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Orthogonal Eigensubspace 
Estimation Using Neural Networks 

George Mathew and V. U. Reddy, Senior Member, IEEE 

Abstruct- In this paper, we present a neural network (NN) 
approach for simultaneously estimating all or some of the or- 
thogonal eigenvectors of a symmetric nonindefinite matrix cor- 
responding to its repeated minimum (in magnitude) eigenvalue. 
This problem has its origin in the constrained minimization 
framework and has extensive applications in signal processing. 
We recast this problem into the NN framework by constructing 
an appropriate energy function which the NN minimizes. The NN 
is of feedback type with the neurons having sigmoidal activation 
function. The proposed approach is analyzed to characterize the 
nature of the minimizers of the energy function. The main result is 
that “the matrix W’ is a minimizer of the energy function if and 
only if the columns of W’ are the orthogonal eigenvectors with a 
given norm corresponding to the smallest eigenvalue of the given 
matrix.” Further, all minimizers are global minimizers. Bounds 
on the integration time-step that is required to numerically solve 
the system of differential equations (which define the dynamics of 
the NN) have also been derived. Results of computer simulations 
are presented to support our analysis. 

I. INTRODUCTION 
STIMATION of orthogonal eigenvectors corresponding E to the repeated smallest eigenvalue of a symmetric pos- 

itive definite matrix is a problem of much importance in 
the area of signal processing. In this paper, we propose and 
analyze a neural network- (NN) based solution to this problem. 
Even though the development and analysis of this approach are 
given for the case of symmetric positive definite matrices, we 
show in Section 111-C that it can be generalized to the case of 
a symmetric nonindefinite matrix. 

Let R denote an N x N symmetric positive definite matrix. 
Suppose 

represent the N eigenvalues of R in the decreasing order 
of magnitude and qL, i = 1, .  . . , N ,  the corresponding or- 
thonormal eigenvectors. The eigenvectors corresponding to the 
minimum eigenvalue A,,,, (i.e., A,, i = P + 1,. . . . N )  are 
called minimum eigenvectors. Let S be the space of minimum 
eigenvectors of R . Then, the problem addressed in this paper 
is the estimation of an orthogonal basis for the subspace S. 
For the case of narrowband signals in additive white noise, 
matrix R represents the asymptotic covariance matrix and 
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A,,, is the noise variance. As a result, the minimum eigen- 
values and eigenvectors are known as noise eigenvalues and 
noise eigenvectors, respectively, and S as the noise subspace. 
The remaining eigenvalues and eigenvectors are called signal 
eigenvalues and signal eigenvectors, respectively. Estimation 
of the noise/signal subspace is a primary requirement in many 
of the “superresolution” spectral estimation methods [ 2 2 ] .  

An adaptive approach for estimating the signal eigenvectors 
was first developed by Owsley [ 11. Sharman [2] developed an 
adaptive algorithm, based on the QR-recursions, to estimate 
the complete eigenstructure of the sample covariance matrix. 
Yang and Kaveh [3] reported an adaptive approach for the 
estimation of complete noise or signal subspace. They also 
proposed an inflation technique for the estimation of noise 
subspace. Iterative algorithms based on steepest descent and 
conjugate gradient techniques for estimating the first few 
large/small eigenvalues and the corresponding eigenvectors of 
a Hermitian matrix were reported by Sarkar and Yang [4]. Re- 
cently, Mathew et al. [5] proposed a technique using a Newton 
type algorithm and an inflation approach for adaptively seeking 
the eigensubspace. 

Under the topic “modified eigenvalue problem” many re- 
searchers have reported algorithms for estimating the eigen- 
structure of a modified covariance matrix given the prior 
knowledge of the eigenstructure of the unmodified covariance 
matrix. A fundamental work in this area is that of Bunch 
et al. [9]. Some of the very recent contributions are those 
of DeGroat and Roberts [lo], Yu [ I l l ,  Bischof and Shroff 
[ 121, and DeGroat [ 131. DeGroat and Roberts [ 101 developed 
a parallel and numerically stable algorithm for rank-I recur- 
sive updating of the eigenstructure. A parallel algorithm for 
rank-k recursive updating of the eigenstructure was reported 
by Yu [ l l ] .  Bischof and Shroff [12] reported an algorithm 
for updating the noise subspace using a rank-revealing QR- 
factorization. A noniterative and computationally inexpensive 
subspace updating algorithm was proposed by DeGroat [ 131. 

