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Improved Newton-Type Algorithm for Adaptive 
Implementation of Pisarenko’s Harmonic 

Retrieval Method and Its Convergence Analysis 

George Mathew, Soura Dasgupta, and Vellenki U. Reddy 

Abstract-Pisarenko’s harmonic retrieval (PHR) method is probably 
the first eigenstructure based algorithm for estimating the frequencies 
of sinusoids corrupted by additive white noise. To develop an adaptive 
implementation of the PHR method, one group of authors has proposed 
a least-squares type recursive algorithm. In their algorithm, they made 
approximations for both gradient and Hessian. In this paper, we derive 
an improved algorithm, where we use exact gradient and a different 
approximation for the Hessian and analyze its convergence rigorously. 
Specifically, we provide a proof for the local convergence and detailed 
arguments supporting the local instability of undesired stationary points. 
Computer simulations are used to verify the convergence performance 
of the new algorithm. Its performance is substantially better than that 
exhibited by its counterpart, especially at low SNR’s. 

I. INTRODUCTION 

Estimation of frequencies of sinusoids corrupted with white noise 
(additive) is a problem of importance in many applications of signal 
processing. “Super-resolution” spectral estimation techniques are best 
suited for this signal model. Pisarenko’s harmonic retrieval (PHR) 
method [ 11 was perhaps the first of this kind. It involves determining 
the eigenvector corresponding to the minimum eigenvalue of the 
covariance matrix of the observed process. 

Let the observed data ~ ( n )  consist of the sum of P real sinusoids 
in additive white noise of variance U’ and R, be its asymptotic 
autocorrelation matrix of size N x N (LV 2 2 P  + 1). Suppose the 
N eigenvalues of R,, in decreasing order of magnitude, are 

( 1 )  

and the corresponding orthonormal eigenvectors are ql , . . . , q.v. 
Then, it is one of the last - 2 P  eigenvectors (corresponding 
to the (N - 2P)  repeated minimum eigenvalues) or any point in 
the subspace they span that is what the PHR method uses. These 
eigenvectors will be hereafter referred to as minimum eigenvectors. 

Recognizing that a minimum eigenvector is the solution of a con- 
strained minimization problem, Thompson [3] developed an adaptive 
version of the PHR method using a constrained gradient search 
procedure. Convergence properties of his algorithm were studied by 
Larimore [4]. Later, Reddy et al. [2] restated this problem into an 
unconstrained nonlinear minimization framework and developed a 
Newton-type recursive algorithm. They used approximations for both 
the gradient and Hessian of the underlying cost function. 

In this paper, we first present an improved version of the algorithm 
of [2], which incorporates the exact gradient and a different approxi- 
mation for the Hessian. This leads to an algorithm whose convergence 
performance is significantly better than that of its counterpart in 
[2], especially at low SNR’s. A key contribution of the paper is 
the convergence analysis given in Sections 111 and IV. We show 
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in Section 111 under mild assumptions that if the initial estimate 
is “sufficiently close” to the subspace spanned by qZp+l, . . . , qN , 
the algorithm converges to this subspace. Regarding the behavior 
of the algorithm in a global context, we give detailed arguments 
to establish the instability of the undesired stationary points (i.e., 

A brief review of the approximate Newton algorithm of [2] and the 
derivation of the improved version are given in Section 11. Section 
111 presents the local convergence proof and Section IV provides 
arguments supporting the local instability of undesired stationary 
subspaces. Section V gives some simulation results and finally, 
Section VI concludes. 

q*.i E {1:..,2P}). 

11. IMPROVED NEWTON-TYPE ALGORITHM 

The cost function used in [2] is 
i 

where e (  s) = ETx( s), B = a/[ la1 I with a being the coefficient vector 
o f s i z e A V x  1 a n d x ( s ) =  [ I ( S ) , Z ( S - ~ ) : . . , P ( S - - N + ~ ) ] ~ ,  the 
data vector at sth instant. The Newton-type algorithm proposed in 
[2] is given by 

a(k) = Ila(k - l)II(i+i(k - 1) - P(k)C(k)e(I;)) (3) 

<(k) = x ( k )  -a(k - l )e (k)  and 

.?(I;) =B(k - lyx(k).  ( 5 )  

In arriving at (3), they used the instantaneous gradient of V and 
the Hessian of V was approximated so as to facilitate a recursive 
updating for the inverse of the Hessian, P (k). However, the recursion 
for P(k) makes use of all the earlier coefficient vectors through 
P ( k  - i), i = 1, . . . , IC - 1. This is inconsistent in that the gradient and 
Hessian evaluated using the coefficient vector at the present instant 
need to be used in the Newton update. 

