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Deterministic Analysis of Oversampled
A/D Conversion and Decoding
Improvement Based on Consistent Estimates

Nguyen T. Thao and Martin Vetterli, Senior Member, IEEE

Abstract—This paper deals with the deterministic analysis of
oversampled A/D conversion (ADC), the properties derivable
from such an analysis, and the consequences on reconstruc-
tion using nonlinear decoding. Given a bandlimited input X
producing a quantized version C, we consider the set of all
input signals that are bandlimited and produce C. We call
any element of this set a consistent estimate of X. Regardless
of the type of encoder (simple, predictive, or noise-shaping),
we show that this set is convex, and as a consequence, any
nonconsistent estimate can be improved. We also show that the
classical linear decoding estimates are not necessarily consistent.
Numerical tests performed on simple ADC, single-loop, and
multiloop ©A modulation show that consistent estimates yield
an MSE that decreases asymptotically with the oversampling
ratio faster than the linear decoding MSE by approximately
3 dB/octave. This implies an asymptotic MSE of the order of
O(R~?"+2)) instead of O(R~"*1)) in linear decoding, where
R is the oversampling ratio and n the order of the modulator.
Methods of improvements of nonconsistent estimates based on
the deterministic knowledge of the quantized signal are proposed
for simple ADC, predictive ADC, single-loop, and multiloop A
modulation.

I. INTRODUCTION

IGH-resolution analog-to-digital conversion (ADC) of

bandlimited signals is often achieved by oversampling,
or sampling at higher than the Nyquist rate, rather than
increasing the resolution of the amplitude quantization. In
the simple ADC case, where the values of the oversampled
discrete-time input signal are quantized individually, the signal
reconstruction is based on the fact that only a fraction of the
quantization error power lies in the input signal bandwidth.
The global ADC resolution is then improved by low-pass
filtering the quantized signal at the cut-off frequency equal
to the maximum input frequency f,,,. In the best case, where a
certain number of conditions are verified [1], the quantization
error signal can be satisfactorily modeled as white noise. In
this situation, low-pass filtering reduces the mean square error
(MSE) of the reconstructed signal by a factor equal to the
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Fig. 1. Power spectrum of quantized signal with the assumption of white
quantizing error: (a) Simple ADC; (b) single-loop A modulation.

oversampling ratio R = (fs/2fm) (see Fig. 1(a)), where
fs is the sampling frequency. This method of reconstruction
is the best that can be achieved with linear processing of
the quantized signal. This will be called the linear decoding
method.

The question is whether the in-band error remaining in
such a reconstruction is irreversible or can be further reduced.
Note that increasing the oversampling by 2 decreases the error
power by 2, whereas increasing the amplitude quantization by
2 leads to a reduction of the error power by 4 (since the error
squared has a (A2/12) behavior, where A is the quantization
step size). This asymmetry is disappointing since a bandlimited
signal with bounded amplitude has a limited slope. Thus, one
expects that a variation along the amplitude dimension, or at
least an upper bound, is linearly equivalent to a variation along
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the time dimension. This lack of symmetry is a hint that linear
decoding might be suboptimal not just by a fixed amount but
rather by a factor dependent on R.

Very often, quantization is analyzed using statistical meth-
ods, even though it is essentially a deterministic operation.
Using a deterministic analysis, we show in Section III that
the information missing in the linear decoding method is
the consistency constraint. We call a reconstruction of an
analog input signal consistent when it reproduces the same
quantized signal if it is to be requantized. Then, it is shown
that a nonconsistent estimate can be necessarily improved
due to convexity properties. We propose methods of improve-
ments based on convex projections. Consistent estimates can
be indeed approached by iterating these convex projections
(alternating projection method). Numerical tests show that
under certain conditions on the input quantization threshold
crossings, the MSE of consistent estimates is proportional to
R~? instead of R™! in linear decoding. Thus, we recover
the symmetry between time and amplitude as expected. This
implies an improvement of the MSE reduction by 3 dB per
octave of oversampling. This result is proved in [2].

The same questions can be posed for more sophisticated
types of encoding in oversampled ADC, such as predictive
ADC and noise shaping ADC [3]. These encoders include an
internal processing of the error made by the quantizer that
reduces the overall spectral density of the error contained
in the quantized output signal (predictive ADC) or the in-
band portion of this error (noise-shaping ADC). Again, signal
reconstruction is classically based on a linear filtering of the
quantized signal. Fig. 1(b) shows the typical power spectral
density of the quantized signal in single loop ¥A modulation.
In the case of nth-order ¥A modulation and under the
assumption of white quantization noise, it was shown in
[3] that the in-band error included in the quantized signal
has a power of the order of O(R~(3»+1). Although the
white quantization noise assumption does actually not hold
[1], this approach leads to good prediction of the linear
decoding performances. We show in Sections IV and V
that the same deterministic approach that we used in simple
ADC can be applied to predictive ADC and single- and
multiloop ¥A modulation (which are examples of noise-
shaping ADC). As a generalization of simple ADC, we show
that the consistency constraint is not satisfied in the linear
decoding schemes. However, the principles of improvement of
nonconsistent estimates are exactly the same. Algorithms for
convex projections are proposed for these more sophisticated
encoding schemes. Numerical tests performed for the single-
and multiloop cases (Section V) show that the MSE of
consistent estimates has an asymptotic behavior of the order
R~(7%2) jnstead of R~(*"*1 in linear decoding. Under
simplified assumptions, this result was shown in [4]. This again
represents an asymptotic improvement of the MSE reduction
by 3 dB per octave. A large portion of this improvement can
be achieved with finite complexity algorithms.

