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Nonlinear Parameter Estimation 
via the Genetic Algorithm 

Leehter Yao, Member, IEEE, and William A. Sethares 

Abstract-A modified genetic algorithm is used to solve the 
parameter identification problem for linear and nonlinear digital 
filters. Under suitable hypotheses, the estimation error is shown 
to converge in probability to zero. The scheme is also applied to 
feedforward and recurrent neural networks. 

I. INTRODUCTION 
VARIANT of the genetic algorithm (GA) [3] is used to A solve the parameter estimation problems for linear and 

nonlinear digital filters and is applied to both feedforward and 
recurrent neural networks. Unlike steepest descent approaches 
(e.g., [l], [2]) to nonlinear parameter identification and filter 
design, the GA requires no calculation of the gradient ana 
is not susceptible to local minimum problems that arise with 
multimodal error surfaces. The GA is a type of structured “ran- 
dom” search that mimics the process of biological evolution. 
The algorithm begins with a collection of parameter estimates 
(called a chromosome) and each is evaluated for its fitness 
in solving the given minimization task. At each generation 
(algorithm timestep), the most fit chromosomes are allowed 
to mate and bear offspring. These children (new parameter 
estimates) then form the basis for the next generation. The 
biological analogy suggests that such a procedure will be likely 
to lead to workable solutions for complex nonlinear problems, 
and we prove the asymptotic convergence of the estimation 
error under suitable hypotheses. The cost and system functions 
can be nonlinear and even discontinuous. 

The GA was first introduced by Holland [3], and was exten- 
sively explored by Goldberg [4]. In [5], De Jong summarized 
several potential research directions, and the impact of tuning 
factors which affect the performance of the GA are studied 
in [6]. The GA is compared with another type of random 
search method (simulated annealing) in [7]. The GA has been 
successfully applied to a variety of optimization problems; for 
instance, it was applied to the delay estimation of sampled 
signals [8], to the parameter estimation of linear adaptive 
filters [9], and to the robotic trajectory planning problem [lo]. 
The GA has also been applied to machine learning [ill-[13]. 
Because the GA tends to find the global optimum solution 
without becoming trapped at local minima, it is also a good 
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tool to solve combinatorial problems. For instance, the GA has 
been applied to the linear transportation problem in [ 141 and to 
the floorplan design for VLSI design in [15]. The application 
in this paper is closest to the work of Etter et al. [9], where 
the GA was applied to the parameter estimation for linear 
autoregressive (AR) models. However, the particular form of 
the algorithm they implemented could not be guaranteed to 
yield an optimum estimation error and, in fact, often performed 
rather poorly. In this section, the GA has been modified 
to overcome this difficulty even when applied to the more 
complex nonlinear IIR setting. 

Three modifications to the standard GA in [3] and [41 are 
proposed in this paper. First of all, parents are selected by 
rank, i.e., chromosomes that correspond to the least estimation 
errors are automatically chosen to mate. Passing the best 
chormosome unchanged into the next generation assures that 
the minimum estimation error is a monotonically decreasing 
process. This contrasts with the conventional approach in 
which parents are chosen based on a probability distribution 
defined by fitness values. Second, an operator named extinction 
and immigration is introduced. Extinction and immigration is 
applied when all chromosomes in the gene pool are identical 
or when there is no decrease in the estimation error over a 
certain number of generations. This plays a role analogous 
to mutation, yet has more dramatic effect. Finally, a small 
trick called reencoding of zeros is included to reduce the time 
wasted when the estimated parameters linger around zero. 

Holland showed the power of the GA by relating it to 
the multiarmed bandit problem [3] and by guaranteeing that 
the minimal expected loss can be achieved. This falls short, 
however, of an actual proof of convergence. In this paper, we 
show that the estimation error converges in probability to zero. 

People have applied the GA to the training of feedforward 
neural networks [ 161-[ 171, and some comparisons between 
the GA and the backpropagation algorithm in [ 181 have been 
made empirically. The backpropagation algorithm has been 
extended to train recurrent neural networks as in [19] and 
[20]. In this paper, the modified GA will also be applied to 
train both feedforward and recurrent (feedback) neural network 
structures. Perhaps the most striking difference between the 
two approaches in that backpropagation is susceptible to prob- 
lems with local minima, whereas the GA can be guaranteed to 
approach the global minimum under suitable circumstances. 

This paper is constructed as follows. Section I1 explains 
how to apply the GA to the parameter estimation of IIR 
filters, and our modifications are discussed in detail. Section 
I11 contains proofs of the convergence for both Holland’s and 
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our modified GA. Section IV gives several examples of the 
application of genetic algorithms to parameter estimation of 
linear and nonlinear, mR and IIR filters and feedforward, 
and recurrent neural networks. Finally, concluding remarks 
are made in Section V. 

