF, + ( z )  (3.17) 

where all matrices on the right hand side of this equation 
are paraunitary . 

Linear phase property: We want to show that F,,,(z) 
satisfies (3.2). Substituting (3.16) into ( 3 . 3 ,  we get 

J M P T , , ,  + I PA(Z - I )  F,,,(z - 9  JM - ( m  + 1 )  

= PT, , ,+~PA(z )F , , , ( z ) .  (3.18) 

Since P-I = P a n d  F,,,(z) is paraunitary, we get 

z-(~+~)A(z-~)F,,,(z-~)J~F~(z) 
= PT;. ,PJ,PT, . ,PA(Z).  (3.19) 

If T,,, + is an orthogonal matrix of the form described in 
(3. lo), and P has the form described in (3. lo), then it can 
be verified that PT; + 1PJM PT,,, + P = JM. Hence, we get 

(3.20) z - ( ~ + ' ) A  ( z  - I )  F,,, (Z - I )  JMFnl ( z )  = J M A  ( z )  
i.e., 

z -m [z A ( z  - I )  J M A  ( z  -')I F,,(z - I )  JMF,,,(z) = I .  

(3.21) 

It can be verified that [ z  A ( z  - I )  J M A  ( z  - I ) ]  = J M .  Sub- 
stituting this into (3.21) and rearranging the terms, we get 
(3.2). 

Causality: It only remains to show that there exists a 
matrix T,,,,, such that F,,,(z) obtained from (3.17) is 
causal. Both the linear phase property, and the parauni- 
tary property continue to hold for the reduced system as 
long as the matrix T,,, + I ,  is any orthogonal matrix of the 
required form (3.10). Indeed, it is the causality condition 
on the reduced system which determines the particular 
choice of the matrix T,,, + I .  

From (3.17) we get, 

The second term on the right hand side of this equation is 
responsible for the noncausality . In particular, the non- 
causal part of the second term is given by 

We have to show that there exists a matrix T,,, + I of the 
form in (3.10) which makes this term equal to zero. Let 
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Simplifying (3.23), we find that T, + I should be such that 

Hence, it is sufficient to find A ,  + I and C, + I such that 

(C:+I A ~ + I J M / ~ ) ~ , + I ( O )  = 0. (3.26) 

Now, (3.5) in particular means that 

J M ~ ~ + I ( O ) J M  = f m + i ( m  + 1). (3.27) 

The paraunitary condition in the time domain implies 
f f + (m + l)f, + I (0) = 0. Hence, we have 

f I + I (0) JMfm + I (0) = 0. (3.28) 

By Sylvester's rank inequality [30] therefore, we get 
r a n k ( f m + l ( 0 ) )  = r I M/2.  

Equation (3.28) implies that the columns of the matrix 
f, + I (0) are balanced. Hence, it can be shown (Appendix 
B), that there exists a set of orthonormal balanced vectors 
x i ,  i = 1, * - * , M/2 such that if X T  is the matrix of size 
M/2 X M whose rows are these vectors, this matrix sat- 
isfies the following properties: 

1) X T X  = Z M 1 2  (from the fact that x, are orthogonal). 
2) X T J M X  = 0 (from the fact that xi are balanced). 
3) X T J M f m  + (0) = 0 (by the construction outlined in 

It can be verified that the matrix 
Appendix B). 

can be written in the form as in (3.24). Moreover, with 
this choice of the matrix T, + I ,  (3.25) is satisfied. This 
proves that F, ( z )  is causal. 

Order reduction: Given the fact that Fm(z)  is causal, 
and that it satisfies (3.2), we can see that the order of 
F, ( z )  is m. Thus there is a reduction in order by 1. Hence, 
for a system of order N ,  the factorization process is guar- 
anteed to terminate in N steps. 

0 
The above theorem guarantees the factorization of all 

linear phase paraunitary systems satisfying (2.1). Such a 
linear phase filter bank with polyphase matrix of order N 
can hence be characterized by 2 ( N )  (f'*) rotation angles. 

The degree of a causal rational system is defined as [ 10, 
sec. 13.81 the minimum number of delays required for its 
implementation. A structure is said to be minimal if the 
number of delays used is equal to the degree of the trans- 
fer function. For a paraunitary system, we know that [ lo ,  

This concludes the proof of Theorem 3. 

Theorem 14.7.11 that 

deg [det [E(z) l l  
In our case, 

deg [det [ E ( z ) ] ]  = deg [det 

. A(Z) 

= deg [ E ( z ) l .  (3.30) 

which is equal to the number of delays used. Hence, the 
factorization is minimal. 

