
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42. NO. 2, FEBRUARY 1994 

R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays. 
New York: Wiley, 1980. 
D. S. Burdick, Private communication. 
D. D. Feldman and L. J. Griffiths, "A constraint projection approach 
to robust adaptive beamfoming,.q in proc, IEEE ICASsp-88, 1988, pp, 
1381-1384. 
J. L. Hunt, "Statistics relevant to the detection performance of adaptive 
beamfomers," Progress Rep. to R.A.E. under Contract no. AT/2040/0183 
A.U.W.W., 1982. 

cisco: Holden-Day, 1977. 

Schmidt preprocessor is obtained as a special case of the modular 
decomposition and relations are established between the parameters 
of both structures. 

The outline of this correspondence is as follows. In Section 11, a 
brief introduction to LCMV beamforming is provided and the Hilbert 
space formulation of the LCMV problem is given. The derivation of 
the modular StmCture is given in Section 111. Comparisons are made 

p. J. Bickel .& K, A. Doksum, Marhemarjcal Statistics, San Fran- between the structure and the Gram-Schmidt preprocessor 
in Section IV. A discussion of the results is provided in Section V. 

11. LINEARLY CONSTRAINED MINIMUM VARIANCE BEAMFORMING 

Let WX I denote the beamformer weight vector. The beamformer 
T .  output, y, due to the input, x = [q,. . . , s.~] is 
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Beamforming and the Gram-Schmidt Preprocessor 
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Abstract-An alternate derivation of the modular structure for linearly 
constrained minimum variance beamforming proposed in [l] is presented 
using a vector space approach. This approach eliminates the tedious 
algebra employed in [l] and establishes the relationship between the 
modular structure and the Gram-Schmidt preprocessor [3]. The modular 
structure is obtained using a factorization of the orthogonal projection 
operator in Hilbert space. The Gram-Schmidt preprocessor is a special 
case of the general modular decomposition. It is also shown that these 
structures offer computational efficiencies when multiple beamformers 
are implemented simultaneously. 

I. INTRODUCTION 
N linearly constrained minimum variance (LCMV) beamforming, I the beamformer weights are constrained by a set of linear equations 

[4]. The constraints are used to control the beamformer response 
over specified directions and frequencies. The weights are chosen to 
minimize output variance while satisfying the constraint equations. 
The generalized sidelobe canceller (GSC) is a an implementation of 
the LCMV weight vector that is well suited for adaptive algorithms. 
In [1], it was shown that the GSC could be decomposed into a cascade 
of adaptive modules, and the advantages of this decomposition were 
discussed. 

In this correspondence, we derive the equivalence between the 
GSC and the modular structure in a different manner. The problem 
is formulated as an optimization problem in a Hilbert space, which 
enables one to use the special properties of Hilbert spaces, and 
thus gain insight into the operation of the modular structure. A 
simple proposition is proved that establishes the factorization of the 
orthogonal projection operator analogous to the factorization used in 
the modified Gram-Schmidt algorithm [ 5 ] .  This approach eliminates 
the use of tedious algebra in the derivation of the modular structure. 
It is shown that the modular structure performs an orthogonalization 
of the estimation subspace similar to that performed by the Gram- 
Schmidt preprocessor [3]. Furthermore, it is shown that the Gram- 
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y = w  x. 

Here the superscript denotes complex conjugate transpose, and as 
a matter of convention, vector and matrix quantities will be denoted 
by boldface symbols. If Cvxr. and fLXl denote the constraint 
matrix and desired response vector respectively', then the LCMV 
beamforming problem is 

% n ~ H R ~  such that CHw = f (1) 

where R = E [ x x H ]  is the data covariance matrix and E[*] is the 
expectation operation. The constraint set in (1) is a linear variety 
in the ;V-dimensional complex Euclidean space, C". If wq = 
C(CHC)-'f2 and the columns of an N x ( N  - L) matrix C, 
form a basis for the orthogonal complement of the space spanned by 
the columns of C, then the constraint set r is given by 

r = {W E c" : w = wq - c n w n ,  wn E c " - ~  1. (2) 

Since the number of columns in C, is N - L ,  we say that the 
beamformer has N - L adaptive degrees of freedom. Let P = N - L. 
The linear variety r defined in (2) depends only on the span of the 
columns of C, and is independent of the particular choice of wq so 
long as it satisfies the constraint equation. 