Relation with Previous Work: Convex projection are stan-
dard in signal and image reconstruction [5]. In the field of
image quantization, convex projections were used in [6] for
the reconstruction of images given by multiple-level threshold
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crossings. In oversampled ADC and XA modulation, the
notion of consistent estimates, the convexity of the set of such
estimates, and the use of convex projections were introduced
in [7], showing the potential for asymptotic improvements.
Further studies of such schemes were done in [8]-[11]. The
proofs of asymptotic improvement in simple ADC can be
found in [7], [9], [2] and [11], and in [9], [4], and [11] for
YA modulation with restrictive assumptions. Detailed proofs
of convexity and algorithms for convex projections using the
deterministic information of quantized signals are given in [9]
and [11]. A study of the bandlimitation orthogonal projections
is proposed in [10] and [12].

II. MATHEMATICAL CONTEXT AND NOTATIONS

A. Continuous-Time and Discrete-Time Signals

Continuous-time signals, which are denoted by X [¢], are real
signals and are assumed to be observed on a finite length time
interval 0, Tp]. The error between two signals X [t] and X'[t]
is measured by the MSE equal to (1/Tp) [2° | X'[t]— X [t]]?dt.
We assume that continuous-time signals are sampled /V times
in the interval ]0, Tp] at instants (k/N)Tp,k =1,---,N. The
discrete-time signals are thus elements of R and denoted as
Y = (Y(k))k=1,....n. The sampled version of a continuous-
time signal X[¢] is the discrete-time signal X such that
X(k) = X[(k/N)Ty) for k =1,---,N.

B. Space RY of Discrete-Time Signals

Notations relative to R" are defined here. Subsets of RY
are designated by calligraphic letters (e.g., A, B,C). If C is
a subset of RY,C + X denotes the translated version of C
by X, that is, C + X = {Y + X/Y € C}. A mapping of
RY is a function H mapping any element of R" into another
unique element of RY denoted H[X]. The notation I denotes
the identity mapping. If H is a one-to-one (or invertible)
mapping, H~! designates the inverse mapping. If H; and
Hy are two mappings of RY,H,H, is the mapping such
that HyH,[X) = Ho[H,[X]]. If C is a subset of R, H[C)
and H~![C] designate the forward and inverse images of C
through H respectively (H need not be invertible). When C
is reduced to a singleton C = {C}, by abuse of notation,
H-1'[C] is denoted by H~![C]. With this notation, when
H is not invertible, H=1[C] is a subset of R", that is,
H™'[C] = {X € RN /H[X] = C}. For illustration purposes,
we show here an example of use of these notations, which
will be used later in this paper. If C is an element of RY and
H, G, @ are three mappings of RY where H is invertible, then
H-1[Q~'[C]+G[C]] is a subset of R™, which is constructed
as follows:

i) Q7'[C] is a subset of RY, which is the inverse image

of C through Q.
ii) QY[C]+ G[C] is the subset Q~'[C] translated by the
fixed element G[C] of R".
iii) H~'[Q![C]+G[C]] is the forward image of the subset
Q~'[C] + G[C] through the mapping H 1.

Finally, for X € RY, we define the norm ||X]|| =

(/N)EY, X ()P,
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C. Space V of Bandlimited Signals

The considered continuous-time signals are assumed to
be perfectly bandlimited with cut-off frequency f. This
implies that they have an infinite support or have nonzero
values outside intervals of any finite length. However, as
already stated they will be observed only on the finite interval
10, 7o), as is always the case in practice. Even in the case
of oversampling, Shannon’s sampling theorem does not lead
to uniqueness of reconstruction if the known samples are
limited to the interval ]0,Tp]. We therefore introduce an
approximation of bandlimited signals that will allow us to
recover Shannon’s uniqueness. We assume that the energy
outside |0, Tp) of the considered signals is small enough and
decays fast enough so that their restrictions to ]0,Tp] are
“almost equal” to the periodized versions, which are obtained
by subsequently adding their translated versions by multiples
of Tp. By “almost,” we mean that the error made by this
approximation (or aliasing error) is at least small compared
with other sources of errors existing in the ADC process, such
as those due to quantization, for example. In the frequency
domain, this means that the Fourier transform of a bandlimited
signal is approximated by its discrete frequency version, where
the period of discretization is equal to fo = (1/T). Therefore,
the approximation consists of saying that the restrictions of
input signals to the interval ]0, Tp] are elements of the space
V of all possible signals bandlimited by f,, and T periodic.

We therefore propose to study the behavior of oversampled
ADC when input signals are in general elements of V. These
signals have the form

M
X[t = Y Xel?mit/1o)
i=—M
where
X_;=X!fori=0,---,M %))

and M = (fmm/fo) (we assume that fo is chosen to be an
divisor of f,,). Therefore, V is a real vector space of dimension
2M +1. As a finite dimension version of Shannon’s sampling
theorem, it can be shown that a signal X[t] of the space V
is uniquely represented by its sampled version X as soon as
N > 2M + 1(N is analogous to the sampling frequency and
2M + 1 to the bandwidth). It can also be shown that when
N > 2M + 1, if X and X’ are the sampled versions of two
signals X[t] and X’[t] of V, then || X’ — X||2 equals the MSE
between X [t] and X' [t]. Because of the uniqueness feature and
this property of distance preservation, the bandlimited signals
will be implicitly considered in their discrete-time version, and
V will be considered as a subspace of RY . In the oversampled
situation, that is N > 2M + 1,V is a subspace of R" in the
strict sense. The oversampling ratio R = N/(2M + 1) gives
the ratio between the dimensions of R™ and V.

III. SIMPLE OVERSAMPLED ADC

The basic mechanisms resulting from a deterministic anal-
ysis of oversampled ADC can be easily demonstrated in the
case of simple ADC. Their detailed description is necessary in

X
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Fig. 2. Representation of quantization as many-to-one mapping: (a) Single
sample quantization; (b) discrete-time signal quantization.

order to convey the basic concepts and prepare the framework
for generalization to predictive and noise-shaping ADC.

