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Abstract

We consider kernel estimators of the instantaneous frequency of a slowly

evolving sinusoid in white noise. The expected estimation error consists of

two terms. The systematic bias error grows as the kernel halfwidth increases

while the random error decreases. For a nonmodulated signal, g(t), the ker-

nel halfwidth which minimizes the expected error scales as h ∼
[

σ2

N |∂2
t g |

2

]1/5
,

where σ2 is the noise variance and N is the number of measurements per unit

time. We show that estimating the instantaneous frequency corresponds to

estimating the first derivative of a modulated signal, A(t) exp(iφ(t)). For in-

stantaneous frequency estimation, the halfwidth which minimizes the expected

error is larger: h1,3 ∼
[

σ2

A2N |∂3
t (e

iφ̃ (t))|2

]1/7
. Since the optimal halfwidths depend

on derivatives of the unknown function, we initially estimate these derivatives

prior to estimating the actual signal.
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I. INTRODUCTION

We consider the problem of estimating the instantaneous frequency of one or more

slowly evolving sinusoids in white noise. Excellent reviews of the estimation of the

instantaneous frequency as well as the general theory of time–frequency distributions

can be found in [2,3,10] Cohen & Lee [4] determine an optimal kernel smoother by

minimizing the time–frequency spread of the resulting estimate of the instantaneous

frequency.

Our approach is based on the theory of kernel smoothers for nonparametric func-

tion and derivative estimation [7-9,13-15,17,18,21]. Kernel smoothers are weighted

averages of the measured values of a slowly evolving unknown function. We use

“kernel smoother” to be consistent with the terminology of nonparametric function

estimation. In the electrical engineering literature, the equivalent terminology is “lin-

ear transfer function” or “acausal finite impulse response linear filter.” As the kernel

halfwidth increases, the random error from the white noise decreases.

Lovell & Williamson (L & W) [12] use a centered difference to estimate the time

derivative of the phase, φ′(t), and then use a kernel smoother to reduce the variance of

the estimate of φ′(t). As in L &W, we treat estimation of the instantaneous frequency

as a kernel smoothing problem with circular statistics. However, the kernel smoother

has a bias error from systematic evolution of the amplitude and frequency, and this

bias error increases with the kernel halfwidth. We calculate the leading order expected

estimation error by expanding the unknown function in the ratio of the sampling time

to the characteristic time scale on which the unknown signal is evolving. We then

determine the optimal kernel halfwidth by minimizing the expected error. In L &

W’s pioneering work, the bias error is neglected, and as a result their estimate of the

expected error is a monotonically decreasing function of the kernel halfwidth.

A second group of estimators of the instantaneous frequency have been developed

which are based on linear regression or linear prediction [6,11,24]. These methods

estimate fixed frequencies. Since the frequencies are assumed to be time independent,

and these methods neglect the rate of change of the frequencies, and the temporal

evolution of the signal frequencies causes a bias error in the estimate. Often, these

methods use short subsequences such that on a particular subsequence the bias error

(from frequency evolution) is negligible. However, having negligible bias is really a

disadvantage because the subsequence length could be increased until the bias error

is comparable with the random error. In our approach, we try to minimize the total

error by increasing the kernel halfwidth until the rate of increase in the bias error

matches the decrease in the variance.

In the next section, we review the theory of nonparametric function and derivative

estimation. In Section III, we apply these results to instantaneous frequency estima-

2



tion. In Section IV, we generalize the analysis to include the correlated errors which

are induced by the Hilbert transform. In Section V, we consider multiple signals. In

Appendix A, we describe data-adaptive multiple stage kernel estimators which de-

termine a self-consistent optimal halfwidth. In Appendix B, we describe the kernel

shapes which minimize the expected error.