If (12, F, f~) denotes an underlying probability space, then 

Lz = {z : E [ s ]  = O,E[lz12] < m} 

is a Hilbert space [2 ] ,  with the inner product defined as 

(sly) = E[Y*X] Vl,Y E Lz 

and norm defined by 

Without loss of generality, we shall assume that all random variables 
in this paper are elements of the LZ Hilbert space. Assuming R is 
positive definite, then E = span{x} is a N-dimensional Hilbert 
space3. Therefore, (1) is rewritten using (2) as 

H H Z  mwl,nllwqHx - w, c, XI1 , 

with the optimum beamformer weight vector w given by w = 
wq - C,W,. Hence, the beamformer output, y is 

(3)  H y = wq x - P(w,HxlM), 

' L  denotes the number of constraints ( L  < A\7). 
'C is assumed to be full rank. 
3Here span of a random vector denotes the span of the random variables 

that are the elements of the vector. 
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Fig. 1 .  The generalized sidelobe canceller. yaz> 
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Fig. 2. Decoupling of the adaptive and nonadaptive components. 

where M = span{u} and U = [ U ~ , . . . , U . V - - L ] ~  = C:x. 
P(wcxlM) denotes the projection of the random variable wqx 
onto the subspace M. The subspace M is called the estimation 
subspace or the adaptation space. The number of adaptive degrees 
of freedom is the dimension of the estimation subspace. The es- 
timation subspace depends on the span of the columns of C,,, 
not the specific C, utilized. It is easily shown that P is a linear 
operator. Application of the orthogonality principle [2] yields w, = 
(c:Rc,)-~c:Rw,. 

111. MODULAR DECOMPOSITION 

In block diagram form, (3) yields the GSC structure of Fig. 1. 
Using the linearity of the projection operator, (3) is rewritten as 

3, = w,H(x - P(x1,M)). ( 4 )  

Here, P(x1M) = [P(,l(M),...,P(T,l,M)]T. Equation (4) sug- 
gests the structure shown in Fig. 2. The i f h  column of the matrix 
I I (N-L)  x~ consists of the optimum coefficients used to predict x z  by 
a linear combination of the { I L , } : ~ .  Application of the orthogonality 
principle indicates that EIC:xxH(I - C,n) ]  = 0, yielding 

II = (CFRC:)-'C~L'R. 
In Fig. 2, the elements of the random vector z = [21,. . . , z & l T  are 
the error random variables, that is z = x - P(xl,U). 

Definition: A subspace ,U is a direct sum of two subspaces Mi 
and , 4 4 2  denoted by M = M1 6 M 2  if every m E M has a 
unique representation of the form m = m~ + m2 with ml E M I  
and m2 E M 2 .  

Definition: Two subspaces ,U1 and , U 2  are said to be orthogonal 
if for all ml E M I  and m2 E 

Unless otherwise stated we assume that the subspaces which form 
the direct sum of a subspace are mutually orthogonal or equivalently, 
that all direct decompositions are orthogonal direct decompositions 
(i.e., if M = .MI & M2 then M l I M z ) .  

Proposition: Let ,U c l-l be a P dimensional subspace and d E E.  
If M = MI & J U 2  then 

we have ( m ~ l m z )  = 0. 

d - P ( d l M )  = d - P(dlM1) - P([d - P ( d l i M l ) ] l M 2 ) .  (5 )  

Proof; d - P ( d I M )  = d - P(dlM1) - P ( d l M z ) ,  since 
M = M I  M z .  Now P(P(dIM1)IMn) = 0 because ,MIIJUZ 
and P(dlM1) E Mi. Thus, d - P ( d l M )  = d - P(dlM1) - 
P(dlM2) + P(P(dlM1)IMz)  from which (5) is obtained using 

0 the linearity of the projection operator. 
To simplify notation, let 

P,(dlM) = d - P(dl,M). 

That is, P, denotes the orthogonal projection operator. Alternatively, 
P,(dlM) = P ( d l M L ) ,  where M I  = {T  E l-l : (21~)  = 0 Vy E 
M} and l-l = M @ M'. Therefore, (4) and (5) are written as 

y = w,HP,(xIM) (6)  
' (7) P, ( d  I M ) = P, (P, ( d I M 1 ) I M 2 ) . 

If ,M = .MI . . . CE MQ, then (7) implies 

PL ( d  1;M ) = Pi ( .  . . PL. ( PL ( d l M  1 ) ( , U 2  ) 1 . . . IM Q ). ( 8 )  

The factorization of the orthogonal projection operator in (8) is 
analogous to the factorization of the P, operator in Euclidean 
space in the Modified Gram-Schmidt (MGS) algorithm [ 5 ] .  This is 
illustrated by the following example. 