A. Deterministic Description of Quantization

In a deterministic approach, quantization is simply a many-
to-one mapping of RY . In the particular case of N = 1, where
signals are reduced to single sample values, quantization is a
mapping of R (denoted by g) such that whole intervals of R,
which are called quantization intervals, are mapped into single
discrete values, which are called quantization levels (see Fig.
2(a)). The quantization interval corresponding to a quantization
level ¢ is denoted by ¢~ 1[c]. The second characteristic of the
quantization mapping is that it is a consistent mapping. By
this, we mean that for all quantization levels ¢, g[c] = c or
¢ € ¢~ Yc]. In practice, ¢ is typically chosen to be the center
of the g~ '[c].! This will be assumed in this paper. When
quantization is uniform (this will not be necessarily assumed),
the quantization intervals have a common length, which is
denoted by A and called the quantization step size.?

In the general case where N > 1, quantization is a mapping
Q of RY such that

VX € RV,
C=Q|X]|<Vk=1,--,N,C(k) = q[X(k)].

! Actually, a quantizer has a finite number of quantization levels, and the
two extreme quantization intervals are necessarily infinite. If ¢ is one of the
two extreme quantization levels, it is typically chosen to be the center of
g~ '[c]N B, where B is the specified bounded region of input samples, which
is called the nonoverload region.

2For the extreme quantization intervals, it is implicitly ¢~ [c] N B, which
has length A,
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Fig. 3. Geometric representation of the information “X € C(C)(V” in
simple ADC (uniform quantization).

We say that C is the quantized version of X. Rigorously
speaking, if an input signal X € RY is known only by
its quantized version C, the full information available about
X is “X € C(C)” where C(C) is the set of possible input
signals with quantized version C. By definition, we have
C(C) = Q1[C), where

Q_l[C] = {Y € RN/Vk = la"'vN’Y(k) € q—l[C(k)]}

Therefore, when quantization is uniform, C(C) is a hyper-
cube of RY (see Fig. 2(b)) and C is its geometric center. In
the more general case of nonuniform quantization, C(C) is a
rectangular hyper-parallelepiped.

Now, in oversampled ADC, we have the extra information
about the input signal that it belongs to V. We therefore have
the following proposition.

Proposition 3.1: In oversampled ADC, when a bandlimited
signal X is only known by the quantized signal C it produces
through the encoder, the full information available about X is

“X ec)ny.

This information is represented geometrically in Fig. 3.

B. Consistent Estimates

The goal of signal decoding in oversampled ADC is to
reconstruct an estimate X of an original input signal X from
its quantized version C. Since the knowledge of C implies
the information “X € C(C) NV,” it is tempting to pick as
estimate of X an element X of C(C) N V. For reasons which
will become clear later, we are particularly interested in the set
of estimates C(C) N'V. We propose the following definition.

Definition 3.2: When C is the quantized signal produced
by a bandlimited input signal X, the elements of C(C) NV
are called the consistent estimates of X.

We show that when an estimate of X is not consistent, then
by necessity it can be theoretically improved by a consistent
estimate. This is based on the fact (which is easy to verify) that
C(C) and V are convex sets and the two following lemmas.

3To be rigorous, Q! [C] may not be bounded. However, the picture of
hypercube or hyperparalleleplped with C' as geometric center holds when

taking C(C) = H[C) n BY, which simply assumes that mput signals X
belong to the nonoverload reglon or X(k)e Bfork=1.---.N
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Fig. 4. Geometric representation of the nonconsistency of the linear decoding
estimate P, [C] in simple ADC.

Lemma 3.3 [13]: Let Y be an element of RY and S a
closed set. There exists a unique element Y’ of S such that for
all Z € S,||Y'-Y| <2 - Y|| The transformation from Y
to Y’ it then a mapping of RY called the convex projection
on S and is denoted by Ps.

Lemma 34 [14]: IfY’ is the convex projection of Y on a
closed set S and Y ¢ S, then for all Z € S,||Y' — Z|| <
Iy - 2.

It is easy to verify that S = C(C) NV is convex. Applying
Lemma 3.4 to S = C(C)NV and using the fact that X €
C(C)NV, we obtain the following property.

Property 3.5: Let X be a bandlimited signal producing
the quantized signal C. Let X be a nonconsistent estimate
of X, that is, X ¢ C(C)N V. Then, the convex projection
b'd ,of X on C(C) NV is a consistent estimate of X and
I - XI| < [IX - X||

This implies that when X is a nonconsistent estimate of
X, the knowledge of X and C gives enough information to
characterize a consistent estimate that is always better than X.

C. Nonconsistency of Linear Decoding

We show in this section that linear decoding in oversampled
ADC does not necessarily provide consistent estimates. This
can first be seen geometrically. Linear decoding consists of
low-pass filtering the quantized signal C' at cut-off frequency
fm. In the space RY, this amounts to performing an orthogonal
projection of C on the subspace of bandlimited signals. In
other words, the linear decoding scheme provides as estimate
of X the projection on V of the center of the hypercube C(C).
As indicated in Fig. 4, unless the cube C(C) lies at a particular
“angle” with V, there is no reason for this estimate to belong
to C(C).

Fig. 5 shows a concrete example of this nonconsistency
in the time domain. A bandlimited signal is generated nu-
merically, sampled at the oversampling ratio R = 4, and
quantized. The figure shows that the estimate X obtained from
low-pass filtering the quantized signal C' does not belong to
C(C) since, for example, the samples X (11) and X (12) do not
belong to quantization intervals ¢~*[C(11)] and ¢~*[C(12)],
respectively.
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Fig. 5. Time representation of an example of nonconsistency of a linear
decoding estimate P, [C]. The samples of Pv[C] at time indices k = 11,12
do not belong to the quantization intervals ¢~![C'(11)] and ¢~ ![C(12)],
respectively.

D. Methods of Improvement of Nonconsistent Estimates

Property 3.5 gives the mathematical justification for possible
improvement of nonconsistent estimates but does not really
provide a method to achieve it. In fact, a method for at least
partial improvement can be obtained by applying Lemma 3.4
on either S = V or § = C(C). If the nonconsistent estimate X
does not belong to V, then according to Lemma 3.4, it will be
necessarily improved by a projection on V, which is a low-pass
filtering at cut-off frequency fr,. Similarly, if X ¢ C(C), an
improvement can be achieved by using a projection on C(C).*
This projection is performed by the following algorithm, which
is similar to the algorithm introduced in [6] for 2-D image
reconstruction.