II. EXPECTED LOSS OF KERNEL SMOOTHERS

In this section and the appendix, we consider a real digital signal in white noise:

yj = g(tj) + ẽj , j = 1, . . . N, (2.1)

where ẽj is independently distributed noise with variance σ2. Our goal is to estimate

the qth derivative of g(tj) with a minimum of expected error. We assume that g(t)

has p continuous derivatives and that g(t) varies slowly with respect to the sampling

rate. We normalize the measurement times, tj, to be in the closed interval [0, 1].

We consider kernel estimators of ∂q
t g(t) of the form:

∂̂q
t g(t) =

1

Nh(q+1)

N∑

j=1

K(
t− tj
h

)yj , (2.2)

where the ̂ over ∂q
t g denotes the estimate of the qth derivative. We define the vector,

µ(t) = 1
Nh

(K( t−t1
h

)), . . .K( t−tN
h

))T . We say a kernel, µ , with halfwidth, h, is of order

(q, p) if

µ · s (m) = q! δm,q , m = 0, . . . , p− 1, (2.3)

where s
(m)
j ≡ ( t−tj

h
)m. We denote the pth moment of a kernel of order (q, p) by Cq,p:

µ · s (p) = p! Cq,p. Kernels of order (q, p) are used to estimate the qth derivative of

the function to order O(hp−q). We normally select p = q + 2 and our preferred set

of kernels is given in (2.10). For function estimation (q = 0), we normally use p = 2

and occasionally use p = 4. To estimate the instantaneous frequency, we use a kernel

smoother of order (1, 3).

The moment conditions (2.3) are also satisfied by the phase difference estimators

of Boashash [2]. Boashash’s estimators are chosen to have the shortest possible length:

N = p+1. As a result, these phase difference estimators have near minimal bias error

and are suitable for high resolution estimates in a noiseless signal. If noise is present,

these phase difference estimators will appreciably amplify the noise. In a noisy signal,

our kernel estimators reduce the variance by averaging over many more data points

than the kernel order, p.
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The variance of the kernel estimator is

Var [ĝ(q)(t, µ )] =
σ2m2(µ)

Nh2q+1
, (2.4)

where m2(µ) = ||µ ||2 × (Nh)∼ ∫ K(s)2ds. Expanding g(tj) in a Taylor series about

g(t), the bias of a kernel smoother of order (q, p) is

E
[
∂̂q
t g(t)

]
− ∂q

t g(t) = Cq,p∂
p
t g(t)h

p−q. (2.5)

The leading order total squared error of ∂q
t g(tj) is

L2( ̂∂q
t g(tj);µ ) = C2

q,p|∂p
t g(tj)|2h2(p−q) +

σ2m2(µ)

Nh2q+1
, (2.6)

where the corrections are O(h2(p−q)+1). Solving (2.6) for the optimal value of the

kernel scale size yields

ho(µ ) =

[
2q + 1

2(p− q)

σ2m2(µ)

C2
q,pN |∂p

t g(tj)|2
] 1

2p+1

. (2.7)

For this choice of kernel width, ho, the total squared error of (2.2) is proportional to

L2(∂̂q
t g(tj)) ∼ Mq,p|Cq,p∂

p
t g(tj)|

2(2q+1)
(2p+1)

(
σ2 m2(µ)

N

) 2(p−q)
(2p+1)

, (2.8)

whereMq,p ≡ ( 2q+1
2(p−q)

)
2(p−q)
(2p+1)+(2(p−q)

(2q+1)
)
(2q+1)
(2p+1) . The optimal h is proportional toN−1/(2p+1),

and the total squared error, L2(∂q
t g), is proportional to N

−2(p−q)
(2p+1) . If g(t) has p con-

tinuous derivatives, where q ≤ p ≤ p, the optimal bandwidth scales as N−1/(2p+1),

and the total squared error is proportional to N−2(p−q)/(2p+1). This convergence rate

is optimal for functions with precisely p continuous derivatives [22].