IV. LINEAR PHASE PARAUNITARY FILTERS WITH 

RESPONSES FOR EVEN M 
In the previous section, we factorized a linear phase 

paraunitary system into a product of orthogonal building 
blocks each of which can be implemented with 2 (r/2) ro- 
tation angles. These angles can be made the variables in 
the design process. The number of angles can be become 
fairly large when the number of channels M increases. It 
would be useful to cut down the number of optimization 
variables by structurally imposing some other additional 
constraints on the filters. One of the constraints that can 
be imposed is that of painvise mirror image symmetry in 
the frequency domain around ~ / 2 .  Such a condition had 
been imposed on general paraunitary systems in [31]. One 
way to impose the condition that the filter satisfy the pair- 
wise mirror image condition in the frequency domain is 
to ensure that the filters are related as 

PAIRWISE MIRROR-IMAGE FREQUENCY 

H,+-  1 - k ( Z )  = H k ( - Z ) ,  k = 0, * * * , L - 1 (4.1) 

where L = M/2.  If M is even, in terms of the polyphase 
matrix of the filters this becomes 

J,ME(z) = E ( z )  V M .  (4.2) 

As mentioned earlier, the matrix VM is a diagonal matrix 
of size M x M with alternate k 1's on the diagonal, start- 
ing with + 1.  This symmetry condition is in addition to 
the conditions of linear phase (2.1) and paraunitariness 
(1.1). 

To develop a cascade structure which generates such 
filters, we will assume that we have a paraunitary matrix 
E, - ( z )  of order m - 1 satisfying the conditions of para- 
unitariness (1. l ) ,  linear phase (2.11, and painvise mirror- 
image symmetry of frequency responses (4.2). From it, 
we will show how a paraunitary matrix E,(z)  of order m 
can be obtained satisfying the above three properties. We 
will do this by post multiplying the given matrix E,  - ( z )  
by a paraunitary matrix R ( z )  of order one.' 

Let 

Em ( z )  E m  - I ( z )  R ( z ) .  (4.3) 

E, - I ( z )  = E,n ( z )  R (4. 

Clearly, E,(z)  is paraunitary. Also, 

(4.4) 

Propagating the Linear Phase Property: From the fact 
that E,  - I ( z )  satisfies the linear phase property, we have 

z p m  DE, ( z  - I )  ( z  - I )  JIM = E, ( z )  ( z )  (4.5) 

'This derivation could also be made by premultiplying an existing matrix 
by an extra block. This was the approach followed in Section 111, because 
it simplifies the proof of Theorem 3 to some extent. In proving the results 
of this section, the postmultiplication strategy will lead to slightly simpler 
derivations. The reader must note that preference for one strategy over the 
other has been dictated purely by simplicity of presentation. 
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i.e., of the form 

z p m  DE,,, (Z - 7  R (Z - 9  J M R  (z)  = E,, (z) .  (4.6) 
S = ( l / & )  ( so 0 ) (": J''2) Q (4.14) 

Hence for E,,, ( z )  to satisfy the linear phase property, R ( z )  0 SI I M / ~  - J M / z  ~. . 

should satisfy 
where Q is a symmetric permutation matrix. This is be- 
cause QJMQ = JM for any such permutation matrix. Let 
Q be so chosen that QVMQ = D ,  where D = 
(?:? -IM,2). Now, let S '  = SQ. For the matrix S to sat- 
isfy the painvise mirror-image property ( J M S  = SVM), it 
can be verified that the matrix S ' should satisfy S ' DS I T  

= JM. Substituting the forms of various matrices and sim- 
plifying, we get 

I ? ( z - ' ) J ~ R ( z )  = z - I J M .  (4.7) 

It can be verified that if Riz) = A ( z )  PTP with the ma- 
trices A ( z ) ,  P and T as in the previous section, R(z )  sat- 
isfies (4.7). 

Propagating the Painvise Mirror-lmage Property in the 
Frequency Domain,, Assuming that (4.2) holds for 
E,,, - I ( z ) ,  and using (4.4) we get 

J M  E,,, (z)  ( z )  E,,, (2) R ( z )  VM (4.8) 

JM E,  ( z )  = E,, ( z )  (z)  VM R ( z ) .  (4.91 

i.e.,  

Hence, R(z)  should satisfy the property 

R(z) VMR(z) =z VM. (4.10) 

We now have two cases: 
Case I :  M / 2  is even: In this case, VM = (K" ' "v,,?). 

Substituting this, and the fact that R(z)  = A ( z ) P T P  with 
T = (c :), in (4.10) and simplifying, we get 

AT C T  

(c' A T )  ('y2 -;,,*) (t z) 
(4.11) 

Using a factorization for T similar to (3.12) and simpli- 
fying, we get 

The above equation is satisfied if U is taken to be an ar- 
bitrary orthogonal matrix of size M / 2  X M/2,  and the 
matrix W is chosen as 

w = v M / 2  UVM ' 2 .  (4.13) 

Hence, in this case, we have ( F / 2 >  degrees of freedom to 
optimize per stage. 

Case 2: M/2  is odd: In this case, VM = 
(0"";' o v M l 2 ) ,  unlike the case where M/2  is even. How- 
ever, if we use the relation R(z )  = A(z) PTP with T = 
(i ,"), and perform the simplifications as before, we get 
(4.12) once again, proving that there are (Y l2)  degrees of 
freedom to be optimized in this case also. 

Thus, all three properties have been satisfied. 
Initialization: It only remains to find a degree zero 

paraunitary matrix E o ( z )  (i.e.,  a constant orthogonal ma- 
trix s), which will initialize the above process. From the 
discussion in Section I11 it can be verified that the matrix 
S satisfies the linear phase property (DSJM = S ) ,  if it is 

This equation can be satisfied by letting So be an arbitrary 
orthogonal matrix, and choosing SI = J M / 2 S o .  Thus the 
matrix S can be realized with ( y / 2 )  rotations 1291. 