Algorithm1

At every instant k

i) if X(k) € ¢~Y[C(k)], take X'(k) = X (k)

ii) else, take X’ (k) equal to the bound of the quantization

interval ¢=2[C(k)] closest to X (k).

Qualitatively speaking, the algorithm consists in projecting
each sample X (k) on the quantization interval ¢~1{C(k)] in-
dicated by the quantized value C(k) when X (k) ¢ ¢~ *[C(k)].
It is easy to verify that this leads to an estimate X', which is
the projection of X on C(C). In particular, this projection
algorithm can be used for immediate improvement of the
linear decoding estimate since this corresponds to the case
X (k) ¢ ¢ 1[C(k)]. This improvement is illustrated in Fig. 5
by the dark arrows.

In fact, as long as an estimate does not belong to C(C)
or V, a projection on either C(C) or V can be reiterated, thus
implying further reductions of the distance between the current
estimate and X. The obtained improvement will always be an
increasing function of the number of iterations.

E. Conceptual Method for Consistent Reconstruction

It was shown in [14] that alternating projections infinitely
between two intersecting convex sets necessarily converges to
the closure of their intersection. This property became the basis
of the algorithm of alternating projection classically used in

4To be precise, the improvement is strict when X ¢ C(C).

signal processing and first introduced by Youla [15] for image
reconstruction. In our case, this property ensures that the limit
of alternating projections between C(C) and V constitutes a
consistent estimate of X. Numerically speaking, this implies
that a consistent estimate can at least be approached using
finite step alternating projections.

F. Analytical Comparison Between Linear
and Consistent Decoding

Starting the alternating projection scheme from the estimate
provided by linear decoding is a way to find a consistent
estimate that automatically improves this decoding scheme.
The question is now to have an analytical evaluation of this
improvement. Our approach is to find an upper bound to any
consistent estimate of X and compare it with the expected
MSE of a classical estimate. In [2], we derived the following
theorem:

Theorem 3.6: Let X be a bandlimited signal such that its
continuous-time version X [{] crosses the quantization thresh-
olds at least 2M + 1 times in the interval ]0,7p]. Then,
there exists a constant o, > O that does not depend on the
oversampling ratio R such that, for R high enough, if C is the
quantized version of X[t] at ratio R, then

X - X|]2 < 2=

vX ec(C)nV, T

This is to be compared with the classical decoding MSE, which
is proportional to (1/R). This means that under the special
condition on the quantization threshold crossings of Theorem
3.6, the consistent decoding MSE asymptotically decreases at
least at the rate of 6 dB per octave of R instead of 3 dB per
octave for the linear decoding MSE. Regardless of the value
of @, this means that the speed of MSE reduction is improved
by 3 dB per octave of R when R is high enough.

G. Numerical Evaluation of the Performance of Consistent
Reconstruction Using Alternating Projections

Numerical tests were performed to evaluate the performance
of consistent estimates obtained by alternating projections with
respect to the oversampling ratio R. For a given number
2M + 1, bandlimited signals of the form (1) were randomly
generated with the constraint that they cross the quantization
thresholds at least 2M 41 times. This is ensured by imposing a
minimum to their peak-to-peak amplitude (PPA). For example,
in uniform quantization with step size A, when 2M + 1 =3,
the PPA is forced to be equal to 2A, ensuring that the input
signals have at least three quantization threshold crossings.
Then, for a fixed oversampling ratio R, the quantized version
of each of these input signals was computed, as well as
an approximately consistent estimate obtained by alternating
projections. The linear decoding estimate was used as the
first estimate in the projection iteration, and the alternating
process was stopped as soon as the estimate MSE decrement
per iteration was less than 0.001 dB. The resulting MSE is
averaged over all randomly generated input signals. Although
this MSE is not the MSE of rigorously consistent estimates,
since the iteration of alternating projections is finite, one can
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be sure that the consistent estimates obtained from infinite
iteration would necessarily yield an even smaller MSE.

The evolution of the averaged MSE versus the oversampling
ratio is plotted in Fig. 6; in the case where 2M + 1 = 3,
quantization is uniform, PPA = 2A, and R varies approx-
imately between 20 and 170. The MSE is averaged over
1000 generated input signals. In the same figure, we plot
the MSE predicted by the classical decoding model equal to
(A%/12)(1/R), whose slope is —3 dB/octave. Note that with
PPA = 2A, the number of the quantization level is limited
to 3. With this very low quantization resolution, it is known
that the classical decoding MSE no longer decreases by 3
dB/octave since the quantization error signal becomes corre-
lated to the input signal. The solid curve of Fig. 6 obtained
by computer simulation of the linear decoding shows that
oversampling no longer reduces the real linear decoding MSE,
which stagnates. For consistent estimates, there is no such
stagnation, and the slope of —6 dB/octave is experimentally
verified.

IV. PREDICTIVE OVERSAMPLED ADC

A. Encoding with Preprocessing

Predictive encoders belong to the more general family
of encoders that include some analog preprocessing of the
discrete-time input signals before quantization. We will show
that this preprocessing can be described as a one-to-one map-
ping of RY, as shown in Fig. 7. Such an encoder can be seen
as a many-to-one mapping, where for a given quantized signal
C, the set input signals producing C is C(C) = F1[Q~}[C]].
Then, the same approach of signal reconstruction as in simple
ADC can be considered with this new expression of C(C).
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Fig. 8. General block diagram of a predictive encoder.
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The general block diagram of a predictive encoder is shown
in Fig. 8 [3], [16]. It includes the particular case of A
modulation, when G is a discrete-time integrator. In general,
we will only assume that G is a strictly causal mapping
of RV, that is, when D = G[C],D(k) only depends on
c(),---,C(k = 1) for k = 1,---,N. In particular, D(1)
is a constant G; independent of C.