Many NN-based algorithms have also been reported for 
estimation of multiple eigenvectors. All these algorithms are 
developed for feedforward NN structure with most of them 
using linear activation function. They estimate the principal 
eigenvectors (i.e., eigenvectors corresponding to the larger 
eigenvalues) of the covariance matrix of the sequence of input 
vectors. The problem of learning in a two (or more) layered 
N N  by minimizing a quadratic error function was considered 
by Baldi and Hornik [ 141. They proved that the error function 
has a unique minimum corresponding to the projection onto 
the subspace generated by the principal eigenvectors and 
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all other stationary points are saddle points. Sanger [ IS]  
proposed the generalized Hebbian algorithm for a single 
layer NN and showed its convergence to the principal eigen- 
vectors. Kung and Diamantaras [ 161 proposed an approach 
(called APEX) for the recursive computation of principal 
eigenvectors. Their technique combines the Hebbian [ 181 and 
orthogonal learning rules. Kung [ 171 extended this approach 
to the case of constrained principal component analysis. In 
contrast to the algorithms in [ 141-[ 181 which estimate principal 
eigenvectors, Xu et al. [ 191 proposed a method for estimating 
the eigenvector corresponding to the minimum eigenvalue 
using a modified anti-Hebbian learning rule. Very recently, 
Wang and Mendel [20] proposed a three-layered linear NN 
with certain constraints on the weights of neurons (called 
structured network) for solving the symmetric eigenvalue 
problem. 

In this paper, unlike the above mentioned approaches, we 
present a feedback NN scheme for estimating orthogonal 
minimum eigenvectors of R (i.e., an orthogonal basis for 
S).  The proposed approach is developed in an unconstrained 
minimization framework by constructing an appropriate cost 
function which the NN minimizes. This approach is useful 
in applications where it is required to seek the (minimum) 
eigenvectors of a given symmetric positive definite matrix. 

The paper is organized as follows. The NN formulation of 
the problem is presented in Section 11. In Section 111, analysis 
of the proposed approach is presented. Simulation results are 
presented in Section IV and finally, Section V concludes the 
paper. 

11. NEURAL NETWORK FORMULATION OF THE PROBLEM 

Research in the area of artificial neural networks (ANN) 
is a result of the quest to build intelligent machines, drawing 
inspiration from the working mechanism of human brain. An 
ANN typically consists of many richly interconnected, simple 
and similar processing elements (called artificial neurons) 
operating in parallel. High computational rates and robustness 
(fault tolerance) are two important features which result from 
such an architecture of the ANN’S [6]. In a feedback type 
ANN, the network dynamics are such that the stable stationary 
states of the network correspond to minima of its energy 
function. Hence, one of the most important applications of the 
feedback type ANN’S is in solving optimization problems. By 
virtue of their architecture, they can provide fast and collec- 
tively computed solutions to difficult optimization problems 

In order to arrive at a feedback-type neural network (FBNN) 
scheme to solve the problem of estimating orthogonal mini- 

~71. 

T where wk = [wkl , . .  . , W k N ]  , k = 1,. . . , M ,  are N x 1 vec- 
tors. Then, solution of the following constrained minimization 
problem 

M 

rnin WTRW, 
i = l  

subject to 

where 6;j is the Kronecker delta function, is the set of M 
orthonormal minimum eigenvectors of R [3]. 

Now, if W = [wr,  w?, . . . , wG] , then the above min- 
imization problem can be restated in terms of the N M  x 1 
vector W as 

T 

rnin W ~ R W  

subject to 

where R is a block diagonal matrix of size M N  x M N  defined 
as 

- 
R = bdiag[R, R, . . . , RI. (2.4) 

The matrices Ei,] are given by 

Et,, = ETE, V i ,  j E { 1, . . . , M }  (2.5) 

where E; is an M N  x M N  matrix with one in ( I C ,  ( i  - 1)N+ 
k)th location for IC = 1, . . . , N ,  and zeros elsewhere. Note that 

Using the penalty function method [SI, it is sufficient to 

-T w E;jW = WTW, V i , j  E { l ; . . , M ) .  

solve the following unconstrained problem of the form 

where 

M M-1 M 

P(W)  = C ( w T E t 2 W  - 1)2 + a’ (WTE,,W)2. 
1 = 1  2=1 J = L + l  

(2.7) 

mum eigenvectors, we first need to construct an appropriate 
cost function whose minimizer corresponds to the required 
eigenvectors. To motivate this, we shall firqt take a brief look at 
the constrained minimization formulation of the same problem. 