The foregoing discussion can be summarized in the fol- 
lowing theorem : 

Theorem 4: A linear phase paraunitary matrix satisfy- 
ing (2.1) whose filters satisfy the additional painvise mir- 
ror-image property in the frequency domain (4.2) can be 
realized as 

E ( z )  = SA(z)PTUA(z)  . . . TNP (4.16) 

where 

(4.18) 

and the matrix P is as in (3.10). 0 
The fact that the structure continues to be minimal is 

easily verified, though we have not shown it to be com- 
plete. 

Fig. 5 shows an example of a 8-channel system (Design 
ex. 1) where a 4-stage lattice was used. The filters are 
linear phase, paraunitary , and satisfy the painvise mirror- 
image symmetry in the frequency domain. The impulse 
response coefficients of the 8-channel system have been 
tabulated in Table I .  Fig. 6 shows a similar example for 
the 4-channel case (Design ex. 2). The impulse response 
coefficients have been tabulated in Table 11. 

The coding gain [ 181 is often used as a figure of merit 
to judge the performance of various subband coding 
schemes. It is defined as the ratio of the reconstruction 
error variance of a PCM system to the reconstruction error 
variance of the subband coding system. It was verified 
through examples that the imposition of linear phase 
property did not lead to significant coding gain reduction. 
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-30 

- 4 0  

0.0 0.1 0.2 0.3 0 . 4  0 .5  
normalized frequency 

Fig.  5 .  (Design e x .  1 )  Magnitude responses of a 8-channel linear phase 
paraunitary filter bank. The filters have length 32 each.  

TABLE 1 

PARAUNITARY FILTER BANK.  [ONLY THE C O E F F I C I E N T S  h, (0) THROUGH 

I M P L I E S  h , ( n )  = h , ( 3 1  - n). A N D  MIRROR-IMAGE S Y M M E T R Y  IMPLIES 

(DESIGN E X .  1) FILTER COEFFICIENTS OF A %CHANNEL L I N E A R  PHASE 

h , ( 1 5 )  ARE TABULATED FOR THE FIRST FOUR FILTERS. L I N E A R  PHASE 

H , ( - z )  = H ,  , ( ? ) I .  THE FlLrER LEUGTH IS 3 2  

-2.8456950643002D-02 
I m 9 s n 3 ~ m w ~ - o 3  
4.0561 84s27nnm~-o2 
2.950320193466OD-03 

-2.2991473562361D-02 
3.401 8237002281D-03 

8.6349676608556D-03 
9.231 1 9 n 4 1 a m ~ - 0 2  

-7.7589420570n20~-02 
~ll.2277206631421 1 
-0.19287393785391 
0.10867205234840 
0.34879540903907 
030145304416569 
~3.4833482443945D-02 

-0.40W59004960062 

I .4~60492098433~-02 
4.46781628754690-02 
-4 0347878743950D-03 
-1  2928325761109D-02 
-1  51098R1590786D-02 
-4.94448345 I6 179D-02 
-3.7266345907583D-02 

01 1 I866646696795 

4 .26  I241 85969832 
-1 3044768601487D-03 

~ . ~ m 8 o 4 o s  I M D - ~  

-0.10980a19unn73 

0.37437930463n34 
0 . 1 ~ 0 9 u i 2 ~ 3 2 n 9  
-0 38952044617052 
~0.292274ho35.5523 

TABLE I1 

PARAUNITARY FILTER B A N K .  NOTE THAT Hi  ( 2 )  = Ho ( -I) A N D  H2 ( z )  = 

H, ( - z ) .  T H E  FILTER LENGTH IS 8 

(DESIGN E X .  2) FILTER COEFFlCltNTS O F  A 4-CHANNEL LINEAR PHASE 

coefficients of Ho(z) 

ho(O)=hd7)=-0 091 58480695895 1 

ho(1 )=h0(6)=0. I3357390156568 

hg(2)=hg(S)=O 38923341521735 

h0(3)=h0(4)=0 567686 I4376856 

coefficients of H (z) 

h I(0)=-hl (7)=-0.13357390156568 

h 1(1 I=-h ~(6)=O.o9158480695895l 

h 1(2)=-h I (5)=0.56768614376856 

h 1(3)=-h 1(4)=0.38923341521735 

As an example, using bandpass speech as input, imposi- 
tion of the linear phase property reduced the coding gain 
from 6.2 db to 5.2 db. 

V .  LINEAR PHASE PARAUNITARY FILTERS FOR ODD M 
While the existence of linear phase paraunitary filter 

banks had been indicated in [26] for an even number of 
channels M ,  for an odd number of channels, the existence 
of nondegenerate filter banks has not been shown so far. 
In this section, we shall synthesize linear phase parauni- 
tary filter banks for an odd number of channels. There are 
two ways to design such systems. One way is to develop 
a cascade structure as we did in the previous sections. The 
second way is to obtain linear phase systems for a certain 
odd M by suitably combining linear phase systems of size 
( M  - 1)/2 and ( M  + 1)/2, while maintaining the para- 
unitary property. We will consider both of these ap- 
proaches in this section. 