11. NONLINEAR IIR FILTERS AND THE GA 

A.  Problem Statement 
Consider the general nonlinear IIR filter 

yk = f (w y, U )  (2.1) 

where f is a nonlinear function such that (2.1) is stable in the 
sense of Lyapunov and where f is continuous from the right 
(or the left) at every point. Let W = [WI, . . . , wh] be the set 
of h fixed parameters, Y = [y(k - l), . . . , y(k - n)] be the set 
of n autoregressive terms, and U = [u(k - l), . . . , u(k - m)] 
be the set of m past input values. 

The structure of f is assumed to be known to contain h 
terms with exactly one parameter associated with each term. 
Note that these terms need not enter linearly in f. 

The IIR filter (2.1) is estimated by 

= f(*, p, U )  (2.2) 

where = [G,. . , G] is a set of h parameter estimates, 
Y = [y(k - l), . . . , $(k - n)] is a set of n estimated outputs, 
and U is defined as above. 

To apply the GA, each estimated parameter w i  is encoded as 
a string of binary numbers called a gene. Genes are cascaded 
to form a longer string W called a chromosome. Each possible 
combination of estimated parameters is thus represented by a 
chromosome. The identification str!tegy is to apply the GA to 
search for the best chromosome W so that $(k) - y(k). A 
collection of N chromosomes of estimated parameters (called 
the gene pool) are explored in each generation. Let the error 
associated with the j t h  chromosome at the i th generation be 
defined as 

where d is the window size over which the errors will be 
accumulated, and G(.) is the estimated output associated 
with the j t h  chromosome of estimated parameters for the 
ith generation. At each generation i, the GA searches for the 
minimum estimation error 

e i i n  min ( e j i )  ~j E [I . . . N ]  (2.4) 

over the entire space of parameters and attempts to drive ekin 
to zero over succeeding generation. 

B.  Features of the GA 
This subsection describes the various elements of the GA, 

including the encoding mechanism, a method of initialization, 
the parent selection policy, details of the mating procedure, 
the introduction of mutation as a way to avoid local minima, 

our new policy of extinction and immigration, and the reen- 
coding of zeros. Once these features have been described, the 
algorithm can be stated clearly and succinctly. 

1 )  Encoding: The estimated parameters are encoded into 
genes and chromosomes as a string of binary digits using one’s 
complement representation. Assuming that the parameters lie 
in some bounded region 

the length of the genes (and hence the chromosomes) can be 
calculated as the length of the binary string Bk needed to 
encode W k  based on r)k and the desired accuracy 6k. In [ I  11, 
the value of the individual weight is taken as a gene, and thus, 
the chromosome is encoded by a string of real numbers instead 
of binary numbers. This encoding scheme saves memory but 
appears to hinder crossover from playing its full role in the 
GA €211. I 

2) Initialization: The initial values of the estimated param- 
eters are randomly assigned. Therefore, at the beginning of the 
estimation process, N chromosomes are generated as random 
bjnary strings. 

3) Parent Selection: The selection of parent chromosomes 
is based on the notion of “fitness,” which govems the extent 
to which an individual can influence future generations. For 
parameter estimation problems, the fitness of a particular 
chromosome is roughly proportional to the inverse of the error. 
In the conventional GA [3]-[4], chromosomes are selected for 
mating based on the ratio of their fitness value to the sum 
of total fitness value of all chromosomes in the generation. 
In [9], the fitness value for fhe j t h  chromosome in the 
ith generation is defined as e:, - e j i ,  where e i a x  is the 
maximum estimation error in generation i. The probability of 
the j t h  chromosome being selected for mating in the next 
generation is 

(2.6) = e&ax - e j i  

- eki) 
‘ k=l  

However, the estimated error can be quite sensitive to varia- 
tions of the estimated parameters. In the event of an unstable 
estimated system, e:= is huge, and Pi in (2.6) is small even 
for chromosomes that are close to the ideal values. Using this 
fitness criterion, chromosomes representing parameter sets that 
are close to the optimal values might be discarded (not selected 
for mating), resulting in slow parameter convergence and poor 
performance. 

Since improvement of the estimation error requires that the 
better parameter sets (chromosomes) be allowed to mate, the 
GA is modified to ensure that these chromosomes are mated in 
every generation. In each generation, the best D chromosomes 
corresponding to the least estimation errors among the N 
chromosomes of the present gene pool are selected for mating, 
and then some of them, say, p . D best chromosomes, are 
allowed to surive into the next generation. Because some of 
the D best parents are allowed to live into the next generation, 
the minimum estimation error in the current generation will be 
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always less than or equal to the minimum estimation error in 
the previous generation. 