We show in Section IV-B that a predictive encoder indeed
belongs to the family of encoders described by Fig. 7, where
the one-to-one mapping F' can be expressed in terms of G and
Q. Then, the resulting expression of C(C) will show that C(C)
is still a rectangular hyper-parallelepiped of R" as in simple
ADC. The notion of consistent estimation can be applied, and
linear decoding nonconsistency and methods of improvement
will be studied as extensions of the simple ADC case.

B. Deterministic Description of Predictive Encoding

The equivalence of a predictive encoder with the block
diagram of Fig. 7 is based on the following lemma:

Lemma 4.1: I + GQ is a one-to-one mapping of RY.

Proof: For a given X € RY, suppose there exists

A € R such that X = (I + GQ)[A]. Let D = G[Q[A]].
This implies that A = X — D. From the assumption of
strict causality of G, we know that D(1) is a constant G
independent of the input of G. Therefore, A(1) is uniquely
defined. Now, suppose that for a certain k =1,---,N — 1, we
have proved that A(1),---, A(k) are uniquely defined from
the knowledge of X. Then, D(k + 1) is uniquely defined
from g[A(1)],---, q[A(k)] because G is strictly causal. This
uniquely defines A(k + 1) = X(k+ 1) — D(k + 1). We have
therefore proved by induction that when A exists, it is uniquely
defined. This induction actually shows an explicit construction
of A and therefore gives at the same time the existence proof.
Therefore I + GQ is an invertible (or one-to-one) mapping.[]

As a consequence, we have the following two propositions.

Proposition 4.2: The predictive encoder of Fig. 8 has the
general structure of Fig. 7 where the preprocessing one-to-one
mapping is

F=(I+GQ)™". @)

Proof: The signal A defined in Fig. 8 verifies A =

X — G[Q]A]), which implies that (I + GQ)[A] = X. We

have from Lemma 4.1 that / + GQ is a one-to-one mapping.

Therefore, A = F[X], where F = (I + GQ)™*. O

Proposition 4.3: The set of signals producing a quantized
signal C through the predictive encoder of Fig. 8 is

c(Cc) =Q7'Cl+G[O]. A3)
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Fig. 9. Linear decoding in predictive ADC.

lowpass X
filter

Proof: Applying Proposition 4.2, we have

ce)=FQe) = (I +G6Q)MR™C]
=1[Q7'[C]] + GIQ™'[Cl = Q7'[C] + ¢[C].8

This means that as in simple ADC, C(C) is a rectangular
hyperparallelepiped of R (or a hypercube if quantization
is uniform) since it is equal to the rectangular hyperparal-
lelepiped Q~'[C] translated by the vector G[C] of RY.

The main point is that Proposition 3.1 relative to the encoded
information in the oversampling situation is still applicable in
the case of predictive encoding, and the geometric represen-
tation of this information is still that of Fig. 3 since C(C) is
a hypercube.

C. Consistent Estimates and Nonconsistency
of Linear Decoding

We have the same notion of consistent estimates (Definition
3.2), and Property 3.5 is still valid. Let us show that the
linear decoding scheme does not necessarily provide consistent
estimates. The way to reconstruct an input signal X using the
output C in linear decoding is to low-pass filter the signal

= (I + G)[C] as shown in Fig. 9 (3], [16]. Since C is
the center of Q[C], then C = C + G[C] is the center
of Q7!C] + G[C] equal to C(C). Therefore, as in simple
ADC, linear decoding consists in performing an orthogonal
projection of the center of C(C) on V. This is still represented
by Fig. 4, where C has to be replaced by C. Therefore, linear
decoding estimates are not necessarily consistent.

D. Methods of Improvement of Nonconsistent Estimates

As in simple ADC, the principle of projection, with the
option of alternating projections, can be used to improve
nonconsistent estimates. The projection on C(C) is slightly
modified since the new expression of C(C) derived from
Proposition 4.3 is

cC)={Y eR/Vk=1,--,N,
Y (k) € ¢7'[C(k)] + D(k), where D = G[C]}.

In this expression, note that ¢~*[C(k)] + D(k) is simply the
quantization interval ¢~'[C(k)] translated by the real value
D(k). This leads to the following algorithm.
Algorithm 2
Step 1) Calculate the signal D = G[C].
Step 2) At every instant k
i) if X(k) € ¢ [C(K)] + D(k). take X'(k) = X (k)
ii) else, take X'(k) equal to the bound of the interval
~“HC(k)] + D(k) closest to X (k).
We propose an equivalent form to Algorithm 2, which
may look more complicated but whose principle will be used
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* boundaries of the interval q'] [C(k)] shifted by D(k)

Fig. 10. Representation of the solution Y to Step 2 of Algorithm 2’.

for future generalization to ©A modulation. This consists of
performing a change of variable by taking X (the estimate to
be projected) as the origin of the space R™. Then, looking
for the signal X', which is the prolecuon of X on C(C)
amounts to looking for the signal ¥ = X - X which is

the projection of the zero signal on C(C) — X. Note that
C(C) - X = Q-YC] + D, where D = G[C] — X. This
leads to the following algorithm:
Algorithm 2’
Step 1) Calculate the signal D = G[C] -

Step 2) At every instant k
i) if 0 € ¢~ [C(k)] + D(k), take Y (k) =
ii) else, take Y (k) equal to the bound of the interval
¢~ [C(K)] + D(k) closest to 0.
Step 3) Calculate the signal X =v+X%
The computation of the signal Y in Step 2 has the simple
graphic representation shown in Fig. 10.

E. Remarks on Predictive Encoding

The same notion of consistency and principles of decoding
improvement as in simple ADC can be applied to predictive
ADC, although this type of encoding includes a preprocessing
transformation before quantization. The improvement of con-
sistent decoding over linear decoding could also be studied
in this case [11]. However, the main purpose of the section
on predictive encoding is to prepare the study of the more
important case of ©A modulation on which we concentrate
in the next section.