A .  A Cascade Based Approach 
In this subsection we proceed as we did in Section 111, 

i .e.,  first design a set of filters which satisfy the property 
that the filters are painvise flipped versions of each other 
in the time domain, and then suitably combine these to 
get a linear phase system. 

M odd, which is obtained as the following product: 
Fact 4 .1:  Consider a polyphase matrix of size M x M ,  

0 

F(z)  = P T N A ( z ) T , ~ - , A ( z )  * * A(z)TOP (5.1) 

where 
-10 

k M +  I i / 2  z P =  ( 
v U 0 J w -  1 ) / 2  

.; -20  TI are orthogonal matrices of the form 

- - A; 0 C, 
T, = OT 1 0' 

-30 ( C i  0 A )  

C 

3 c 

m 

and 

O ) .  (5.4) 
4 M +  1 ) / 2  

-I  0 z z ( M -  1) /2  

Then this structure generates a paraunitary 

- 4 0  A ( z )  = 
0.0 0.1 0.2 0.3 0.4 0.5 

normalized frequency 

Fig. 6 .  (Design e x .  2) Magnitude responses of a 4-channel linear phase bank in 
paraunitary filter bank. The filters have length 8 each. which Hk ( z )  is the time-reversed version of HM - - ( z ) .  

(5.3) 
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Pro05 Since all matrices in the product are individ- 
ually paraunitary , the product F(z) is also paraunitary . 
Now to prove that the filters are pairwise flipped versions 
of one another, we need to show that the matrix F(z) sat- 
isfies the condition ( z-Nz!-l)/2 0 

1 ,9 ) J M F ( Z - N ) J M  = F(z)  

z -"4M - 1)/2 

( 5 . 5 )  
where N is the order of the polyphase matrix F(z). In par- 
ticular, by our construction, the middle filter will be just 
H ( M +  (2)  = z - ( M +  Hence, it is the flipped version 
of itself. Substituting the forms of various matrices, we 

0 
Now suppose we are given a paraunitary matrix F(z) 

satisfying (5.5) and whose order N is even (as required by 
Lemma l ) ,  we can obtain a matrix E ( z )  from it which 
corresponds to a set of linear phase paraunitary filters. 
Since the middle filter is just H(M+ ,)/2(z) = z - ( ~ + ' ) / ~ ,  
we first multiply this filter by an appropriate delay z 
This can be done by premultiplying the matrix F(z) 
by the diagonal matrix A (z) = diag[l 1 

- 1 13 to get F ' ( z )  = A'(z)F(z) .  The 
matrix F' (z) hence satisfies the equation 

can verify that (5.5) indeed holds. 

- - z-N/2 * 

z - ~ J ~ F ' ( z - ' ) J ~  = ~ ' ( z ) .  (5.6) 
Now let E(z) = S F ' ( z )  where S is an orthogonal ma- 

trix. Clearly, with this construction, the matrix E(z) is 

7'heorem 5: A linear phase paraunitary matrix with an 
odd number of channels can be realized as 

E(z) = SA'(Z)PTNA(Z)TN-IA(Z) * * TOP (5.8) 

(5.4).  0 
where P is as in (5 .2) ,  T, is as in (5 .3)  and A(z) is as in 

The fact that the structure is minimal can be verified as 
at the end of Section 111. 

B. Matrix Interleaving and Linear Phase Filters 
In this subsection, we will consider the problem of ob- 

taining a larger linear phase paraunitary system given 
smaller linear phase paraunitary systems. Let M ,  the num- 
ber of channels be odd. Let L = ( M  - 1 ) / 2 .  Let G(z) 
and F ( z )  be two linear phase paraunitary matrices of sizes 
(L + 1) X (L + 1) and L X L respectively, and of order 
N each. In particular, let us write them as 

and 

F(z) = (fo(z) fl (z) . * fL - 2(2 )  fL - 1 (4). (5.10) 

In (5.9), the vectors g i ( z )  are of size L, and represent the 
columns of the matrix G(z), except for the last element in 
each column, which has been written separately as g /  (z). 
In (5. l o ) ,  the vectorsJ.(z) are also of size L, and are sim- 
ply the columns of the matrix F(z). Hence note that vec- 
tors gi(z) andJ(z) are all of size L each. Now, construct 
the matrix E(z) of size M x M ,  which is as follows: 

also paraunitary . For the matrix E (2) to satisfy the linear 
phase property (2. l ) ,  it can be verified that it is both nec- 
essary and sufficient that S be of the form 

where U(M+ 1) /2  and W ( M -  1 ) / 2  are arbitrary orthogonal 
matrices of the sizes indicated. 

The above discussions can be summarized in the fol- 
lowing theorem: 

Note that the filters corresponding to this polyphase ma- 
trix are formed simply by interleaving in a particular man- 
ner the impulse response coefficients of the filters in the 
smaller systems G ( z )  and F(z). 

Lemma 2: The matrix E(z) of size M x M in (5 .11)  is 
a linear phase paraunitary matrix of order N .  

Proof: The fact that E(z) is paraunitary is clear from 
the construction. It only remains to prove the linear phase 
property. Because the matrices G(z) and F(z) are linear 
phase, we have the following relations 

g, (z) = +z + g L  - , (z -9, (5.12) 

J(Z> = *z-NfL-I-I(Z-l) (5.13) 

and 

g:(z) = +z-Ngt- , (Z- ' ) .  (5.14) 
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1 

/ -  I 

E = structure giving linear-phase paraunitary filters for even M 
X= the interleaving mechanism 

Fig.  7 .  Obtaining linear phase paraunitary filters by interleaving smaller 
systems. 