4 )  Mating: Among the D potential parents, pairs are ran- 
domly selected for mating, which is carried out via a crossover 
procedure that mimics biological mating. Basically, crossover 
combines the features of two parent chromosomes to form 
two new “children” chromosomes. Given two parents and a 
randomly assigned splice point, the crossover procedure can 
be illustrated as follows. 

parents 1 xxxxxxxxxxxxx 
parents 2 YYYYYYYYYYYYY 

t splice point 

Two children are created in the crossover procedure. Child 
1 contains the front part of parent 1 and the tail part of parent 
2, whereas child 2 contains the front part of parent 2 and the 
tail part of parent 1. 

child 1 xxxxxyyyyyyyy 
child 2 yyyyyxxxxxxxx 

Assume the schema xxxxx******** corresponds to low 
estimation error, where * represents an unspecified value (or 
a wild card). Then, child 1 might correspond to a lower 
estimation error than either parent does. It is this (biologically 
inspired) mating procedure, and the draconian annihilation of 
unfit chromosomes that separates the GA from truly random 
search style algorithms. 

It appears to be more efficient to perform the mating at 
the parameter (gene) level rather than the chromosome level. 
In each generation, since p D parents are passed from the 
previous generations, N - p . D new childrn are bom; leaving 
the population constant throughout the procedure. 

5)  Mutation: Generally, over a period of several gen- 
erations, the gene pool tends to become more and more 
homogeneous as one gene begins to dominate. A mutation 
feature is often introduced to guard against premature con- 
vergence (to a nonoptimal solution). Mutation randomly alters 
the gene from 0 to 1 or from 1 to 0 with probability P,. The 
purpose of mutation is to introduce occasional perturbations 
to the estimated parameters to ensure that all points in the 
search space can ultimately be reached. Generally, if P, is 
larger, the convergence rate is faster but a larger “steady 
state error” results. This is, in some respects, analogous to 
the stepsize parameter of gradient algorithms; larger stepsizes 
imply faster convergence but higher steady state error, whereas 
smaller stepsizes imply slower convergence but smaller final 
error. Some studies (such as [ 161) have suggested changing the 
mutation probability P, adaptively so that a faster converging 
rate and finer tuned estimated parameter can be both achieved. 

6) Extinction and Immigration: Holland has shown in [3] 
that the number of chromosomes in the gene pool associated 
with smaller estimation errors grows exponentially. Therefore, 
after some generations, the D parent chromosomes chosen to 
mate are eventually the same. It is clear that if two parents 
are identical, their children will also be identical and no new 
information is obtained. The estimation thus tends to stagnate, 
and the only mechanism to generate better chromosomes is 
mutation. Since P,,, is generally small (<0.1), the probability 

of further reducing estimation error is very small, especially 
for long chromosomes. We propose a drastic technique called 
extinction and immigration to bypass this difficulty. 

Extinction eliminates all of the chromosomes in the current 
generation except the chromosome corresponding to the mini- 
mum estimation error. N - 1 chromosomes are then randomly 
generated to fill out the population (a mass immigration). 
D - 1 chromosomes associated with the least estimation errors 
among these immigrants are then selected as the parents. 
Together with the surviving chromosome, these are allowed to 
mate as usual to form the next generation. For convenience, 
we say that another era begins. Extinction and immigration is 
analogous to a particular time varying mutation rate in which 
P, is close to 1 at the beginning of each era and then small 
for the remaining generations within the era. 

There are two cases when extinction and immigration will 
occur. One is the case when all of the D parents are the same; 
the other is the case when no further decrease in the minimum 
estimation error has been detected for, say, L generations. Of 
course, these two cases are not independent since the first 
causes the second. However, when the number of parents D 
are large, it is often more efficient to stop the current mating 
and go through the extinction and immigration process without 
waiting for all parents to become identical. Continuing the 
analogy with linear gradient identification methods, one might 
think of the extinction and immigration policy as a type of 
“covariance reset” strategy. 

6) Reencoding ofZeros: If the ideal value of one parame- 
ter is negative and the estimated value is initialized positive, 
there is the possibility that the parameter will linger around 
zero for many generations. This can be cured by reencod- 
ing the zeros, i.e., if the bit string for one parameter is 
00 . . .OO,reencode it as 11 . a l l ,  or vice versa. This is sensible 
since 1111 . . = 0000. . . in one’s complement arithmetic. 

C.  Algorithm Statement 

the GA. These parameters are as follows: 
There are several tuning parameters to be set before running 

N 
D 

Lt 

number of chromosomes in each generation 
number of chromosomes chosen as parents for 
mating 
number of generations tolerated for no improvement 
on the value of the minimum estimation error 
before the GA is terminated. 
number of generations tolerated for no improvement 
on the value of the minimum estimation error 
before the operator extinction and immigration is 
applied. Note that Le << Lt.  

the portion of chosen parents allowed to survive 
into next generation 

Le 

P, probability of mutation 

p 

C desired accuracy of estimation 
Two variants of the GA are stated (GAl and GA2) without 

and with the extinction and immigration operator, respectively. 
The algorithm GA2 is summarized as follows: 
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1. 

2. 

3. 

4. 
5. 

6.  

7. 

8. 

9. 