We now present the improved version. Consider the following cost 
function 

With e ( s )  = BTx(s), we can express the gradient and Hessian of 
I-‘ as 

1 
gz = -[R(t)Z - (BTR(t)B) .  a] I la1 I (7) 

1 
Hz = y [ R ( t )  + 4 ( Z T R ( t ) E ) Z i Z T  - 2R(t)SST I la1 I 

- 2 a T R ( t )  - ( Z T R ( t ) Z ) .  1 .~1  (8) 

where R(t)  = l / tCk=l x(s)xT(s). For reasons mentioned already, 
we approximate the Hessian as below 

1053-587X/94$04.00 0 1994 IEEE 

H2 M H z  = -[R(t) 1 + 4 ( B T R ( t ) E ) Z i Z T ] .  
Ila1I2 

(9) 
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Now, using (7) and (9) in the Newton update algorithm, we obtain 
the following algorithm 

a ( k )  = l ( k ) R - ' ( k ) a ( k -  1 )  (10) 

where Z(k),  R(k), and R-'(k) are enumerated in ( l l H 1 3 ) ,  which 
appear at the bottom of the page. Note that this algorithm not only 
uses the exact gradient but also both the Hessian and gradient are 
evaluated using the coefficient vector at the present instant. However, 
this algorithm requires an additional 2.5N2 multiplications compared 
to the earlier [2]. 

111. CONVERGENCE ANALYSIS OF THE NEW ALGORITHM 
In this section, we provide a proof of local convergence of the 

recursive algorithm, given in (10H13). The convergence analysis is 
based on the following two assumptions. 

1. Ergodicity: The underlying process {x(n)> is assumed to be 
ergodic. That is, 3R, such that R-l ( n )  of (1 3) obeys 

n-m lim R-'(n) = R i l .  (14) 

2. Richness: The data are assumed to be rich. That is, 3al > 0 
and a2 > 0 such that 

alIN 5 R-l(n) I LYzIN Vn 2 0. (15) 

Let Q = [q l , . . .  , q ~ ]  and = diag [?I, y2, ... ,y.rv]. In the 
analysis of convergence, it is important to specify a precise quantifi- 
cation of the distance between a ( k )  and the subspace of minimum 
eigenvectors of R,. Define 

b(k) = Q T a ( k )  and 

Clearly, f ( k )  = 0 implies a ( k )  is in the desired subspace. Premul- 
tiplying (10) with Q T ,  we obtain 

(17) 

where * ( k )  = Q'[R-'(k) - RL1]Q. The following Lemma will 
prove useful. 

Lemma: Under (14) and (15), the quantities in (17) have the 
following properties 

(18) 
1 1 

a1 
(19) 

4yz 2. limk,, * ( k )  = 0 
3. There exists ko and 64,65, 66 (all are positive scalars) such that 

V k  2 ko (with & , ( k )  denoting the i j th element of + ( I C ) )  

b(k) = Z(k)[r-' + S ( k ) ] b ( k  - 1) 

1. - 5 Z(k)  5 - V k  

1 
YZP 
- + 42P,ZP(k) 
, a. 

e. limk,, l$ t l (k)  - vI,,(k)l = 0 V2,j E { 2 P  + 
1 , .  . . , N }  (214  

(22) 

Now, observe that the underlying process goveming the behavior 
of f(k) in (16) is such (see (15) and (18)) that for every k0,36g 
such that 

6 5  64 
f. lQZ,(k)l < 8~ V i  # j. 

I f (ko) l  < 1 whenever If(0)l < €6. (23) 

Then, we have the following main result (proved in the appendix). 
Theorem There exists € 6  such that with If(0)l < €6 

lim f(k) = 0. (24) 
k-oo  

Iv. LOCAL INSTABILITY OF THE UNDESIRED SUBSPACES 
In Section 111, we have shown how the desired subspace, i.e., the 

space spanned by the minimum eigenvectors, is locally stable. In this 
section, we examine the behavior of the algorithm in a global context. 
Observe the following. Even in the ideal case of R( k)  = R, for all k ,  
one cannot guarantee global convergence since every eigenvector of 
R, is a stationary point of this algorithm. Further, all of the additional 
"stationary subspaces" are locally unstable. Hence, in practice, even if 
one starts exactly on any of these undesired subspaces, as R( k )  # R, 
for all k ,  the trajectories will leave these subspaces because of 
local instability and eventually be attracted to the desired subspace. 
Simulations given in Section V confirm this behavior. 