Let e , ( z )  denote the columns of the matrix E(z ) .  Then, it 
can be seen from the construction of the matrix E ( z )  that 
the columns satisfy the condition 

e j ( z )  = k z - N e M -  I - i ( z - l ) .  (5.15) 

This is sufficient to prove that E ( z )  has linear phase 
filters. U 

Lemma 2 gives us a way to synthesize larger parauni- 
tary systems from smaller ones. Thus, one can obtain a 
M channel linear phase paraunitary filter bank by using a 
schematic as shown in Fig. 7.  Here, Lemma 2 is repeat- 
edly used to synthesize the odd component on each level. 

VI. M-BAND ORTHONORMAL WAVELETS 
The wavelet transform [32]-[34], [13] is a representa- 

tion of a signal in terms of a set of basis functions which 
are obtained by dyadic dilations and shifts of a single 
function called the wavelet function. It provides a de- 
scription of a signal on various levels of resolution or 
scale. The wavelet transform has of late, found several 
applications in signal and image processing [34], [35]. 
One way of constructing the wavelet functions that gen- 
erate a basis [32] is by using a two-channel quadrature- 
mirror filter bank is an infinite tree. This idea of wavelets 
(henceforth referred to as dyadic wavelets) has recently 
been extended to the more general case of M-band 
wavelets [19], [20], [36]. It has been shown therein that 
a square integrable function f( t )  can be represented in 
terms of the dilates and translates of M - 1 functions 
+,(t), which are called the M-band wavelets. As in the 
case of dyadic wavelets, it has been shown [20] that 
M-band wavelets can be obtained by using a M-channel 
filter bank system in a infinite recursive tree-structure as 
shown in Fig. 8. M-band wavelets often provide a more 
compact representation of signals, and are therefore use- 
ful in several applications [2 13. 

It can be shown [20], that for the wavelet basis to be 
orthonormal, a necessary condition is that the M-channel 
filter bank used in Fig. 8 should be paraunitary. The the- 
ory developed in the previous sections allows us to design 
symmetric and antisymmetric wavelets that are also or- 
thonormal. This can be done simply by using the structure 
developed in Section I11 to generate the M-channel system 

1 Ho(Z) tM II 

I ,  

Fig. 8 .  A tree-structure using M-channel filter bank 

on each level of the tree. Consider the quantity 

*,(U> = (l/&)Hj(ejw/M) 
K 

lim n (l/&)Ho(e'"(M)-k) (6.1) 
I K A m  k = 2  

where Ho(eJ") is a rational (in fact FIR) filter. This con- 
verges pointwise for all U as long as (H,(ej")( I & and 
HO(ejo) = &. For the linear phase paraunitary system 
developed in Section 111, the filters can be written as 
~ , ( ~ j w )  = e -AN- l ) w / 2  HiR(u) ,  where HjR (U) is the real part 
of Hi(ei"), and we have 

(1 / JM) HiR(U) 
= e - j ( N -  l ) w ( M - '  + M-*+. ' . ) / 2  

K 

lim ]II ( l / & ) H O R ( ~ ( M ) - k )  (6.2) 
~ - t m  k = 2  

which becomes 

This is the Fourier Transform of an M-band wavelet func- 
tion and has linear phase. 

Convergence, Orthonormality and Regularity [32]: 
The RHS in (6.1) always converges pointwise as long as 
(Ho(eiw)I 5 &, and Ho,(ejo) = &. In the paraunitary 
case, if the filter Ho(eJ") has no zeros in the range 
[ - a / M ,  7 r / M ] ,  then convergence is also in the & sense, 
and the resulting continuous time functions form an or- 
thonormal basis for L2. The orthonormal family is 
Mk/2*ki(Mkt - l ) ,  i = 1 , 2 ,  3. These facts can be derived 
by extending the two-channel results of [37], [39]. 

Fig. 9 shows an example of 4-band orthonormal, linear 
phase wavelets and their associated scaling function. For 
this example, the lattice developed in Section IV was 
used, and the filters were of length 80 each. Ho(e iw)  was 
chosen such that it did not have any zero in the range 
[ - r / M ,  n /M] .  Furthermore, in the example, Ho(eio) = 
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0.10- 

0.08 - 
0.06 - 
0.04 - 
0.02 - 
0.00 

-0.02 - 

349 I 

IL 
I I I 

0.15- 

0.10- 

0.05 - 
0.00 

-0.05 - 
-0.10- 

-0.15 - 

0 2 0  4 0  60  

I 0 2 0  4 0  6 0  

0 20  4 0  60  

0 2 0  4 0  60  

Fig. 9 .  4-band linear-phase orthonormal wavelets. 

& has been verified because C ho(n) = fi. Together 
with paraunitariness, this implies that the continuous time 
wavelet basis is defined in [20], [36], 1381 would be or- 
thonormal. ([37, Theorem 21 can be extended for M 2 
2.) Therefore by power complementarity of the parauni- 
tary filter bank, Hk(eJo)  = 0, k = 1 ,  2, 3. By Theorem 3 
in [20], this implies that the filter Ho (e I") has at least one 
zero at the aliasing frequencies 27rk/M, k = 1, * * , 3 .  
This means that the continuous time wavelets have at least 
one vanishing moment [20], [38]. 