Set the tuning parameters described as above. Encode 
the parameters to be estimated and refer them as the 
chromosomes. Set i = 0,k = 0, and m = 0. 
Initialize N chromosomes, let i = i + 1. k = 0, and 
m = 0. 
Decode the chromosomes and calculate the estimation 
error eij for every j t h  chromosome in the ith generation. 
Let e i in  = minj (eij). 
Select D parents. Pass pa D parents into next generation. 
Mate D parents and generate N - p D children. Invoke 
mutation along with the crossover procedure. Reencode 
zero(s), if the best chromosome corresponds to some 
zero parameter(s). 
If ehin = e$:, k = k + 1 and m = m + 1; otherwise, 
k = 0 and m = 0. 
If D parents are all the same, apply the extinction and 
immigration operation by returning to step (l), saving 
only the chromosome corresponding to eLin. Set k = 0. 
If k = Le, then apply the operator extinction and 
immigration as described in step (6). Set k = 0. 
If m = Lt (or e& < S) ,  then terminate the algorithm; 
otherwise, go to step (2). 

0 
Note that if the variance of the measurement noise is known 

a priori, then the GA is termhated if the estimation error is less 
than 5. However, if no statistical information of measurement 
noise is known a priori, the GA is set to be terminated when 
no improvement on the estimation error has been detected for 
Lt generations. The algorithm GAl is basically the same as 
GA2 as above except that steps (6) and (7) for the operator 
“extinction and immigration” are eliminated. 

111. CONVERGENCE OF THE GA 

Since the chromosome corresponding to the minimum esti- 
mation error in each generation always survives into the next 
generation, the estimation error is montonically decreasing 
sequence. Thus, the estimation error must converge since it is 
bounded below. In this section, the estimation error is further 
shown to converge in probability to zero. 

Proposition 3.1: Suppose D parent chromosomes are se- 
lected from the present generation. Of all possible children that 
can be derived from the set of D parents through crossover, the 
probability of generating any particular child chromosome is 

assuming there is no mutation (P, = 0). 
Proof: Among D parent chromosomes, there are D(D - 

1) possible ways to choose a pair of chromosomes for mating. 
Since the crossover is made parameterwise, 11:=1 2(Bi - 1) 
possible children can be generated by any given pair of parents, 
where Bi denotes the number of bits of i th  parameter. Since 
the choice of parents is made independent of crossover, these 

Note that for identical chromosomes, the probability of 
generating each of those identical ones is also given as in 
(3.1). 

probabilities multiply. 0 

Proposition 3.2: Given two arbitrary chromosomes C, and 
C, with the corresponding estimation errors e, and e3 respec- 
tively, there exists a fixed constant & > 0 such that if e, > e,, 
then 

(3.2) 

Proof: Let a%, = (e,-e, 1, Vi ,  j .  Since every chromosome 
is represented by finite number of bits, there are only a finite 
number of possible chromosomes and, hence, a finite number 

0 
Since each gene consists of only a finite number of bits, the 

estimated parameters represented by these genes are actually 
quantized values. The smallest quantum for each estimated 
parameter is the desired encoding accuracy &, k = 1.e .h .  
If the ideal value of the estimated parameter is w* and its 
quantized representation is [w*]Q, the quantization error will 
be 

(3.3) 

The case when the quantization error of each estimated 
parameter is zero is called ideal matching. Under the ideal 
matching assumption, the following theorem shows that the 
minimum estimation error converges in probability to zero at a 
specific rate. This rate will be proportional to C E(&) ,  where 
8, is the number of all possible chromosomes in generation 
i + 1 that correspond to estimation errors less than e&. If 
the assumption of ideal matching fails, then the minimum 
estimation error will converge to a constant. 

Theorem 3.1: Let ekin be the estimation error in generation 
g as in (2.4). If the ideal matching condition is satisfied for 
GA1, then 

e, - 5 2 e3. 

of possible a,,. Let & be the smallest nonzero a,,. 

I w *  - [w*]Q 5 &,k = l , * * - , h .  

0-1 

where c is a constant. Moreover 

(2) P(e9,, 2 6) O as g + 00 (3.5) 

where & is defined as in Proposition 3.2. 
Proof: Let @ be the set of all possible D chromosomes 

chosen as the parents in generation g and 4 E CP be the best D 
chromosomes. Assume that splice points occur at 31,. . . , sh 
for t&,.-.,Gh, where si E [l- . .B; - l],i = 1.e .h .  Each 
bit of the chromosome is mutated with probability P,. Let 
U be the set of all possible pattems of mutation including 
the pattem of no mutation, and let be the estimation 
erorr at generation g+l  associated with the chromosome which 
is a child of i th  and j t h  chromosome chosen from previous 
generation with splice points at 91, . . , sh and mutation pattem 
U.  Then, if the best D chromosomes, which are denoted by 4 
are selected at generation g 

E(eL214) = c..*cc 
iEDjED,i#j  S i  sh uEU 

. Pijsl.. .shPu min (eLi,, e ~ ~ ~ . . . s h u )  