V. SINGLE-LOOP AND MULTILOOP A MODULATION

A. Structure of Multiloop £ Modulation

The block diagram of an nth-order multiloop XA modu-
lator, including the particular case of single-loop modulation
(with n = 1), is shown in Fig. 11(a) [17]-{20], [3]. This is a
particular case of noise-shaping encoding. As shown in Fig. 6
of [3], a noise-shaping encoder is, in general, equivalent to the
composition of a linear operator H and a predictive encoder
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Fig. 12. General structure of a noise-shaping encoder [3].

of feedback operator G, with the particular relationship
H=I+G. “4)

This is represented in the block diagram of Fig. 12. We show
the details of this equivalence for multiloop A modulation
in Fig. 11(b). Note that every integrator node is initialized at
value zero. The case where the initial condition is unknown
will be considered in Section V-G. With the assumption of zero
initial condition, the mapping H is an nth-order integrator,
which is linear and invertible. The inverse H~! is an nth-
order discrete time differentiator. One can also check that G
is strictly causal and that (4) is satisfied.

B. Deterministic Description of Multiloop
YA Modulation Encoding

Using the properties of predictive encoders derived in
Section IV, we immediately have the following propositions.

Proposition 5.1: The noise-shaping encoder of Fig. 12 has
the structure of Fig. 7 where the preprocessing one-to-one
mapping is

F=(1+GQ)'H. (5)
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Fig. 13.  Geometric representation of the information “X € C(C) N V” and
nonconsistency of the linear decoding estimate P, [C] in ©A modulation.

Proposition 5.2: The set of signals producing a quantized
signal C through the noise-shaping encoder of Fig. 12 is

C(C) = H'[Q'[C) + G[C]). (6)

Since Q~1[C] + (/;JC] is in general a rectangular hyper-
parallelepiped of R", and H~! a linear mapping, then C(C),
although not necessarily rectangular, is still a hyperparal-
lelepiped in R™. Proposition 3.1 relative to the encoded
information in the oversampling situation is still applicable,
but the representation of this information is modified as shown
in Fig. 13. The deformation of C(C) is due to the mapping
HL.

C. Consistent Estimates and Nonconsistency
of Linear Decoding

We again use the notion of consistent estimates with its
associated property (Property 3.5) and show once again that
linear decoding is not necessarily consistent. We recall that
in noise-shaping encoding, linear decoding consists of low-
pass filtering the quantized signal C. Once again, one would
guess that C is the center of C(C). We have the following
proposition.

Proposition 5.3: In noise-shaping encoding, C is the center
of C(C).

Proof- An element C’ is the center of the parallelepiped
H7YQYC] + G[C]] if and only if H[C'] is the center
of the parallelepiped Q![C] 4+ G[C]. This is because H
is linear. However, the center of Q~1[C] + G[C] is simply
C + G[C]. Then, using (4), we have C' = H~1[C + G[C]] =
H-'Y(I+G)[C)=H'H[C]=C. 1

Then as in simple ADC, linear decoding consists of per-
forming the orthogonal projection of the center of C(C) on V.
Therefore, as can be seen in Fig. 13, linear decoding estimates
are not necessarily consistent.

D. Methods of Improvement of Nonconsistent Estimates

We first describe a general scheme for the design of algo-
rithms for the projection on C(C). Then, we will separately
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consider the case of single-loop modulation and the case
of higher order modulation. The formulation of the scheme
starts with the same idea of change of variable proposed in
Algorithm 2’ for predictive encoding, which will prove to
be particularly convenient in the present case. The difference
here is that we include the invertible mapping H in the
change of variable. From Lemma 3.3, the prOJectlon of X on
C(C) is the signal X which minimizes ||X X|| subject
to the constramt X e C(C). By the change of variable
Y=H [X — X, this amounts to finding the signal Y, which
minimizes the functional ||H ~1[Y]|| subject to the constraint
Y € H[C(C) - X]. Using the expression of C( )} from
Proposition 5.2, we simply have H[C(C)—X] = Q7Y[C]+D,
where D = G[C] — H[X].

In addition, minimizing ||H ™!
where

[Y]|| is minimizing ¢(Y')

#(¥) = S IH WP

The projection algorithm is therefore as follows.
Algorithm 3
Step 1) Calculate the signal D = G[C] - H [X].
Step 2) Find the minimum Y of ¢ subject to ¥ €
Q~'C) + D.

Step 3) Calculate the signal X =H YY)+ X

Step 3 is essentially the computation of an nth-order
discrete-time derivative. Step 2 is a problem of minimization
of a quadratic functional under convex constraints. From the
theory of convex analysis [21], there exists a characterization
for the minimum in such a problem. Since the gradient of ¢ is
involved in this characterization, we introduce the following
notation.

Notation 54: V4 denotes the mapping of RY such that
for any Y € RN, Z = V4[Y] is the signal whose kth value
Z (k) is the partial derivative of ¢(Y’) with respect to Y (k) or
Z(k) = (94(Y)/0Y (k).

Then, the characterization of the minimum is given by the
following lemma.

Lemma 5.5 [21]: A quadratic functional ¢ has a unique
minimum in a convex set S. It is the signal Y such that

YeS§

N

and VY’ €8, Z(k)
k=1

Z = V,[Y). @)

~(Y'(k) - Y (k)) 2 0,

where

1) Case of Single-Loop £ A Modulation: In  single-loop
YA modulation, H is a first-order integrator. In this case,
the expression of V4 is given by the following property.

Property 5.6: Forany Y € RY, if Z = V,4[Y], then

Vk=1,---,N, Z(k)
=—{Y(k+1)-Y®)]-[Y(k) -Y(E-1]} ®
with the convention Y(0) = Y(N +1) = 0.
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Fig. 14. Representation of the solution Y to the “Thread algorithm.”