Example: As shown in [5] ,  the primary difference in performing 
orthogonalization via the Classical Gram-Schmidt (CGS) algorithm 
and the Modified Gram-Schmidt (MGS) algorithm in complex Eu- 
clidean space C N  is the implementation of the orthogonal projection 
operator at each step. If at step i + 1 the orthonormal set of vectors 
are the column vectors of the Ai x i matrix Qt = [ql, . . . , q,], then 
the orthogonal projection operator at step i + 1 is given by the fi X fi 
matrix ( I-QzQH). This orthogonal projection operator is factored as 

(9) H ( I - Q , Q ~ =  ( I - q l q 3 . . . ( I - q t q  , 1. 
In CGS the P' operator is implemented directly as 1 - Q2Qfj, 
however in the MGS the P, operator is implemented in the factored 
form as a sequence of i linear transformations given in (9). This is 
analogous to (8) with the only difference being that the subspaces M ,  
need not be one dimensional. However, the factorization in (9) is valid 
even if the g, column vectors are matrices, provided the columns of 
g, are orthonormal and span mutually orthogonal subspaces. In this 
case the factorization in (9) is the Euclidean version of (8). 0 

The modular structure is now derived using (8). Since z = 
P,(xlM), if M = MI @ ... f2 MQ, then 

Z = p,(...~i(~,(Xl,Ml)IM2)l'" IMQ). (10) 

Equation (IO) establishes a procedure for computing z in Q stages 
provided the random variables that span M ,  are available at stage 
j. That is, if z, = P l ( z z - l l M , )  for i = l;..,Q with zo = 
x then ZQ = z. To obtain the orthogonal direct decomposition 
M 1 6 . . . % M Q  of the estimation subspace M a sequence of 
Q successive orthogonalizations are utilized, analogous to those 
employed in the Gram-Schmidt algorithm. Let c, = [cl,. . . , CQ], 
where C, has P, columns and let ut = CFx for i = 1,. . . , Q, where 
U, = span{u,}.  In general {Ut}?=, do not provide an orthogonal 
direct decomposition of M.  Therefore, to obtain an orthogonal direct 
decomposition of M, define 

(11) vZ = U, - P( U; IMo CE . . . %  ,Ut- 1 ). i = 1, . . . Q 
where MO is the span of the zero random variable and M,  = 
span{v, }. Equation (1 1) yields the orthogonal direct decomposition 
M = .M 1 % . . . @ MQ. Application of (8) to (1 1) yields 

v, = P, (. . . P, (P, (U, I M o  IM 1 ) 1 . ' . IM z - 1 1. ( 12 

Using the linearity of the projection operator (12) is equivalently 
written as 

V, = C ~ P L  ( *  . . Pi ( P, (xlMo ) IM 1 I . . . IM 2- 1 ). ( 13) 

Since P,(xl,Mo) = zo (13) is rewritten as 

(14) H v2 = C, zZ-1 i = 1,. . . . Q. 

Equations (10) and (14) are combined to obtain the modular structure 
shown in Fig. 3. Each stage of the structure performs an orthogonal 
projection as described in (IO), that is PL(Z~-IIJW~) = (1 - 
C,rII,)HZ*-l. 
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Fig. 3. The general modular decomposition. 

Fig. 4. The Gram-Schmidt preprocessor. 

Iv. GRAM-SCHMIDT PREPROCESSOR AND THE MODULAR STRUCTURE 

The set of Q equations described in (11) is analogous to the 
Gram-Schmidt algorithm and is identical if the submatrices C, are 
column vectors, in which case the u,'s are scalar random variables. 
It follows that if C, are column vectors, the modular structure 
orthogonalizes the set {U], . . . , UP} via the MGS4 algorithm to yield 
the orthogonal set { V I ,  . . . , UP} This is precisely what is done in the 
Gram-Schmidt preprocessor [ 3 ] .  The Gram-Schmidt preprocessor is 
a structure that solves (3) via the MGS algorithm and is most similar 
in operation to the modular structure shown in Fig. 3 when the C, 
are column vectors. The Gram-Schmidt preprocessor orthogonalizes 
{ U ~ , . . . , U ~ , W ~ X }  as follows: 

ut = P.L(u~IMo CE ... CE Mt-i) i = I , . . .  , ( P  + l ) ,  (15) 

where for notational convenience  UP+^ = wfx and as before 
M, = span{u,} with MO the span of the zero random variable. 
It then follows from (15) that up+] = y. If the orthogonal projection 
operator in (15) is implemented using (8), then the Gram-Schmidt 
preprocessor is obtained, that is 

The Gram-Schmidt preprocessor is shown in Fig. 4, where J r  = 
[ O P + ~ - ~ ~ ~ , I P + I - ~ ]  and t, is a P + 2 - i column vector with a 
one in the ith position and zeros everywhere else. At the ith stage, 
ut is computed and all the projections into M, are performed, and 
hence the computation described in (16) is implemented in a parallel 
manner. 