= P pU min (e$,, e:Gt...shU) (3.6) 
ijsl.’.shu 
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where Pijsl...sh is the constant P from Proposition 3.1, and 
is the associated estimation error for any possible 

chromosome in generation g + 1. Let 

ai jS l - .ShU =e$, - e:;t...shu, 

ve:Lt...shu < ekin (3.7) 

then (3.6) can be written as 

By the theorem of total expectation [27], E(E(ekTiI4)) = 
E(ekTi). Consequently, (3.15) implies 

g--1 

E(e:in) 5 E(eLin) - P p 6 X E ( B i )  Vg 2 1. (3.16) 
i=O 

Thus, (3.4) holds with the constant c = P P G .  

extension of the Chebyshev inequality in [22] 
Since 8, 2 1 , V i  2 O,E(ekin) + 0 as g + 00. By the 

which implies (3.5). 0 
Theorem 3.1 proves the convergence of the modified GA 

within one era. The proof of convergence for the modified GA, 
which consists of the "extinction and immigration" operator, 
is shown in the following corollary. 

Corollary 3.1: Let era 1 ,2 , . . .  ,m consist of 
TI, T2, . . . , T, generations, respectively, and 

where 
If the ideal matching assumption is satisfied for GA2, then 

Fg = pu~:jsl...sh". (3.9) 
i j S 1 " ' S h U  

.S+l  
% J S l  Shu<e;ln 

Due to mutation, all chromosomes are possible, albeit with 
small probability. Therefore, if e$: > G then 8, 2 1. Let P 
be the probability of mutating every bit in the chromosome, 
and then 

The probability of mutating j specific bits in the chromosome 
is given by 

- 
P = (1 - Pm)Cf=lB"J P i ;  j = 0,1,2, .  . . (3.11) 

Equations (3.10) and (3.11) imply that 

P L P ,  V u € U  (3.12) 

since P, is usually set to be less than 0.1. 
Proposition 3.2 and (3.12) show that 

Fg 2 tJgPmin(n~j,,...gh) 2 8,P& (3.13) 

Recall that 8, is the number of all possible chromosomes in 
generation g + 1 that correspond to estimation errors less than 
':in* 

Substituting (3.13) into (3.8) yields 

E(ekTil+) 5 e:in - pegPG. 
~ w & T ; l 4 ) )  = p4E(ekT:l4) 

(3.14) 

4- 

= E(eg,in) - Pd%(e,). (3.15) 

(3.4) and (3.5) both hold. 
Proof: From (3.16) 

TI -1 

E(e2in) 5 E(ekin) - P P G  E(&).  (3.19) 
i = O  

i=O 

Referring to (3.18) and (3.21), (3.4) thus holds. Conse- 

Theorem 3.1 and its corollary imply that if the ideal match- 
ing condition is satisfied, then the estimation error converges 
in probability to zero. Note that this does not necessarily imply 
convergence of the parameter estimates wi to their true values 
w: unless additional "persistance of excitation" conditions 
[l], [23] are invoked on the input vector U of (2.1). This 
is tantamount to an identifiability condition and is dependant 
on the structure of the nonlinearity f(.) of (2.1). Deriving such 
conditions for interesting classes of f's  is an important topic 
that deserves further attention. 

Referring to (2.2) and (2.3), the quantized steady estimation 
error is defined as 

quently, (3.5) also holds. 0 

l d  
[ekinIQ = 2 C ( Y * ( k )  - [Y*(')IQ)' (3.22) 

k=l 
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where y*(k) is the output due to ideal values of estimated 
parameters w T , . . . , w i  and [y*(k)]Q is the output due to 
[ w ; ] ~ ,  . . , [ w i ] ~ .  The quantized estimation eror  eti in]^ is 
therefore a (finite) constant that depends on the quantization 
error Sk, the size of the input U, and the “gain” qf the 
system. Theorem 3.1 and its corollary thus imply that as 
g + o o , c ( k )  - [Y*(k)]Q converges in probability to zero. 
Hence, [etin]o provides an upper bound on the asymptotic 
error. The implication of this is that the GA is robust not only 
to suitably small mismodelling errors and to noisy data but 
also to quantization errors. 

Let era 1,2 ,3 ,  . . . consist of 2’1, T2, T3,. . . generations. Let 
emgin and ekin denote the minimum estimation error due to 
GAl and GA2 in generation g. There is no difference between 
GA1 and GA2 in the first era. Once the parent chromosomes 
are all identical at g = TI ,  the pnly way for GAl to further 
decrease the estimation error is through mutation. In 
this case, the parameter estimation is like a simple random 
search. It has been shown in [4], [24] that N 3  schemata are 
implicitly searched by GA in each generation. Since the parent 
chromosomes are identical at g = TI ,  most of the schemata 
searched by GAl are actually the same: Vg 2 TI.  However, 
for GA2, many diverse immigrants are introduced into the 
gene p l ,  and for g 2 7’1 + 1, GA2 searches many more 
schemata than GA1. 