To support these points, consider the case where R( k) = R,Vk > 
0. Then, + ( k )  = 0 and b(k) = I ( k ) r - ' b ( k  - 1). Observe, if 
a ( k  - 1) = aq3 for some a # 0, then a ( k )  = aq,. Thus, the 
subspace aq, is an invariant subspace for any i .  

Now, suppose a ( k  - 1) is close to L y q z  for z E { 1 , .  . . , 2 P )  (i.e., 
b , ( k )  >> b,(k)Vi # j) with at least one of bzp+l(k),...,bnr(k) 
being nonzero. This results in I( k) M yz and b, (k) (?* /y,)b, ( k  - 
1)Vj. Thus, if yz < yJ, b, ( k )  decreases. More importantly, if ?2 > y3 
(i.e., j 2 2 P  + l ) ,  b , ( k )  increases exponentially at a rate faster 
than that experienced by b , ( k )  for j 5 2 P .  Thus, the algorithm 
forces the trajectories to move away from the vicinity of aq, for 
i E { 1 , .  . . , 2P) ,  toward the desired subspace. 

V. SIMULATION RESULTS 

The data samples were generated from 

x(n) = /3 sin(0.4.rrn) + ,5'sin(0.48~n + 0 )  + v(n). (25) 

The amplitude B was chosen to give the desired SNR, defined as 
1010g~,($~/2) .  The initial phase 8 (uniformly distributed in [-T, T]) 
and v ( n ) ,  a zero-mean white noise of unit variance, were varied from 
trial to trial of the Monte Carlo simulations. 

Z(k)  = 
5 .  I l 4 k  - 1)112 

'la(' - ')'I4 
aT ( k  - 1)R( k ) a (  k - 1)  

+ 4 a T ( k  - l ) R - l ( k ) a ( k  - 1) 

R(k) = -R(k k - 1  - 1) + ,x(k)x'(k)  1 k 

] V k >  2. 
R-'(k - l )x (k )x ' (k )R- ' (k  - 1) 
k -  1 + x r ( k ) R - l ( k -  l ) x ( k )  ' R-'(k) = - k - 1  
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Fig. 1 .  
to the largest eigenvector at 100th data sample. 
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Let e( IC) denote the estimated eigenvector (normalized to unit 
norm). Then, the performance measure (E) was chosen as the norm 
of that part of e ( k )  that lies outside the desired subspace. 

In our convergence proof, we assumed an appropriate initialization 
for a( IC). However, the following simulations illustrate that this 
assumption is not essential for the algorithm to converge (in line 
with the discussion in Section IV). Fixing N at 6, we ran the 
new algorithm up to 99 data samples. Then, we forced a(100) to 
ql and left the algorithm to run further. Fig. 1 shows the plots 
of error measure E for two different values of SNR, 0 dB and 
10 dB (for the same data realization). The error measure in the 
case of 0 dB SNR initially fluctuates wildly, whereas for 10 dB 
SNR, it falls off quickly. At the 100th data sample, it becomes 
the maximum possible because of the reinitialization of a( 100) to 
ql. Thereafter, it falls and fluctuates about a small value, implying 
that the vector a is moving away from q l  toward a minimum 
eigenvector. The larger fluctuations and residual error measure in 
the case of 0 dB S N R  are due to the well-known result on trade- 
off between the data size and the SNR; if the SNR is larger, the 
convergence of the data covariance matrix close to its asymptotic 
value is quicker. 

We repeated this with various data realizations and also with reini- 
tialization at different sample points. In all the cases, the algorithm 
essentially behaved as in Fig. 1 .  We also observed that moving away 
from the reinitialized point was faster when the SNR was higher. 
This is again due to the quicker convergence of R(k) close to its 
asymptotic value when the SNR is higher. Thus, these simulations 
show that appropriate initialization of the algorithm is not essential 
for the algorithm to converge. 

To see how the new algorithm performs (on average) compared 
to the earlier version [2], we conducted the following simulations. 
Fixing N = 6, we applied both of them to the same 100 different data 
realizations, computed the average error measure at each data sample, 
and plotted the results in Fig. 2(a)-(b). These figures correspond to 
0 dB and 10 dB SNR’s, respectively. Note from the plots that the 
new algorithm converges significantly faster than the earlier version, 
particularly at low SNR. As stated in [2 ] ,  at high SNR, the approx- 
imations made in the algorithm of [2] are good in the neighborhood 
of the desired subspace. Consequently, the convergence performance 
of their algorithm is much less affected by the approximations at high 
SNR. This is why the performance edge of the new algorithm drops 
as the SNR increases. 