The condition that the continuous time wavelets have 
at least one vanishing moment can be written directly in 
terms of the lattice developed in Section 111, as was done 
for the general lattice in [20]. Now, the filters can be writ- 
ten in terms of the polyphase matrix E ( z )  as 

At w = 0, i.e., z = 1 ,  we need, 

Substituting the form of the linear phase paraunitary lat- 
tice from Section I11 and noting that A ( l )  = I ,  we have 

Now, with Ti having the form as in (3. lo), the product T 
= II := Ti also has the form 

T =  (: :). (6.7) 

Similarly, after substituting for the form of S from (3.13), 
condition (6.6) simplifies to 

As expected, this reduces to the set of M / 2  conditions 

where the column vectors are now of size ( M / 2 ) .  



3492 

I 

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 12, DECEMBER 1993 

8-channel NPR filter bank design (aliasing = -75 12db) 
_II 

normalized frequency 

Fig. 10. (Design ex. 3) 8-channel NPR filter bank design (aliasing = 
-75.12 db). 

Recall that SO can be chosen to be an arbitrary orthog- 
onal matrix for the factorization in Section 111. If we fur- 
ther wish to impose the condition (6.5), then we can ex- 
ploit this freedom in the choice of S O ,  and choose it so as 
to satisfy (6.9). It can be verified that the vector post- 
multiplying the matrix So in 6.9 has norm @. Given 
any vector of norm m, there exists a Hauseholder 

matrix Z - 2uut which turns the vector into (-:)'."I, 

0 

[ l o ,  pp. 7511. So there always exists an SO satisfying 
(6.9). 

VII. NEAR PERFECT RECONSTRUCTION LINEAR PHASE 
DESIGN 

The theory developed in the previous sections ap- 
proaches the problem of designing linear phase parauni- 
tary systems via structurally imposing the constraints on 
the filter bank. This results in factorizations of the poly- 
phase matrix. Another approach to designing these filter 
banks is to formulate the problem as a constrained opti- 
mization problem. While the resulting systems do not have 
perfect reconstruction, they are very close to being perfect 
reconstruction systems. In this section, we present a de- 
sign method to obtain the so-called near-perfect-recon- 
struction (NPR) linear-phase filter banks. The NPR filter 
banks have some small amplitude distortion and aliasing, 
however, as we will see, they have high stop-band atten- 
uation. This makes them useful in applications where 
small distortions can be tolerated. Let Hk(z)  and Fk(z)  be 
the analysis and synthesis linear-phase filters (lengths L)  
of a M-channel linear-phase filter bank, respectively. The 
synthesis filters are chosen to be Fk(z) = z ( ~ - ' ) H ~ ( z - ' )  

= Jk Hk(z) ,  where Jk is 1 (or - 1) for symmetric (or a_nti- 
symmetric) analysis filters. The reconstructed output X ( z )  
is 

In a perfect-reconstruction system, it is required that TO 
and Tl(z)  = 0 for 1 # 0. Define the error func- = - ( L  - 1) 

tion el ( z )  to be the difference between TI ( z )  and its desired 
functions, i.e.,  

then the objective of the NPR design method is to choose 
Hk ( z )  such that el ( z )  approximate 0. Moreover, Hk ( z )  must 
also have good frequency responses. Define the following 
objective function: 

M -  1 M -  1 

where (Yk are the weights (chosen by the user) and + k  are 
the stopband energies of H k ( e J w ) .  Similarly, P I  are the 
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-5.54447264221553 - 04 
1,98396953927873 - 05 
1.03311851347463 - 03 
3.12532018313433 - 03 
3.2525521320976E - 03 

-1.60210914628623 - 03 
-1.01399910222293 - 02 
-1.46573535208193 - 02 

2.37717218282813 - 04 
-1.43830782277933 - 03 
2.20536903762123 - 04 

-8.79720778580633 - 04 
5.41519975280593 - 03 
2.73817419369653 - 03 

-2.22018016165513 - 02 
1.45308115459053 - 02 

TABLE I11 

FILTERS h,(n), h,(n),  . . . ARE SYMMETRIC WHILE h ,  (n), h, (n) ,  . . . ARE 

ANTISYMMETRIC. FURTHERMORE, h,  - (n) = (-  l ) " h , ( n ) .  THE ALIASING IS 

-75 .12  db. THE STOPBAND ATTENUATION IS -63 db 

(DESIGN E X .  3)  FILTER COEFFICIENTS OF A 8-CHANNEL NPR SYSTEM. THE 

n W n )  I W n )  I hr(n) I 

8 
9 
10 

weights for $,, where 

PI  = / m y  eI(n)12. (7.5) 

In order to simplify and reduce the number of variables 
in the design problem, we impose the condition that the 
filters also satisfy the painvise mirror image property, i.e., 
HM- , - k ( z )  = H k (  - 2 ) .  We have provided three design 
examples in this section. In the tables, the filters with even 
indices are symmetric and those with odd indices are an- 
tisymmetric. Fig. 10 shows the magnitude response of an 
8-channel linear phase NPR system (Design ex. 3).  The 
coefficients have been tabulated in Table 111. Similarly, 
Tables IV and V give the impulse response coefficients 
for 4-channel NPR system (Design ex. 4) and 12-channel 
NPR system (Design ex. 5). In each table, the aliasing is 
defined to be the quantity 20 log,, [max,,/ IT,(e'")l], 
where T,(z) is as in (7.2). The minimum stop-band atten- 
uations of the analysis filters are also indicated in the table 
captions. 