In [21] and Appendix B, we evaluate the kernel shape (under appropriate con-

straints) which minimizes the expected error. In the high sampling rate limit, the

kernel shapes which minimize the local expected loss (as given by (2.6)) are indepen-

dent of the kernel halfwidth and can be explicitly evaluated. (See bibliography in

[21].) For p = q + 2, the limiting shape of the optimal kernel is

K(t) = γ [Pq(t)− Pq+2(t)] , (2.9)

where Pq(t) and Pq+2(t) are the Legendre polynomials (or their discrete analog) and

γ ≡ ∏q+1
k=1

(q+k)
2

. In (2.9), the estimation point is at t = 0 and the kernel support is

[−1, 1]. For q = 0, Eq. (2.9) reduces to K(t) = 3
4
(1 − t2), and for q = 1, K(t) =

15
4
(t−t3). When the domain of the kernel smoother intersects the ends of the dataset,
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the kernel requires the more general form: K(t,
t−tj
h
) to continue to be of order (q, p).

The appropriate edge kernels are given in [21].

We have derived the optimal kernel halfwidth assuming that g(p)(t) is known.

In practice, g(p)(t) is unknown and needs to be estimated. In the appendix, we

describe data adaptive methods where we estimate ∂p
t g(t) using a higher order kernel

of order (p, p+2) and substitute ∂̂p
t g(t) into (2.7). More detailed treatments of kernel

estimation can be found in [7-9,13-15,17,18,21].

III. INSTANTANEOUS FREQUENCY ESTIMATES

We now consider models where both the amplitude, A(t), and the instantaneous

frequency, φ′(t), are evolving slowly with respect to both the sampling rate and the

characteristic oscillation frequency, ωo. The measured data satisfies

yj = A(tj) cos(φ(tj)) + ẽj , j = 1, . . .N, (3.1)

where ẽj is i.i.d. noise with variance σ2. We define the analytic signal, z = A[x ] =

x + iH[x ], where H is the Hilbert transform. We assume that φ(t) = ωot+φo+ φ̃ (t),

where the characteristic frequency, ωo, is given. In practice, we iterate on ωo with the

new value of ωo being the previous estimate of the instantaneous frequency.

We assume that A(t) and φ(t) satisfy the bandwidth conditions [2]: F [A(t)] van-

ishes for |ω| > ωb and F [cos(φ(t))] vanishes for |ω| < ωb, where F is the Fourier

transform and ωb is fixed. In this case, the analytic signal has the phasor representa-

tion:

zj = A(tj) exp(iφ(tj)) + ǫj , j = 1, . . . N, (3.2)

where ǫ ≡ A[e ]. The Hilbert transform couples the ǫj so that they are not inde-

pendent. We initally consider the case when the model of (3.2) holds with Re[ǫj ]

and Im[ǫj ] as independent random variables with variance σ2. In this case, the ex-

act distribution of the phase is known. Because the distribution of exp(i arg(zj)) is

more nearly Gaussian distributed than is arg(zj) [23], we smooth and differentiate

exp(i arg(zj)) instead of arg(zj).

To apply the optimal kernel smoother theory of Sec. II to (3.2), we require that

the sampling rate is fast with respect to the characteristic evolution time. To remove

the exp(iωot) modulation from the sampling rate constraint, we demodulate the data

about the central frequency. We define z̃j ∼ zje
−i(ωot+φo). By kernel smoothing z̃j , we

can estimate the real and imaginary parts of A(t)eiφ̃ (t). However, for time-frequency

representations, we need the modulus, A, and instantaneous frequency, φ′(t). We now

describe our kernel estimation scheme for the instantaneous frequency.

5



We begin by computing uj = exp(i arg(z̃j)). Provided that the signal to noise

ratio, s = A2

2σ2 , is high, uj is approximately distributed as uj ∼ N [exp(iφ̃ (tj), σ
2
φ],

where σ2
φ = σ2

A2+σ2 . We then estimate eiφ̃ (t) and ∂te
iφ̃ (t) using kernel smoothers of

orders (0,2) and (1,3) respectively. To apply (2.7) & (2.8), we make the substitutions:

eiφ̃ (t) → g(t) and σ2
φ = σ2

A2+σ2 → σ2.