The best chromosome from era 1 (Cb&) survives into 
era 2. Due to the quick dominance of in succeeding 
generations, a large number of schemata that are close to Chest 
are examined. Thus 

(3.23) 

, 

E(ezin - ezi:T2) 5 E ( e 2 n  - e22T2) .  

Applying the same arguments iteratively to other eras shows 

To gain a better idea of the performance of the modified 
GA, we may also look at its efficiency. Recall that there 
are &, - . . , Bh bits used to encode the estimated parameters 
$1 . . 6 h .  The number of different values to be searched using 
a truly random searching method would be 

(2B1 - 1). . . (2Bh - 1) 2B1+...Bh (3.26) 

Suppose G generations are needed to achieve the estimation 
error emin 5 C; then, the total number of values the modified 
GA has searched is hNG. Define the efficiency index X for 
this algorithm 

(3.27) 

It is clear that X is usually a large number. As the number of 
estimated parameters increases, the values in the denominator 
and numerator of (3.27) both increase. Since the crossover is 
made parameterwise, the GA carries out multiple operations 
in parallel. Therefore, the number of generations for GA to 
achieve the estimation error emin 5 eb is not greatly increased 

as the number of estimated parameters increases. Empirically, 
G tends to increase linearly while the number of different 
values to be searched by truly random searching method 
increases exponentially. Therefore, the efficiency X tends to 
increase as the number of estimated parameters increases. 

IV. EXAMPLES 
In this section, numerical examples are given to show 

applications to the GA to parameter estimations of linear 
and nonlinear IIR filters, feedforward and recurrent neural 
networks, and frequency modulated sinusoidal signals. The 
reason FIR filters are not simulated is because they are simply 
a special case of IIR filters. 

For the following examples, the tuning parameters are set 
as follows. 

N = 240, D = 60, Le = 15, P, = 0.01, p = 0.5. 

Note that in Examples 4.1 and 4.2, every parameter to be 
estimated is encoded by 6 b for the integer part and 7 b for 
the decimal part, whereas in Example 4.3, every parameter 
is encoded by 9 and 3 b for the integer and decimal parts, 
respectively. The desired accuracy C varies with the different 
examples. 

Example 4.1: (IIR Filters) In this example, the GA is ap- 
plied to estimate the parameters of the “unknown” linear IIR 
filter 

y(k) = -0.3y(k - 1) + 0.4y(k - 2) 
+ 1.25u(k - 1) - 2.5u(k - 2) + n(k) (4.1) 

and the “unknown” nonlinear IIR filter 

3 - 0.3y(lc - l ) ~ ( k  - 2) 
5 + 0.4y(k - 2)u2(k - 1) 

+ (1.25u2(k - 1) - 2.5u2(k))ln(11.25u2(k - 2) 
- 2.5u2(k)J) + n(k)  (4.2) 

where the input signal is uniformly distributed between -2.5 
and 2.5, and the measurement noise n(.) is uniformly dis- 
tributed between -0.25 and 0.25. In both (4.1) and (4.2), the 
parameters -0.3,0.4, 1.25, and -2.5 are those to be estimated. 
Note that the parameter -0.3 and 0.4 cannot be encoded 
exactly by the assumed 7 b for decimal part, demonstrating 
the robustness of the GA to quantization errors. With window 
size d = 200, the convergence of estimation error due to GAl 
and GA2 are compared in Figs. 1 and 2 for the linear and 
nonlinear IIR filter, respectively. Clearly, GA2 with the “ex- 
tinction and immigration” operator substantially outperforms 
the GA1 without this operator. It can be inferred from both 
figures that the gene pool in GAl is eventually dominated 
by the best chromosome. As a result, the convergence of 
the estimation error stagnates. However, the gene pool of 
GA2 is rejuvenated from time to time by the “extinction and 
immigration” operator, and the convergence of the estimation 
error is faster than with GAl. U 
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Fig. 1. Estimation error convergence of the linear IIR filter, Example 4.1. 
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Fig. 2. Estimation error convergence of the nonlinear IIR filter, Example 4.1. 

Example 4.2: (Neural Networks) Since feedforward and 
recurrent neural networks are particular parameterizations of 
nonlinear FIR filters and IIR filters, respectively, the modified 
GA can also be directly applied to the estimation of weights 
and biases of the units (neurons) in such network structures. 
Suppose that the activation function in each unit j is the 
logistic function 

(4.3) 
1 

f =  / \ 

1 + exp [ - c w j i u i  + bj  
i 

where ui are the inputs to the j t h  unit (which may be inputs to 
the network, outputs from units in the previous layers, outputs 
from the unit itself, or outputs from units in succeeding layers). 
At each unit, the weight wj; and the bias bj are to be estimated. 

In this example, the GA is used to train the neural network 
model to perform bit rotations of input bit strings. For instance, 
if the input string is bl , b2,  b3, and the task is to rotate the string 
to the left by two places, then the desired output is b ~ ,  b l ,  b2 .  