Let D be the dimension of the subspace S where D = N -  P 
(cf. (1.1)). Define an N x M ( M  5 D )  matrix W as 

Here, / I  and a’ are positive constants and P is a penalty 
function such that 1 )  P is continuous, 2) P(W) 2 0 V W, 
and 3) P(W) = 0 if and only if W belongs to the constraint 
space. 

Let { p k } ,  IC = 1,2.3,  . ., be a sequence tending to infinity 
such that /Lk 2 0 and pk+l > p k .  Further, let Wk be the 
minimizer of J(W. p k )  where J(W. p k )  = W T k W + p k P ( W ) .  
Then, we have the following theorem from 181: w = [ W 1 . W * . ” ‘ . W \ [ ]  (2.1) 
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Theorem 2.1: Limit point of the sequence { F k }  is a solu- 

That is, if E* = [w; '~ ,  . . . , w h ]  is the limit point of 
{Wk}, then the vectors w,*. i = 1,. . . ; M ,  are orthonormal 
minimum eigenvectors of R. However, because of special 
structure in the cost function (2.6), "a minimizer of J ( W ? p )  
is the set of orthogonal minimum eigenvectors of R for any 

under consideration (i.e., estimation of S) does not demand 
the norm of the estimated eigenvectors to be unity. 

tion of (2.3). 
, ~ .  T 

> L'' (proved in Section 111-A). Further, the problem 

We can rewrite the cost function in (2.6) as 
hl AI 

J(W,  p )  = wTRw; + ~ ~ ( w F w ,  - 1)* 
i=l i=l 

&I-1 izl 

+U: ( w T w J ) *  (2.8) 
t=l 1=1+1 

where a = pa'. Our aim is to design a feedback NN for which 
J could be the energy function, It must have M N  neurons 
with the output of each neuron, w , ~ ,  representing one element 
of the matrix W. The activation function of each neuron is 
assumed to be the sigmoidal nonlinearity, i.e., 

- 1  
2 

wAJ ( t )  = f h J  (')) 
1 + exp( -~~~ ( t ) )  

1 =  1. . . .  ,111; J = 1 , . . . . N  (2.9) 

where utJ( t )  and u i t J ( t )  are the net input and output, respec- 
tively, of the (1,j)th neuron at time t .  The network dynamics 
should be such that the time derivative of J is negative. For 
the cost function (2.8), the time derivative is given by 

where f ' ( u )  is the derivative of f ( u )  with respect to u. 

the (z,g)th neuron as 
Now, let us define the dynamics (i.e., the updating rule) of 

d u t 3 ( t )  - l3J - - -___ 
dt  dWz3 ( t )  

IV 

= -2  RJkWk( t )  
k=l 

- 4 , 4 W 3 t ) W A ( t )  - l)Q./(t) 

- 2 0  C ( W T ' ( t ) W P ( t ) ) ( U P J ( t )  (2.11) 
AI 

p = l  
P f - 2  

with the input-output transformation given by (2.9). Fig. 1 
shows the model of (i,g)th neuron. 

In vector notation, (2.1 1) can be expressed as 

= - 2 R w , ( l )  - 4p(w; ( t )wl ( t )  - l ) w z ( t )  
dt 

I l l  

p = l  
P f l  

i = l : . . .n / I  (2.12) 

__ 

1805 

-2<WzM ( t )  
= r r , ( i i  

Fig. I .  Model of ( / . j ) t h  neuron 

T where u2(t )  = [ u L l ( t ) .  . . . , u z ~ ( t ) ]  . Substituting (2.1 1) in 
(2.10) and using the fact that f ( u )  is a monotonically increas- 
ing function, we get 

# O  
du iJ  ( t )  d J 

- < 0  d t  if ~ dt 
for at least one i and j 

and 

for all i and j .  (2.13) 

Equation (2.13) implies that the FBNN with dynamics defined 
by (2.1 1) and (2.9) has stable stationary points at the local 
minima of J .  The analysis of Section 111 shows that every 
minimizer of J corresponds to a subset of an orthogonal basis 
for the subspace S and all minimizers are global minimizers. 