The primary distinction between the modular structure and the 
Gram-Schmidt preprocessor is the transition from (12) to (13). 
Hence, the difference between the two structures is a direct result 
of the linearity of the projection operator. To illustrate this further, 
consider the equivalent GSC representation shown in Fig. 5. This 
representation follows directly from (3). Here, e = [0, . . . , 1IT and 
TH = [ I P , O P ~ ~ ] .  Applying the modular decomposition to the 
structure in the dashed box (i.e., T N C, and e - w q )  with T 
partitioned into single columns yields a structure of the same form 
as that represented in Fig. 3. Unlike the general case, this structure 

4Since the orthogonal projection operator of (11) is factored using (8). 
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Fig. 5. Equivalent representation of the GSC. 

can be further simplified. In the first stage the random variable U I  
is used to predict itself which implies the first element of n, is 
1 and the first element of the random vector zl is 0. Therefore, 
a reduction in the dimension of the input to the second stage is 
possible. Repeating similar arguments for the remaining stages yields 
the Gram-Schmidt preprocessor shown in Fig. 4. The random vector 
outputs and filter parameters of the structures in Fig. 3 (assuming 
the C, are column vectors) and Fig. 4 are related as follows: if 
A, = [Ct+l,. . . , C P ,  wql,  then 

x, = (A t )Hz l  

wt = n,A,  

i = 1,. . . , P. 

i = l , . . .  , P. 

V. DISCUSSION 

Often in practice the mathematical expectation used in the previous 
analysis is replaced by a sample mean. For instance, if we have 
available M different samples of the beamformer input denoted by 
{ ~ [ n ] } y = ~ :  where M > N, then the sample covariance matrix is 
given by R = (1/M) Er=, x[n]xH[n], and the sample variance 
(output power) of the beamformer is given by wHRw. Minor 
modifications to the previous analysis are required to accomodate the 
replacement of the mathematical expectation with the sample mean. 
The same notation is used in order to draw analogies with the previous 
work. Let X = [x[l], . . . x[M]] be a N x M matrix consisting of the 
beamformer inputs and the 1 x M row vector y = wHX consist of 
the beamformer outputs. The previous analysis is now repeated noting 
that L2 space is replaced by M-dimensional complex Euclidean 
space CM with the standard inner product inducing the Euclidean 
2-norm. The random variables of the previous analysis are now M -  
dimensional row vectors elements of C M .  For example, the random 
variables z1 in the previous analysis are now replaced by the row 
vectors x1 where x, is the i t h  row of the N x M matrix X and 
the row vector y plays a role analogous to the random variable y 
of the previous analysis. One then proceeds to show the equivalence 
between the structures of Fig. 1 and Fig. 2 and so on. 

It follows that application of sample matrix inversion (SMI) 
adaptive algorithm yields identical outputs and convergence rates for 
all the structures discussed previously since it is based on replacing 
the mathematical expectation by the sample mean. Application of the 
recursive least squares (RLS) adaptive algorithm is equivalent for 
the GSC of Fig. 1 and the structure in Fig. 2 for the same reasons. 
Application of the least mean square (LMS) adaptive algorithm yields 
identical outputs and convergence rates for the GSC and the structure 
in Fig. 2 as is easily verified by the LMS uptate equations. In 
general, application of the LMS and RLS adaptive algorithms yields 
different convergence rates when applied to the structures of Figs. 1, 
3, and 4. Use of the SMI adaptive algorithm with the Gram-Schmidt 
preprocessor corresponds to the well known method of solving the 
least squares problem by the MGS algorithm [5]. 

If the T matrix of Fig. 5 is partitioned arbitrarily and then 
the modular decomposition is applied, a different structure than 
the Gram-Schmidt preprocessor is obtained. This structure may be 
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Fig. 6. Implementation of multiple beamformers. 

L1.l 

L i t 1  

Fig. 7. Implementation of multiple beamformers via the Gran-Schmidt 
preprocessor. 

referred to as the block Gram-Schmidt preprocessor since it performs 
the orthogonalization of the estimation subspace in blocks. 