O 3 p . i  
0 2  -: 

1 :,\ approx. new I 
0.1 ,..,\ / 

... .. .....-....., -----  
,... 

‘0 100 2M) 300 400 500 600 700 800 900 1000 

sample number 

(b) 

Fig. 2. Comparison of the convergence performance of the two algorithms, 
new and approximate versions (averaged over 100 trials). (a) For 0 dB SNR. 
(b) For 10 dB SNR. 

VI. CONCLUDING REMARKS 

In this correspondence, we derived an improved version of the 
Newton-type algorithm of Reddy et al. [2] for adaptively seeking 
the minimum eigenvector of the asymptotic covariance matrix of the 
data consisting of sinusoids in white noise. More importantly, we 
developed a proof of convergence of the new algorithm. Though 
we assumed an appropriate initialization of the algorithm in the 
development of the convergence proof, our experience with extensive 
simulations shows that such initialization is not essential for the 
algorithm to converge. 

We compared the convergence performance of the new algorithm 
to that of [2]. Simulations show that the new algorithm converges 
significantly faster than that in [2], particularly in the case of low 
SNR. 

Though we motivated the algorithm for the case of sinusoids in 
white noise, it is equally applicable to the case where the asymptotic 
covariance matrix is symmetric and positive definite. 

APPENDIX 

In this appendix, we prove the theorem of Section 111. But first, 
we develop the following preliminary result. 
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Lemma B: Consider a matrix D of size n x n. Suppose V i ,  3 ( ~ ,  I < 

d,, = X + E, and Id t j \  < 6 Vi  # j. (26) 

E, such that 

Then, Vy E R” 

IlDYll- 2 [I4 - n4lYll=. (27) 

Proof: Expressing D = XI, + n, we get from (26) that 
l(DIIw < ne. Then, it follows that 

IlDYllm 2 I4 IIYllm - I P Y l l =  

2 1x1 IIYIIW - 4 Y l l = = .  

Proofo f the  Theorem: Let @ ( k )  = l ( k ) [ r - ’  ++(IC)]. Partition 

b(k) = [wT(k) ,yT(k)IT (28) 

where w(k)  = [bl(k), . . . ,b,(k)lT and y(k) = 
[b,+l ( k ) ,  . . . , b ~ ( k ) ] ’  with T = 2P. Similarly, partition 
@(k) into @ w y , @ w w , @ y y ,  and @yw so that (17) becomes 

@ , w ( k )  @wy(k) ] [w“)] (29) 

b(k)  as 

[;;;f::] = [ @ Y W ( k )  @?4?4(k) Y(k) . 
Then, we have the following 

Thus, in view of (23), (35) implies that f ( k )  < 1 V k  2 ko.  Now, 
consider (34). Since & ~ ( k )  > Ss ,  it can be written as 

As (1  -S4) < (1 
from (36) that 

&/4) and limk-, ~ 1 ( k )  = 0, we can conclude 

lim f(k) = 0. 
k - o o  
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Design of Linear-Phase IIR Filters from FIR Specifications 

M. F. Fahmy, Y. M. Yassin, G. Abdel-Raheem, and N. El-Gayed 

Abstract-A simple method is presented for the characterization of a 
stable IIR filter matching a finite portion of the impulse response and 
autocorrelation coefficients of a given FIR filter. It is shown that the 
problem is reduced to the solution of a set of linear equations derived 
using the impulse response and autocorrelation data. The method is 
characterized by its computational simplicity and is illustrated by some 
examples to show its superior performance when compared to the existing 
methods. 

I. INTRODUCTION 

Several methods have been proposed to approximate an FIR 
filter by an IIR equivalent [1]-[3]. Nearly all these methods are 
nonoptimum in the sense of achieving the desired approximation 
but with increased degrees. Recently, two methods for FIR to IIR 
transformation have been described, [4]-[5]. Both methods rely on 
singular value decomposition (SVD) of the state covariance matrix 
of the original FIR to get the reduced-order IIR filter. Consequently, 
many computations are required, especially for large-order FIR. 
Compuations have also revealed that for a given FIR, both methods 
yield the same IIR filter in most cases. 

In this paper, we propose a method requiring only the solution of 
a set of linear equations for the characterization of a stable IIR filter 
matching a finite portion of the impulse response and autocorrelation 
coefficients of a given FIR filter. It is shown that the necessary 
conditions required in order that these data represent a stable IIR 
filter can always be met. Illustrative examples are given to show that 
the proposed method requires a far less number of computations and 
in most cases yields an improved response. In short, it competes very 
favorably with the existing approaches. 
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