-5,86317261340283 - 03 
1.74712723743473 - 02 
4.1 126463410573E - 02 

1.11239874485486 - 02 
1.49065187461966 - 03 

-7.9151202613239E - 03 

TABLE IV 

FILTERS h , ( n ) ,  h,(n) ARE SYMMETRIC WHILE h , ( n ) ,  AND h,(n) ARE 

ANTISYMMETRIC.  FURTHERMORE,  h ,  - r ( n )  = ( -  l ) " h p ( n ) .  THE ALIASING I S  
-70.97 d b .  THE STOPBAND ATTENUATION IS -59 db 

(DESIGN EX. 4) FILTER COEFFICIENTS OF A 4-CHANNEL NPR SYSTEM. THE 

n II ho(n) I ~ - hzln) 

3.96062125517253 - 02 -7.86712692717113 - 02 
0.13152350759896 

-9.78733107437753 - 02 4.32201169243693 - 02 
-0.1997629635921 6 -0.26641530036823 

15 -0.26742606716914 0.16653767332615 
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n 
0 
1 

TABLE V 

FILTERS h,(n),  h z ( n ) ,  ’ . ’ ARE SYMMETRIC WHILE h ,  (n), h , ( n ) ,  . . ’ ARE 
(DESIGN EX.  5) FILTER COEFFICIENT’? OF A 12-CHANNEL NPR SYSTEM. THE 

ANTISYMMETRIC. FURTHERMORE, h , ,  ~I (n) = ( -  l )”h,  (n). THE ALIASING 
IS -56.71 db. THE STOPBAND ATTENUATIOV I S  - 3 8  db 

h6(n)  h d n )  hio(n) 
-8.99472459403986 - 04 -1.25657015288826 - 03 1.67460400334626 - 03 

1.10969745667096 - 04 1.0253944460934E - 03 -2.10854473949466 - 03 
2 1.96495808737003 -03 I 1.55340716063656 - 04 2.67997659958173 - 03 

26 9 34831780396’296 - 02 
27 -4 5639634466781E - 02 
28 -8 d0815609816363 - 02 

-6 565%?71879257E - 03 
-7 7240684767883E - 02 

10369276196273E - 01 

9.6276722440921E - 02 
-8.W969707904GE - 02 

5.839943.5455862E - 02 

17 11 1 04044222101646 - 02 I 1 00544957391523 - 02 I 1 63444975558646 - 02 

n h o ( 4  I h d n )  I h s ( 4  

VIII. CONCLUSIONS 
In this paper, we studied in detail the theory, factor- 

izations and designs of linear phase paraunitary systems. 
In Section 11, we proved several results on linear phase 
paraunitary systems, which we used subsequently. Next 
we addressed the problem of designing linear phase para- 
unitary systems for an even number of channels M .  We 

13 
14 
15 

showed that such systems could be designed by a cascade 
structure which was proved to be minimal. The resulting 
filters are structurally linear phase paraunitary , i.e., these 
properties are preserved inspite of coefficient quantiza- 
tion. Moreover, we showed the completeness of this 
structure, i.e., all linear phase paraunitary systems satis- 
fying (2.1) can be generated simply by manipulating the 
coefficients of this cascade structure. Next, we imposed 
the further condition on the filters that they satisfy the 
pairwise mirror-image property in the frequency domain. 
The resulting structure has much fewer multipliers, which 
is useful for optimization. To summarize therefore, for 
these filter banks the following properties are guaranteed 
structurally, i.e., inspite of quantization of the multipliers 
(angles) : 

The filter bank is paraunitary, and therefore gives 
perfect reconstruction. 

The analysis and synthesis filters are time-reversed 
versions of each other. 

The analysis and synthesis filters are all linear phase. 
The filters in the analysis and synthesis banks both 

satisfy the pairwise mirror-image property in the fre- 
quency domain. 

Next, we extended this analysis to the case of filter 
banks with an odd number of channels M .  In particular, 
we showed two ways by which such systems could be 
realized. One was based on a factorization approach, and 
the other involved designing larger systems by succes- 
sively combining smaller systems in a certain manner. 

It is interesting to note that the linear phase property 
along with the paraunitary condition implies that the anal- 
ysis and synthesis banks are identical, upto a multiplier 
of f l  on some of the filters, i .e.,  F, ( z )  = fHj(z). 

We then considered two applications of the theory. The 
first was in designing symmetric and antisymmetric 
M-band wavelets which are also orthonormal. We also 
discussed the regularity condition in this context, and de- 
rived conditions on the factorization proposed so that the 
resulting wavelets had at least one vanishing moment. The 
second application we considered was in subband coding. 
From the data presented for lowpass speech, we conclude 
that the linear phase paraunitary systems with filters of 
small length give good coding gains. With the other spe- 
cial features of the filters mentioned before, we conclude 
that this structure is a good candidate for use in practical 
subband coding systems. 