Efficient simultaneous implementation of multiple beamformers 
is possible with the modular structure. To illustrate, let C1 and 
CZ denote constraint matrices of dimension AV x 151 and S x LZ 
respectively for beamformerl and beamformer2 with f 1  and f2 the 
corresponding response vectors. Define U = [CI, Cz] and L = 
L1 + Lz. Assuming L < iV, the orthogonal complement of the 
subspace spanned by the columns of U is spanned by the columns of 
an N x (N - L) matrix U. It follows that the orthogonal complement 
of the span of the columns of C1 is spanned by the columns of 
the matrix C,, = [U,D1],  and the orthogonal complement of the 
span of the the columns of CZ is spanned by the columns of the 
matrix CrrZ = [C,Dz] for appropriately chosen D1 and Dz. These 
two beamformers are implemented simultaneously using the modular 
decomposition structure shown in Fig. 6. In this figure, wql and wq2 
are Ai X 1 column vectors that satisfy the constraint equations for the 
two beamformers. It is straightforward to extend this approach and 
simultaneously implement more than two beamformers. 

Simultaneous implementation of multiple beamformers is more 
computationally efficient than separate implementation because the 
adaptive degrees of freedom common to each beamformer are updated 
by the common preprocessor. For instance, if the two beamformers of 
the previous example are implemented separately using the modular 
decomposition, a total of N ( 2 X  - L )  adaptive weights need to be 
computed or updated at each iteration of an adaptive algorithm. In the 
implementation described in Fig. 6, there are a total of adaptive 
weights that need to be updated or computed at each iteration of 
an adaptive algorithm. Thus, this implementation offers a savings of 
N ( N  - L )  adaptive weights. 

Note that simultaneous implementation of multiple beamformers 
is also possible with the Gram-Schmidt preprocessor. The block 
diagram shown in Fig. 7 depicts a Gram-Schmidt preprocessor that 
simultaneously implements the two beamformers described previ- 
ously. In Fig. 7, the common preprocessor consists of X - L stages 
that are identical in form to the initial stages of the Gram-Schmidt 
preprocessor of Fig. 4. Let uc = C H x ,  M, = span{u,} and UIZ  = 

[DI, w q l l  Dz. wq2IHx,  then the ouptut of the common preprocessor 
is a dimension (L  + 2) x 1 random vector x, = ’Pl(ulzlMc).  The 
first LZ + 1 elements of this vector are inputs to preprocessor1 and 
the remaining L1+ 1 are inputs to preprocessor2. There are LZ stages 
in preprocessorl and L1 stages in preprocessor;?; both are identical 
in form to the initial stages of the Gram-Schmidt preprocessor. If 
[ u l , d l , u z , d ~ ] ~  = x, where u1 is LZ x 1 and u2 is L1 x 1, 
then y1 = Pl (d l l span(u1) )  and yz = P l ( d ~ l s p a n ( u 2 ) )  are 
the outputs of preprocessor1 and preprocessor2, that is y1 and y2 
are the outputs of beamformerl and beamformer;? respectively. The 
simultaneous Gram-Schmidt preprocessor implementation of Fig. 7 
uses ( N  - L ) ( N  - L - 1) /2  fewer adaptive weights than separate 
Gram-Schmidt preprocessor implementation. 
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On Constructing Regular Filter Banks 
from Domain Bounded Polynomials 

L. M. G. M. Tolhuizen, I. A. Shah, and A. A. C. M. Kalker 

Abstract-The design of regular two-channel bi-orthogonal filter banks 
is shown to be reducible to the design of pairs of real polynomials 
with domain bounded to the interval [-1,1]. Techniques for designing 
polynomials satisfying various constraints are outlined. Transformation of 
polynomials to multidimensional bi-orthogonal filter banks is presented. 

I. INTRODUCTION 
In this correspondence we will be concemed with the design 

of critically sampled, 2-channel, zero phase bi-orthogonal (BO) 
filter banks (FB) [3], [17]. The approach we follow is to reduce 
the design of 1-D zero-phase BO FB to the design of appropri- 
ate real polynomials on the interval [-1,1]. These polynomials are 
then transformed to yield 1-D and also multidimensional (m-D) 
zero-phase BO FB. A 1-D BO filter bank of the above class is 
characterized by the pair of filters {GO, H o }  in the low-pass channel. 
The filters in the high-pass channel are up to an even delay given 
by { Z - ’ G ~ ( Z ) , Z H ~ ( Z ) }  = {z-’H~(-z),zGo(-z)}. With this 
restriction, the perfect reconstruction (PR) property of the filter bank 
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