We would now like to comment on the similarity between 
the updating equation (2.11) and some of the existing algo- 
rithms for eigenvector estimation. The first two terms in (2.1 1) 
are similar to the Hebbian rule of Oja [18]. In the generalized 
Hebbian algorithm of Sanger [15], if the lower triangular 
operation is removed and the terms are grouped together 
appropriately, the resulting algorithm resembles (2.1 1). The 
work of Brockett [23] is similar to our approach in the sense 
that he showed how the symmetric eigenvalue problem can be 
solved using a system of differential equations that describe 
certain gradient flow on the space of orthogonal matrices. The 
system is initialized using the given symmetric matrix and it 
converges to a diagonal matrix with the eigenvalues as the 
diagonal elements. 

111. ANALYSIS OF THE PROPOSED APPROACH 

In this section, we present an analysis of the proposed 
FBNN approach. This is primarily aimed at establishing the 
correspondence between the minimizers of .I and orthogonal 
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bases of S. We also derive bounds on the integration tirne- 
step ( h )  that is used in the numerical solution of the system 

Proof If part: From the hypothesis, we have for all 
k ,  j E { 1, . . . , M }  

dynamics (cf. (2.1 l) ,  (2.9)). 
Combining (2.6) and (2.7), we get 

M and 
J(w,  p )  = W'RW + p C(WTE,iW - 1)2 

i=l 
M - 1  M 

2 x 1  J = Z + 1  

Substituting (3.4) in (3.2) gives gk(W*) = 0, k = 1,.  . . M ,  
implying that W* is a stationary point of J .  To prove that W* 
is a global minimizer of J ,  we need to show that J ( x , p )  2 
J(W*.  p )  V x E T. Let x = W* + p where p E T. From 
(3.4), we obtain 

+a ( W T E ~ ~ W ) 2 .  (3.l) 

In the following analysis, we assume that the parameters LL 

and (Y are fixed at some appropriately chosen values. Section 

a. The gradient vector and Hessian matrix, respectively, of .I 
with respect to wk are given by 

111-B contains guidelines for choosing the values for IL and RW* = X,,,W*. (3.5) 

Evaluating J at x and making use of (3.5), we get 

g k ( = )  = 2RWk + 4p(WrWk - 1 ) W k  
.I(X, /I) = <I(=*. p )  + 2Am,,pTW* 

il/I It1 
- Am,, [2pTJ311W* + pTEztp] 

1=1 
+ 2a W,W?Wk (3.2) 

1=1 
I f k  Ad-1 M 

Hk(W) = 2R + S ~ W ~ W ;  + 4p(w;wk - 1 ) 1 ~  + a [ W * ~ E , ~ ~  + p T ~ , , w *  
M 2 = 1  3=1+1 

+ 2a w,w:. (3.3) + PTEtJP] + PTEP 
M 2 = 1  

z f k  + p [2pTE,,W* + pTE,,p] '. (3.6) 
If g ( W )  and H(W) denote the gradient and Hessian, respec- 1 = l  

Note that tively, of J with respect to W, then &(W) is the kth N-vector 
segment of g(W) and H,(iV) is the N x N principal submatrix 
of H(W) beginning at ( ( k -  1)N+1, ( I C -  l ) N + l ) t h  location. M M 

pTE,,W* = pTW*. pTE,,p = pTp 

A .  Correspondence Between the Minimizers 
of J and Orthogonal Bases of S 

In this section, we prove the main result of the paper, i.e., 
correspondence between the minimizers of cJ and orthogonal 
bases of the subspace S. Because of the use of sigmoidal 
nonlinearity, the space in which W lies is the NM-dimensional 
unit open hypercube which we denote by T. Further, it is 
evident that g(W) = 0 if and only if &(W) = 0 \J k = 
1, . . . , M .  We have the following results. 

Theorem 3.1: W* = wT . . . . , w$] is a stationary point 
of J if and only if wl is an eigenvector. with Euclidean norm 
/?k, of the matrix A = R + w:wTT corresponding 
to the eigenvalue ak where a k  = 2p(1 - 0;) + a{j; for 

T 

[ T  

k = l:..,M. 
This result immediately follows from (3.2). 
Theorem 3.2: Let W* be a stationary point of J .  Then, 

the vectors w;. . . . , wEl are orthogonal if and only if w; 
is an eigenvector, with norm P k ,  of R corresponding to the 
eigenvalue 2 4 1  - p i )  E { X 1 . . . . . A f i - }  for k = 1 , . . . . M  . 