A feedforward and a recurrent network are trained to perform 
this task. The structures of feedforward and recurrent network 
are shown in Figs. 3(a) and (b), respectively. A total of 64 
randomly shuffled training pattems are generated in which 
the output patterns are contaminated by uniformly distributed 

Fig. 3. (a) Feedforward neural network, Example 4.2; (b) recurrent neural 
network, Example 4.2. 
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-*-._._ .... 1 
100 200 I00 400 500 600 

Generation 
Fig. 4. Estimation error convergence of feedforward and recurrent neural 
networks, Example 4.2. 

noise between -0.1 and 0.1. For the feedforward and recurrent 
neural network, there are 24 parameters to be trained, whereas 
for the recurrent network, there are 19 parameters to be trained. 
Note that there are no hidden units in the recurrent network. 
The convergnce of the estimation error for both structures are 

Example 4.34Modulated Sinusoidal Signals) In [25] and 
[26], it is shown that musical waveforms can be approximated 
based on a frequency modulation scheme. Let the music 
generation unit be given by 

shown in Fig. 4. 0 

mu(t) = Asin (wct + Isin (U&)) (4.4) 

where A is a constant denoting the magnitude of the waveform, 
wc is the carrier frequency, I is the modulation index, and w, 
is the modulating frequency. The musical waveform can be 
approximated by cascaded or parallel music generation units. 
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Refer to [25] and [26] for further details. In this example, the 
GA is applied to estimate the carrier, modulating frequencies, 
and modulation indices based on the modulated sinusoidal 
signals generated by the cascaded form 

and the parallel form 

y 2 ( t )  = sin ( w 2 1 t  + 1 2 1  sin ( w 2 2 t ) )  

+ sin (W23t  + 122  sin ( W 2 4 t ) )  -k n(t) (4.6) 

where n(.) is the measurement noise uniformly distributed 
between -0.25 and 0.25. The parameters are set to be 

Note that (4.5) and (4.6) can be considered to be nonlinear 
FIR filters so that the parameters can be estimated in the same 
way as in previous examples. The only difference is that all 
parameters to be estimated in this example are positive, which 
simplifies the coding of the chromosome. 

Let the sampling rate be lo7 samples/s for (4.5) and lo5 
samples/s for (4.6). Accumulating the estimation errors for 
the 10oO samples (i.e., d = lOOO), the estimated parameters 
by the GA are 

The modulated sinusoidal signals in (4.5) and (4.6) are com- 
pared in Figs. 5 and 6, respectively, with the signals $l ( t )  
and &(t), which are regenerated based on the estimated 
parameters. It is interesting to note that the parameter estimates 
are fundamentally different from their true values yet the 
regenerated signals based on these estimates match very well 
with the original signals. This demonstrates a fundamental lack 
of identifiability of the parameters in both (4.5) and (4.6). 
Equivalently, the system must be failing to satisfy some set 
of “persistance of excitation” conditions since the estimation 
errors converge towards zero even though the parameter values 
are not the same as used to generate the waveforms. 

V. CONCLUDING REMARKS 
The genetic algorithm is a good tool for the optimization 

of nonlinear functions. When the GA is applied to parameter 
estimation problems, it is especially powerful for nonlinear 
IIR filters since it can be applied in situations where gradient 
methods fail and is not susceptible to problems with local 
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Fig. 5. Comparison of yl(t) and yl(t), Example 4.3. 
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Fig. 6. Comparison of yz(t) and &(t) ,  Example 4.3. 

minima. The disadvantages of the GA stem from its compu- 
tational complexity (when compared to a gradient approach) 
since it must process N different estimated parameter sets 
in each iteration. Thus, the GA should be seen primarily as a 
method for off-line identification, estimation, and optimization. 
Finally, it is not always obvious how to choose the user tunable 
parameters in an optimal fashion. 

REFERENCES 

[ l ]  C. R. Johnson, Lectures on Adaptive Parameter Estimation. 

[2] B. Widrow and S. D. Stems, Adaptive Signal Processing. 

[3] J. H. Holland Adaptation in Natural and Artijcial Systems. 

Engle- 

Englewood 

Ann Arbor, 

wood Cliffs, NJ: Prentice-Hall, 1988. 

Cliffs, NJ Prentice-Hall, 1985. 

M I  University of Michigan Press, 1975. 