1,0402761 127472E - 02 I 
1 23366295259001? - 02 I 
1 302458533%)2RE - 02 I 

I 7672796249409E - 03 
8 67635O8410123/..’ - 03 
I 7084146061403.E - 02 

-5  095190690X)TA29E - 03 
-8 66028337451446‘ - 0 3  

3 0006705031361 E - 03 

APPENDIX A 
Consider the matrix J,,, where M is even. The eigen- 

values of this matrix are k 1, and the corresponding ei- 
genvectors are the symmetric and antisymmetric vectors 
of size M .  We will refer to the two eigenspaces of the 
matrix .IM as the symmetric and antisymmetric eigen- 
spaces I ,  and Eo respectively. The basis for G ,  could be 
the set of vectors s,, i = 0, . . . ( M / 2 )  - 1, where all 

16 1 27272538W357E - 02 1 1 9377413759699E - (V2 2 20758928886826 - 0 2  

18 
19 
20 
21 
22 

6 46474364726246 - 03 
8 74608019362326 - 05 

-8 11116865577943 -03 
- 1  82473866619896 - 02 
-2 96399984661593 - 02 

-1 21772691086993 - 02 
-3 86653140976206 - 02 
-5 51581168493278 - 02 
-4 80685818957613 - 02 
-1 42671418652766 - 02 

-2  08878324791023 - 02 
-4 53448088602156 - 02 
-1 07462994836226 - 02 

5 26245542834946 - 02 
5 96228693373346 - 02 
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elements of the vectors si are zero, except si ( i )  = si (M - 
1 - i) = 1. Similarly, a basis for E, could be the set of 
vectors a , ,  i = 0, ( M / 2 )  - 1, where all elements of 
the vectors a, are zero, except a,(i) = - a i ( M  - 1 - i )  
= 1. Also, since the matrix JM is symmetric, the eigen- 
vectors span the whole space, and E ,  and E,  form a direct 
sum for the whole space. Now, consider any vector y .  It 
can always be written as y = U + U ,  where U E E ,  and U 
E E,. Let y be orthogonal to its own flipped version, i.e., 

* 

Hence we get, 

Noting that u T J M u  = uTu, uTJMu = - u T u  and u T J M u  
= 0, the above equation reduces to U T u  = U Tu.  Hence, 
the norm of the projections in the two eigenspaces has to 
be equal. We say therefore that the vector y which satis- 
fies (A. l )  is “balanced” over the two eigenspaces (or 
simply ‘‘balanced”). 

As noted above, the eigenvectors of the matrix J are 
symmetric and antisymmetric vectors (have linear phase). 
Furthermore, these eigenvectors are orthonormal. Hence, 
one would expect the eigenstructure of the J matrix to 
play a role in the synthesis of linear phase orthonormal 
systems. 

APPENDIX B 
From (3.28) we have W’f I + (O)JMf, + (0) W = 0, 

for any matrix W. This means that the columns of 
fm + I (0) W are balanced. Let the matrix W be so chosen 
that the first r columns of the matrix f ,  + , (0) W form an 
orthonormal basis for the columns of matrix f, + (0). De- 
note these r vectors as x,, i = l ,  - * * , r .  Hence, the 
vectors x, are balanced and orthonormal, i.e., xTx, = 0. 
Let x, = U,’ + U , ’ ,  where U: E E ,  and U,’  E E,. Therefore, 
(U: + u, ’ )~ (u , ’  + U , ’ )  = 0, which simplifies to 

(B. 1) 
Since the vectors x, are balanced, i.e., xTJMx, = 0, we 
have (U,’ + u , ! ) ~ J ~ ( u , ’  + U , ’ )  = 0, simplifying which we 
get 

u y u ;  + u:’u; = 0. 

u y u ;  = u,’Tu,’. (B.2) 
Equations (B.1) and (B.2) together imply that 11:~u; = 

0, and u:~u , ’  = 0. The vectors U ; ,  i = 1, * , r and 
U : ,  i = 1, * , r therefore form orthonormal bases for 
r-dimensional subspaces of E, and E,  respectively. In E,,  
there exist p = M / 2  - r orthogonal vectors U,’ , i = r + 
1, - - , M / 2  which are also orthogonal to the previously 
mentioned set of r vectors U ,‘ , i = 1, * * * , r .  Similarly, 
in E,, there exist p = M / 2  - r orthogonal vectors U : ,  i 
= r + 1, e . -  , M/2 which are also orthogonal to the 

, r .  
Now using these additional p orthonormal vectors from E, 
previously mentioned set of r vectors U :  , i = 1, * 

and E,, we can form p orthonormal, balanced vectors. 
With this construction, it can be verified that the set of 
M / 2  vectors xi = U,! + U , ! ,  i = 1, 1 . , M/2 satisfies 
the following properties: 

1) They are orthonormal and balanced. 
2) They are also orthonormal to the flipped versions of 

each other. Hence, if X T  is the matrix of size M/2 x M 
which has these vectors as its rows, this matrix satisfies 
the property XTJM fm + I (0) = 0. 
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