This result also can be easily arrived at using (3.2). 
Remark: Theorems 3.1 and 3.2 are valid even if D < M 5 

N. 
Theorem 3.3: W* is a global minimizer of .I if and only 

if w;, . . . , wil form the subset of an orthogonal basis for S 
with [jf = 1 - for k = l . . . .  . M .  

a=1 a = l  

and 

PTRp 2 Am,*PTP. (3.7) 

Substituting (3.7) in (3.6) and simplifying, we get 
M 

J(x. / L )  2 .I(=*. p )  + 11 [2pTEL2=* + pTEI1p] 
2 = 1  

+ PTEa,PI2 
2 J(W*.p) V x E T. 

Thus, W* is a global minimizer of .I. 

Hence, we get from (3.2) (after some manipulation) 
Only if part: From the hypothesis, W* is a stationary point. 
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We denote 
&I 

A = R + V  with V = a 1 w : w : ’ .  (3.10) 

It is easy to see from (3.8) that AV = VA. Further, A and 
V are symmetric matrices. Hence, there exists an N x N 
orthonormal matrix [21] Q = [ql, . . .  , q ~ ]  such that Q 
simultaneously diagonalizes A and V. Since R = A - V, 
it follows that R is also diagonalizable by Q. Hence, we get 

A = a,QzqT. R = rZS,$ 

1=1 

iv N 

z = l  1 = l  

and 

v = V a S z S T  (3.1 1) 
ZES,  

Case 1 M < D: Since M < D, we have 
(Vl n S ) \ { O }  # 8. This implies that 3 1 $2 S, such 
that 

q l  E VI n S and Rql = Amin@ 

which in view of the second term of (3.11) gives rl = Amin. 

Substituting this in (3.15) with i = 1, we get 

~1 = Amin 2 2p(1 - P i )  V k = 1,. . . , M.  (3.17) 

For the inequalities of (3.9) and (3.17) to be true simultane- 
ously, we must have 

wiTw; = 0 and Amin = 2 4 1  - PE) 
V k , Z =  l ; . . , M ; k # i .  (3.18) 

Combining (3.18) with ( 3 . Q  we get wr, i = l , . . . , M  , as 
orthogonal minimum eigenvectors of R, thus proving (i) and 

implying that (VI n S)\{O} # 0. Then, following the steps 
as in Case 1, we get 

+ 2(4p - a)w;wiT. (3.12) 31 $2 S, such that 7’1 = A,,, 2 ” ~ ( 1  - p i )  
’d k = 1,. . . , D. (3.20) 

Now, define the following subspaces 
It is then possible to choose k = IC1 E S, such that 
wZ1 n S L  # 0. But, for the inequalities (3.9) and (3.20) to 
be true simultaneously for k = k l ,  we must have 

V2 = Span{q, : t E S,} 

and 

v1 = v;. (3.13) w;: W: = 0 and Amin  = 2 ~ ( 1 -  pE1) 
V z = 1,. . . , D ;  1 # k1. (3.21) 

Clearly, range of V is same as V2. Hence, we can rewrite 
(3.12) as Combining (3.21) with ( 3 . Q  we get 

(3.14) 
i = l  

where the second term in (3.14) is an eigenvalue decomposi- 
tion of the last two terms in (3.12) and r(V) is the rank of V. 
The vectors q;, i = 1, . . . , r(V), constitute an orthonormal 
basis for V2. Thus, R.H.S of (3.14) is an eigenvalue decom- 
position of Hk(W*). Since W* is a global minimizer of J ,  
the Hessian H(E*) should be at least positive semidefinite. 
Hence, Hk(W*) also should be positive semidefinite since it 

RwEl = 2 ~ ( 1  - 82,)~;~ = AminWE1 (3.22) 

which is a contradiction since any eigenvector of R in S’ must 
correspond to a nonminimum eigenvalue. Hence, VI 0 S = 
(0) and V Z n S ’  = (0). This means that V1 c S I  and 
V2 c S. This, combined with the facts that V1 = V t .  V1 @ 
V2 = Et” and S @ SL = EtRN, where ‘@’ stands for ‘direct 
sum’ of subspaces, gives V2 = S. Hence, {wT,....wb} is 
a basis for S. Using this result in (3.8) and rearranging, we 
obtain 

D 

[A,,, - 2p(1 - P;) ]  W; + N C(W~’ w:)w: = 0. (3.23) 