YAO AND SETHARES: NONLINEAR PARAMETER ESTIMATlON 935 

D. E. Goldberg, Genetic Algorithms in Search. Optimization, and Ma- 
chine Learning. New York: Addison-Wesley, 1989. 
K. De Jong, “A 10 year perspective,” in Proc. Int. Conf. Genetic 
Algorithms Their Applications, 1985, pp. 169-177. 
J. J. Grefenstette, “Optimization of control parameters for genetic 
algorithms,” IEEE Trans. Syst. Man. Cybern.. vol. SMC-16, no. 1, pp. 
122-128, Jan.-Feb. 1986. 
L. Davis and M. Steenstrup, “Genetic Algorithms and simulated an- 
nealing,” in Genetic Algorithms and Simulated Annealing, L. Davis, Ed. 
London: Pitman, 1987, pp. 1-11. 
D. M. Etter and M. M. Masukawa, “A comparison of algorithms for 
adaptive estimation of the time delay between sampled signals,” in Proc. 
IEEE Int. CO$. ASSP, 1981, pp. 1253-1256, 
D. M. Etter, M. J. Hicks, and K. H. Cho, “Recursive adaptive filter 
design using an adaptive genetic algorithm,” in Proc. IEEE Int. Conf. 
ASSP, 1982, pp. 635-638. 
Y. Davidor, Genetic Algorithms and Robotics, A Heuristic Strategy for 
Optimization. Singapore: World Scientific, 1991. 
S .  Matwin, T. Szapiro, and K. Haigh, “Genetic algorithms approach to 
a negotiation support system,” IEEE Trans. System Man Cybern., vol. 
21, no. 1, pp. 102-114, Jan./Feb. 1991. 
R. Axelrod, “The evolution of strategies in the iterated prisoner’s 
dilemma,” in Genetic Algorithms and Simulated Annealing (L. David, 
Ed.). London: Pitman, 1987, pp. 32-41. 
K. De Jong, “Learning with the genetic algorithm: An overview,” 
Machine Learning, vol. 3, pp. 121-137, Oct. 1988. 
G. A. Vignaux and 2. Michalewicz, “A genetic algorithm for the linear 
transportation problem,” IEEE Trans. Syst. Man Cybern., vol. 21, pp. 
445452, Mar./Apr. 1991. 
J. P. Cohoon, S .  U. Hegde, W. N. Martin, and D. S. Richards, 
“Distributed genetic algorithm for the floorplan design problem,” IEEE 
Trans. Computer-Aided Des., vol. 10, pp. 483491, Apr. 1991. 
D. J. Montana and L. Davis, “Training feedfoward neural networks using 
genetic algorithms,” in Proc. Int. Joint Conf. Art$cial Intell.. (Detroit), 

H. Kitano, “Empirical studies on the speed of convergence of neural 
network training using genetic algorithms,” in Proc. Eighth Nut. Conf. 
Artificial Intell. (Boston), 1990, pp. 789-795. 
J. L. McClelland and D. E. Rumelhart, Parallel Distributed Processing. 
Cambridge, MA: MIT Press, 1986. 
F. J. F’ineda, “Generalization of backpropagation to recurrent and higher- 
order networks,” in Proc. IEEE CO$. Neural Inform. Processing Syst.. 
1987, pp. 602-611. 
R. J. Williams and D. Zipser, “A learning algorithm for continually 
running fully recurrent neural networks,” Neural Comput., 1989, pp. 
270-280. 
K. De Jong, “Using experience-based in game playing,” in Proc. 5th 
Int. Conf. Machine Learning (Ann Arbor, MI), 1988, pp. 284-290. 
H. Stark and J. W. Woods, Probability, Random Processes and Estima- 
tion Theory for Engineers.Englewood Cliffs, NJ: Prentice-Hall, 1986. 

1989, p ~ .  762-767. 

[23] K. S .  Narendra and A. M. Annaswamy, Stable Adaptive Sys- 
tems.Englewood Cliffs, N J  Prentice-Hall, 1989. 

[24] J. M. Fitzpatrick and J. J. Grefenstette, “Genetic algorithms in noisy 
environments,” Machine karning, vol. 3, pp. 101-120, Oct. 1988. 

[25] J. Chowning, “The synthesis of complex audio spectra by means of 
frequency modulation,” J. Audio Eng. Soc., vol. 21, no. 7, pp. 526-534, 
1973. 

[26] J. Chowning and D. Bristow, FM Theory andApplications, By Musicians 
for Musicians. Tokyo: Yamaha, 1986. 

[27] R. B. Ash, Basic Probability Theory. New York Wiley, 1970. 

Leehter Yao (S’86-M’92) received the Ph.D. de- 
gree in electrical engineering from University of 
Wisconsin-Madison, in 1992. 

From 1988 to 1992, he was a research assistant in 
the Center for Health Systems Research and Anal- 
ysis, University of Wisconsin. Since 1992, he has 
been with the Department of Electrical Engineer- 
ing at the National Taipei Institute of Technology, 
Taiwan, R.O.C., where he is currently an associate 
professor. His research interests include adaptive 
systems in signal processing and automatid control, 
artificial intelligence, and pattem recognition. 

William A. Sethares received the B.A. degree in 
mathematics from Brandeis University, Waltham, 
MA, and the M.S. and Ph.D. degrees in electrical 
engineering from Come11 University, Ithaca, NY. 

He has worked at the Raytheon Company as 
a Systems Engineer and is currently on the fac- 
ulty of the Department of Electrical and Com- 
puter Engineering at the University of Wisconsin 
in Madison. His research interests include adaptive 
systems in signal processing, communications and 
control, electronic music, and other fashionable top- 
ics. He especially enjoys writing brief biographical 
sketches. 