Proof: Since H~™! is the first-order discrete-
time differentiator, then #(Y) = (1/2)[|H'[Y]I? =
(/)N [Y(G) - Y(G - 1) Fork=2,---,N ~1

_9¢(Y)
(k) = oY (k)
=[Y(k)-Y(k-1)]-[Y(k+1)-Y(k)]
One can check that Z(1) = Y(1) — [Y(2) — Y(1)] and
Z(N) = [Y(N) — Y(N - 1)] — Y(N). All these cases are
summarized in (8). O

Then, when Z = V4[Y],Z(k) is minus the change of
slope of Y about time index k. Applying Lemma 5.5 on
S = Q'[C] + D and using this property, we derive an
algorithm for the computation of Step 2 of Algorithm 3.
This algorithm was first introduced in [7]. We present it in
a “physical” manner.

“Thread algorithm”

i) Represent graphically in the time domain the set of con-

straint Q~![C] + D as sequence of the quantization intervals
~1C(k))] translated by D(k) (see Fig. 14).

i) Attach a “thread” at node (k = 0,Y(0) = 0), and pull
it taut with a horizontal force between the constraints defined
by these intervals (arrows in Fig. 14).

iiiy Fork=1,---,N,take Y(k),k > 1 on the path of the
resulting thread position (see Fig. 14).

Let us show that the signal Y thus obtained is the minimum
of ¢ subject to Q}[C] + D. It is sufficient to prove that
Y satisfies the criterion (7). First, it is obvious that Y €

~1[C] + D. Then, whenever Z = V,[Y] is nonzero or
a change of slope occurs about time k, the thread touches
a constraint (in Fig. 14, at k = 5,9,12,14). However, the
change of slope is always opposite to the direction from the
constraint. For example, in Fig. 14, the change of slope is
negative only when the arrow of contact goes up (k = 5,9)
and vice-versa (k = 12). When an arrow of contact goes up,
for example at k& = 5, then for any other admissible signal
Y’ € Q7 '[C] + D, we necessarily have Y'(k) — Y (k) > 0.
Similarly, if an arrow of contact goes down at k(k = 12), then
Y’'(k) — Y (k) < 0. Since Z gives the opposite of the slope’s
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Fig. 15. Representation of the solution Y to Step 2 of Algorithm 3 for
second-order £A modulation.

variation, we have just shown that whenever Z(k) # 0, then
Z(k) and Y'(k) — Y (k) have the same sign. This implies (7).

Although it is presented in a physical manner, this algorithm
can be easily translated in terms of computer operations.

2) Case of n-Loop ¥A Modulation with n. > 2: The pro-
jection on C(C) in the general case of order n > 2 is
quite involved. In this section, we will only sketch the main
ideas used for the design of the algorithm. More detailed
explanations can be found in [9] and [11].

With the single-loop configuration, the “thread algorithm”
gave the signal Y, which meets the constraints and, at the same
time, minimizes the mean squared “slope.” For an n -loop
configuration in general, the functional ¢ to minimize is the
nth-order discrete-time derivative. For example, when n = 2,
we will have to minimize the “curvature” of the signal. This
is similar to the problem of constrained thin flexible beam in
the field of mechanics. Fig. 15 shows the solution minimizing
the “curvature” under the same constraints as in Fig. 14.

Unfortunately, in the nth-order case, performing the direct
projection on C(C') in one step as in the single-loop case is
not possible. Iterative algorithms from the theory of nonlinear
programming [22] could be used. However, the aim is to find
a single transformation based on the knowledge of C, which
leads to a necessary improvement of the estimate. This would
give us the freedom to use it once or to alternate it with the
projection on V.

The algorithm we designed for the nth-order case is able to
perform a projection on a convex set which is different from
C(C) but satisfies the following two properties:

i) It includes C(C).

ii) It does not contain the estimate X.

Therefore, according to Lemma 3.4, projecting X on such
a convex set necessarily ensures the improvement of X as
estimate of X since X € C(C) is an element of this convex
set. Instead of projecting X on C(C) = H-YQ Y [Cl+G[e),
the idea is to project X on the larger set

Cx(C) = H Q7' Sk(C)] + G[C]]
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where Sk (C) is the set of signals that coincide with C on
a certain subset of time indices K C {1,---,N}. More
precisely,

Sk(C)={C' € R" /Vk € K,C'(k) = C(k)}.

It is easy to show that Cx(C) is a convex set that includes
C(C). This is true for any choice of K C {1,---,N}. For a
given K, only Step 2 of Algorithm 3 has to be modified, where
the minimization of ¢(Y) is subject to the new constraint
Y € Q7'[Sk(C)] + D. We designed an algorithm which
solves Step 2, where the subset K is progressively constructed
in time and such that X ¢ C(C). The improvement achieved
by this algorithm has been numerically evaluated. The results
are presented in Section V-F.

E. Analytical Comparison Between Linear
Decoding and Consistent Decoding

Similarly to the simple ADC case, to measure the improve-
ment achieved by applying alternating projections on the linear
decoding estimate, we also propose to evaluate an upper bound
to the MSE of any consistent estimate of an input signal X
of V. In the context of LA modulation, this analysis is quite
difficult. Failing to describe the real behavior of consistent
estimate analytically, a first approach is at least to derive the
MSE behavior of a consistent estimates when making some
simplifying assumptions.

When quantization is uniform with quantization step size
A and when an input signal X is fed into the multiloop
encoder of Fig. 11, the signal C — 4 = (Q — F[X],
which is commonly called the quantization error signal, is an
element of the subset [—(A/2),(A/2)]Y of RN (we assume
that X is chosen so that the quantizer is not overloaded). As
a theoretical test, we considered in [9], [4], and [11] what
MSE would be obtained if, for a certain domain of input
signals X € D C V,(Q — I)F[X] was assumed to have a
uniform density in the subset [—(A/2), (A/2)]V. It was found
that the MSE of consistent estimates averaged over the input
signals X € D is upper bounded by (8y/N2"*2), where N
is assumed high enough, and £y is a constant independent of
N. This implies the MSE upper bound (ag/R?"*2), where
g = Bo/(2M + 1)2"*2. Although this result is based on an
ideal assumption that is not necessarily verified in reality, it
gives a good prediction of the results of numerical tests we
performed.