:r f 
is a principal submatrix of H(W*).  Thus, we get Since wT , . . . , wb are linearly independent, it follows from 

ri 2 Zp(1 - PE) V i $2 S,. k = 1,. . . , M (3.15) (3.23) that 

92 2 0 v i =  l;...,r(V). (3.16) Amir, - 2p(l  - /?:) = 0 and WE’ w,* = U 

Our goal now is to prove the following points: V k . i  E { l : . . . , D } ,  IC # i (3.24) 

i) V2 C S and 
ii) w:, i = 1,. . . , M are orthogonal. 
Consider the following two cases. 

thus establishing (i) and (ii). 

of Theorem 3.3. 
The following corollaries bring out some significant aspects 
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Corollary 3.1: The value of p should be greater than *. 
Corollary 3.2: For a given p and a,  every local minimizer 

of J is also a global minimizer. 
This result follows from Theorem 3.3 by recognizing that 

H(W*) is at least positive semidefinite when W* is a local 
minimizer of J .  

Corollary 3.3: Minimizer of J is unique (except for the 
sign) only when D = 1. 

B. Discussion 

Theorems 3.1 and 3.2 characterize all stationary points of J .  
While Theorem 3.1 gives a general characterization, Theorem 
3.2 establishes the condition of orthogonality for the set of 
vectors under consideration. However, the main result is that 
of Theorem 3.3 which along with Corollary 3.2 shows that it is 
enough to find a minimizer of J in order to get an orthogonal 
basis for S. Since all minimizers are global minimizers, any 
simple search technique (e.g., gradient descent) will suffice 
to reach the correct answer. This is very significant since 
nonlinear optimization problems usually encounter difficulties 
due to local minima. 

Note from Theorem 3.3 that the norms of all the estimated 
eigenvectors are same and it is decided by the values of p and 
Amin.  The higher the value of p, the closer will be the norm 
to unity. According to Corollary 3.1, a priori knowledge of 
the minimum eigenvalue of R is required for the selection of 
p. But in practice, Amin will not be known a priori and hence 
we suggest the following practical lower bound 

Trace( R) 
(3.25) 

Note that the second parameter N can be any positive scalar. 

2N . 

C. Generalization 

The development and analysis of the proposed approach 
given in the previous sections assume the given matrix to be 
symmetric and positive definite. However, it can be extended 
to the case of any symmetric matrix (as long as it is not 
indefinite) as shown below. Let X be the given N x N matrix. 
Then, construct the matrix R as 

1) R = -X if X is negative definite 
2) R = -X + 7 1 1 ~  if X is negative semidefinite 
3) R = X +  IN if X is positive semidefinite 

where 7 > 0. The proposed approach can now be applied 
to R since it is symmetric and positive definite, and it yields 
orthogonal eigenvectors corresponding to the repeated smallest 
magnitude eigenvalue of X. 

D .  Bounds on the Integration Time-Step 

The system of N M  ordinary (nonlinear) differential equa- 
tions, which describe the dynamics of the proposed FBNN, is 
given by (cf. (2.11), (2.9)) 

where 

i = l  3=i+1 

(3.27) 

V I ;  = 1 ; . . , N M  (3.28) 

with U k ( t )  = uZ3(t)  and W k ( t )  = wi,(t) denoting the kth 
elements of E(t) and W ( t ) ,  respectively, for k = (i - l ) N + j ,  
and G ( t )  = [uT(t),  . . . , u G ( t ) ]  . To solve this system, we 
resort to some numerical technique and this calls for the 
selection of an appropriate integration time-step, say h, in 
order to guarantee convergence to the correct solution. Below, 
we present an approximate analysis of the discretized system 
of equations to obtain the bounds for h. 

For sufficiently small h, we have the following approxima- 
tion 

T 

W t )  U(T1 + 1) - E(n) 
7 It=nh - h 

where n is the discrete time index. Substituting this in (3.26), 
we get 

ii(n + 1) z G ( n )  - 2hB(n)W(n) .  (3.29) 

Observe that (3.29) and (3.28) implement the discrete-time 
gradient descent with step-size h. Since J has only global 
minimizers, this search technique will reach a minimizer 
provided h is sufficiently small. Hence, we assume that the 
trial solution W(n) is very close to the desired solution, say 

for n > K where K is a large enough positive integer. Since 
w;'wj = P,"s,, for all z , j  E (1,. . . , M I  (cf. Theorem 3.3), 
we also assume that the vectors w,(n), z = 1, . . . , M ,  which 
constitute the trial solution W ( n ) ,  are approximately orthogo- 
nal and that the norm of each of them remains approximately 
constant at PZ for n > K .  Using these approximations in 
(3.29), we get 

i i ( 7 ~  + 1) z E(n) - 2hBW(n) V 71 > K (3.30) 

M where B = 

U = 0 and neglecting terms of order 5 and above, we obtain 

+ 2 p C , = ,  (0; - l)Ez2. 
Now, writing the Taylor's series expansion for f(u) around 

U U 3  
w = f ( U )  Z - - - 

2 24'  

Substituting (3.31) in (3.30) gives 

(3.3 1 )  

(3.32) h -  
= - V w J ( W ( t ) . p )  = -2B(t )W(t)  (3.26) a ( ~ ,  + 1) z CU(71) + -Bu(T~) d t  12 
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where C = INM - hB and u(n) is a vector with lcth element 
&(n) = U",(.). Iterating (3.32) from n to K (downward), 
we get 

n-1-K 
h . -  

12 
u(n) z Cn-Kii(K) + E -CzBu(n - 1 - 2 ) .  (3.33) 

Define two block-diagonal matrices Q and n of size NM x 

i = O  

N M  as 
- 
Q = bdiag [Q, Q, . . . , Q1 

and 
- 
A = bdiag [A, A , .  . . ,A]  (3.34) 

where Q = [ql, 4 2 , .  . . , qN] and A = diag [A , ,  A2,  . . . , A N ]  
(cf. Section I). Then, from (2.4) and (3.34) the eigenvalue 
decomposition of is obtained as 

M N  

R = mT = Y k j a k j a E j  (3.35) 
k=l j=1 

where Y k j  = A j  and a k j  = [O', . . . , O T ,  q?, O T ,  . . . , 0'1 
with q, occupying the lcth N-vector segment in the N M  x 1 
vector a k j .  Substituting (3.35) in (3.33), we get 

M N  

k=l j=l 
n-1-K M N . 

For convergence of E(n), we must have 

Now, we know from Section 111-A that the minimizer of J ,  to 
which the above algorithm converges, is the set of minimum 
eigenvectors of R. Further, we do not have any a priori 
knowledge about the eigenvalues of R so as to make any 
precise choice of the value of h. Taking these into account as 
well as the ordering of the eigenvalues, we get the conditions 
on h, for each lc = 1 , .  . . M ,  as 

which on simplification results in 

TABLE I 
QUALITY ( E )  AND Orth,,,,, OF THE ESTIMATED 

EIGENVECTORS ( N  = 8, SNR = 10 dB) 

D ,If E OTth,,, 

Single sinusoid 6 6 5.138 x 1.786 x lop6 
6 3 5.129 x 9.550 x IO-' 
4 4 5.737 x 5.057 x IO-' 
4 2 5.480 x 4.317 x lo-* Two sinusoid case 

In order to obtain a single upper-bound which will be satisfied 
for all k and j in (3.41), we replace Yk3 by Am,,(= A I ) ,  giving 

(3.42) 

Since the eigenvalues of R are not known a priori, practical 
bounds for h can be given as 

2 
O < h <  

Amax - Amin ' 

2 
Trace( R) ' O<h<---- (3.43) 

Recall that in arriving at (3.31), the Taylor's series was 
truncated at fourth order term. Inclusion of higher order terms 
would cause extra terms on the R.H.S of (3.32). But, all these 
extra terms will have the same form as the second term. As 
it is evident from the above analysis, presence of these higher 
order terms will not affect the final answer in (3.42) in anyway. 

IV. SIMULATION RESULTS 

We now present some simulation results to support the 
theoretical assertions made in the previous section. 

In the simulation studies, the matrix R was chosen as the 
asymptotic covariance matrix of the signal consisting of P/2 
real sinusoids in additive white noise of unit variance (i.e., 
Amin = 1). Size of R was fixed at 8 (i.e., N = 8). Amplitudes 
of the sinusoids were chosen to give the desired signal-to- 
noise ratio (SNR). If < is the amplitude of the sinusoid, then 
the SNR(dB) is given by 1010g((~/2). We considered two 
cases: 1) single sinusoid of 0.2 Hz (normalized) in noise, i.e., 
P = 2, and 2) two equipower sinusoids of 0.2 and 0.24 Hz. 
(normalized) in noise, i.e., P = 4. The dimension of S (i.e., 
D )  for these two cases is 6 and 4, respectively. 