F. Numerical Evaluation of the Performance of Consistent
Reconstruction Using Alternating Projections

Experiments similar to the case of simple ADC were per-
formed on single-bit single-loop, two-bit double-loop, and
three-bit triple-loop XA modulation. The quantizers were
uniform with step size A. Input signals were chosen to have
2M+1 = 7 as bandwidth and were constrained to have (A/2)
as maximum amplitude. The oversampling ratios were chosen
between approximately 18 and 585. For each experiment, the
decoding MSE was averaged over 600 randomly generated
input signals. In Fig. 16(a), we show the comparison between
the linear decoding and alternating projection schemes. The
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Fig. 16. Dependence of the decoding MSE with the oversampling ratio for single-bit single-loop, two-bit double-loop, and three-bit triple-loop A modulation:
(a) Comparison between linear decoding and consistent decoding approached by alternating projections; (b), (c), (d) decoding MSE normalized with the
theoretical noise shaping equation (9) for linear decoding, consistent decoding approached by alternating projections, and finite step alternating projections:
(b) Single-bit single-loop configuration; (c) 2-b double-loop configuration; (d) 3-b triple-loop configuration.

projection iteration was stopped as soon as the MSE decrement
per step was less than 0.1 dB. Each step is a projection
on C(C) followed by a projection on V. This figure shows
that the linear decoding scheme yields an MSE slope of
—(2n + 1) x 3 dB/octave and that the alternating projection
scheme increasingly improves this MSE reduction with the
oversampling ratio, regardless of the encoder’s order.

Fig. 16(b)~(d) shows this improvement separately for the
three types of encoders. To emphasize the MSE slope ten-
dency, we plotted the difference (normalized MSE) between
the measured MSE and the theoretical linear decoding MSE
given from [3] by

7r2n
n+1

A2

2
where oy = TR
One can see that when R is high enough, the MSE obtained
from the alternating projection scheme decreases with R
faster than the linear decoding MSE by approximately 3
dB/octave. This means that the global asymptotic MSE slope

2
TA

MSE (linear decoding) = Fanil’

©)

achieved by the alternating projection scheme is —(2n+2) x 3
dB/octave. This confirms the improvement of the asymptotic
behavior from O(R~("t1)) 1o O(R~("+2)) for consistent
reconstruction, which is discussed in the previous section. Fig.
16(b)—(d) also show that a substantial fraction of the total
improvement obtained by “infinite” alternating projection is
achieved with very limited numbers of iteration (one to three
steps).

G. Unknown Initial Conditions

In this section, we show that the control of the initial
conditions of a multiloop modulator is not essential for the
deterministic approach of signal reconstruction. Suppose that
the initial condition is no longer zero, but A(()O), e Aé"fl), Co
as shown in Fig. 17. Then, it can be verified that feed-
ing this encoder with X is equivalent to feeding the zero
initial condition encoder of Fig. 11 with X + I, where
I is the signal defined as follows: I is zero everywhere

except at the n first instants k& = 1,---,n where I(k) =
SR ()R- (22 (ASTY — Cp). We call I the initial
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Fig. 17. Multiloop A modulator with nonzero initial conditions.

condition signal. This means that, rigorously speaking, we no
longer have X € C(C),but X +I € C(C)or X € C(C) — L.
In practice, n is almost zero compared with the total number
of samples N (typically n < 4). Therefore I is negligible and
practically X € C(C).

At first, it might appear that unknown initial conditions
make the use of the digital output sequence C impractical
since they imply digital errors amplified by the feedback and
the internal integrator. Indeed, the output sequence C' may be
digitally completely different from that obtained in the case of
zero initial conditions. However, the important result is that
the input X is close to C(C) in the MSE sense.

VI. CONCLUSION

The deterministic approach of ADC consists in saying that
the exact information contained in the quantized version C of a
discrete-time continuous amplitude signal X is that X belongs
to the set C(C) of all possible signals producing C through
the encoder. In the oversampled situation, we have the more
restrictive information that X belongs to the set C(C) NV,
which is called the set of consistent estimates, where V is
the space of bandlimited signals. When signals are sampled
N times, we show that C(C) is a hyperparallelepiped of RY,
regardless of the type of encoder (simple, predictive, single-
or multiloop encoder). This implies the convexity of C(C)NV
and the fact that any nonconsistent estimate can be necessarily
improved. We point out that the classical linear decoding
scheme consists of performing the orthogonal projection of the
center of C(C) on V, and, thus is not necessarily consistent. A
basic method of improving a nonconsistent estimate X consists
of projecting it on any convex set that contains the original
signal X but not X. We detailed, in particular, algorithms for
the projection on C(C). One purpose of these algorithms is
to show concretely how an estimate X can be made closer to
X using the knowledge of C although X is unknown. These
algorithms are quite straightforward in simple and predictive
ADC and relatively practical in single-loop A modulation.
For higher order encoding, where the direct projection on C(C)
is difficult to perform, it is still possible to build from the
knowledge of C convex sets containing C(C) on which the
projection becomes feasible. These algorithms were used to
show achievable improvements from finite iteration schemes.
They were also used to approach consistent estimates from
the principle of alternating projections. The numerical results
obtained in the case of bandlimited and periodic signals show
that consistent estimates yield an MSE whose reduction with
the oversampling ratio is faster than in linear decoding by 3
dB per octave for simple ADC, single- and multiloop XA
modulation (under certain conditions in simple ADC). This
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implies that the asymptotic order of the decoding MSE is
O(R~(27+2)) instead of O(R~("*Y) in linear decoding,
where R is the oversampling ratio and n the order of the
modulator.

With this deterministic approach, another contribution of
this paper is to show a nonclassical description of predic-
tive encoding and noise-shaping encoding (in the example
of single- and multiloop £A modulation). Although these
encoders were designed using statistical tools, they satisfy the
deterministic interpretation of quantization, which are natural
in simple ADC, including the fact that the quantized signal C
is the geometric center of the set C(C).
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