The performance measures used for evaluating the quality 
of the estimated eigenvectors are as follows. Let wf,z = 
1, . . . , M ,  represent the estimated eigenvectors where M 5 D. 
To see the quality of the estimated eigenvectors, i.e., how 
close they are to the true subspace, we use the projection error 
measure 

The true eigenvectors (qj) are obtained using the MATLAB 
eigenvalue decomposition routine. 

Observe from (4.1) that E does not reveal the extent 
of orthogonality among the estimated eigenvectors. It only 
conveys how close the estimated eigenvectors are to S. The 
smaller the value of E ,  the closer the estimated subspace is 
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TABLE 11 
CONVERGENCE PERFORMANCE AS A FUNCTION OF SNR 

5 6 4 2.288 x lop4 7.785 x IO-’ 201 12.6722 
15 6 4 1.425 x 10- j  7.955 x IO-’  30 117.7189 

Single sinusoid case 

5 4 2 1.821 x lo-’ 1.741 x lo-’ 1054 2.2608 
15 4 2 1.658 x lo-‘ 1.494 X IO-’ ‘48 13.6078 Two sinusoid case 

to S, and vice versa. Since the proposed approach results in 
orthogonal eigenvectors, we define an orthogonality measure, 
Orthmax, as 

parameter, 6, we can get more accurate estimates. However, 
for a given h, the smaller the value of 6, the longer will be 
the convergence time. For p 5 *, behavior of the system 
will be erroneous. Also, if we choose M > D ,  the algorithm 
will converge to some arbitrary point which may not have any 
significance to the problem addressed here. 

Orth,,, = rnax (4’2) 

Observe that Orth,,, is the magnitude cosine of the angle 
between those two vectors which have the smallest angle 
between them. Thus, the larger the value of 0 r t  h,,,,, the 
less orthogonal the estimated eigenvectors are and vice versa. 

The system of differential equations (cf. (3.26)-(3.28)) 
was solved numerically choosing the integration time-step 
h according to (3.43). The vector ii(n) was initialized to 
an N M  x 1 random vector and the iterations were stopped 
when the norm of the difference between the consecutive 
solution vectors was less than a predetermined threshold 6 
(i.e., ( (W(n + 1) - E ( n ) ( ( 2  < 6). The parameters 6, p and (Y 
were chosen as 

Table I gives the results for M = D and M < D ,  for the 
cases of single and two sinusoids. It may be observed that the 
quality of estimated subspace ( E )  is quite good and for a given 
D it does not change appreciably with the value of M .  The 
entries under Orth,,,, show that the estimated eigenvectors 
are almost orthogonal. 

Table I1 illustrates the convergence performance of the ap- 
proach for different SNR’s. The quantity NCO, is the number of 
iterations which the algorithm took to converge and P(X)  is the 
ratio X p / X m i n .  The latter quantity, P(X),  plays a significant 
role in deciding the convergence rate of the algorithm, as 
explained below. 

Note from Theorem 3.3 that for any finite p, the norm of the 
estimated minimum eigenvectors is less than unity. For moder- 
ate values of IL (as chosen for the numerical results in Table 11), 
the outputs of the neurons lie in a small neighborhood around 
origin where the sigmoidal function can be approximated by 
a straight line. Then, the R.H.S of (3.36) can be approximated 
by the first term. Since the rate of convergence is controlled 
by factors of the form 1 - h ( X J  - XIni1,), j = 1,. . ~ N ,  it is 
clear that the convergence speed will be decided by the factor 
1 - h(Xp  - &in) as this will be closest to unity. Recall that 
P(X) = Xp/Xmin. A large value for this ratio implies that 
X p  is far away from Xmin which results in a smaller value 
for 1 - h(Xp - A m i n )  thereby yielding faster convergence. 
Since P(X) increases with SNR, the convergence speed goes 
up with SNR. 

We may point out here that the values chosen for the 
parameters p and (I: do not affect the quality of the estimated 
eigenvectors. By choosing a smaller value for the threshold 

50 and 100, respectively. 

V. CONCLUSION 

The problem of estimating the orthogonal eigenvectors 
corresponding to the repeated minimum (in magnitude) eigen- 
value of a symmetric nonindefinite matrix is addressed and 
a feedback neural network solution has been developed. This 
is done by constructing an appropriate energy function for 
this NN. An analysis establishing the correspondence between 
the minimizers of this energy function and the desired set of 
orthogonal eigenvectors has been presented. Bounds on the 
integration time-step which is required to numerically solve 
the system of differential equations have also been derived. 
Simulation results are presented to corroborate the analysis. 
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