Using these results, our instantaneous frequency estimate is

φ̂′(t) = ωo + Im



̂
∂teiφ̃

(t)

êiφ̃ (t)


 , (3.3)

Since our initial guess of the centering frequency, ωo, may be inaccurate, we can

iterate the local kernel estimates by replacing ωo with ωo+
̂̃
φ ′(t). The error estimates

for φ̂′ are dominated by the error in
̂
∂teiφ̃

(t). Thus the optimal halfwidth to estimate

∂te
iφ̃ (t) is

ho(µ ) =

(
3

4

σ2
φm2(µ)

C2
1,3N |∂3

t eiφ̃ |2

) 1
7

. (3.4)

The resulting error in ∂̂tφ(t) is

L2(∂̂tφ(tj)) ∼ M1,3|C1,3∂
3
t e

iφ̃ | 67
(
σ2
φm2(µ)

N

) 4
7

. (3.5)

Our work generalizes the kernel estimators of Lovell &Williamson [12] by including

bias in estimate of the error and by applying the resulting optimal kernel theory. L &

W extract pointwise estimates of φ′(tj) from arg(zj+1) − arg(zj−1) and then smooth

these estimates. We have partially reversed the order of the smoothing and nonlinear

transformations by working with exp(i arg(zj)). Our basic algorithm is to choose the

kernel smoother/derivative estimator by minimizing the expected loss including the

bias error. This algorithm can also be applied to other orderings of the smoothing

and nonlinear transformations such as that of L & W. However, the distribution of

exp(i arg(zj)) matches the hypotheses of kernel smoothing better than most other

choices [23].

IV. EVOLVING SINUSOIDS IN COLORED NOISE

In Section III, we noted that the Hilbert transformed noise is correlated. To treat

this situation, we review kernel estimation with an arbitrary covariance structure

[A]: Cov[ej , ek] = σ2Rj,k. In this case, the variance of the kernel estimate of the

demodulated data (generalizing (2.4)) is

Var [ĝ(q)(t)] =
σ2

Nh2q+1

N∑

j,k=1

µ jR j,kµ ke
iωo(k−j) . (4.1)
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When the errors are autocorrelated, Rj,k = R(j−k), (4.1) can be reformulated in the

frequency domain as

Var [ĝ(t)] =
1

2πh2q

∫ π

−π
S(ω )|U(ω − ωo)|2dω , (4.2)

where U(ω) is the Fourier transform of µ. If U(ω) is localized near the zero frequency,

the variance of the estimate will depend almost exclusively on the spectral density

near ωo , S(ωo ). Thus Var [ĝ(q)(t;µ )] = S(ωo )m2(µ)/Nh2q+1.

Returning to the Hilbert transform problem, we use the covariance structure of

the Hilbert transform: Cov[ǫj , ǫk] = 2σ2 (δj,k + iξ(j − k)) and Cov[ǫj , ǫk] = 0, where

ξ(j−k) = 2
π(j−k)

if j−k is odd and zero otherwise. Thus E[|Re(ǫj)|2] = E[|Im(ǫj)|2] =
σ2. Equation (4.2) shows that Im(R ) does not contribute to the variance of the

kernel estimate of A(t)eiφ̃ (t). Thus Var[
̂

A(t)eiφ̃ ] = 2σ2m2(µ)/Nh2q+1. The factor of

two arises because we are estimating both the real and imaginary parts.

In kernel smoothing exp(i arg(zj)), the phase error are distributed as

eφ,j ∼
ei(φ(tj )+π)Im[ǫje

−iφ(tj)]√
A2 + σ2

. (4.3)

Thus eφ,j has an approximately normal distribution with covariance [12]:

Cov[eφ,j, eφ,k] =
σ2

A2 + σ2

[
δj,k − ξ(j − k)ei(φ(tj )−φ(tk)) sin (φ(tj)− φ(tk))

]
. (4.4)

We substitute (4.4) for (2.4) and apply the resulting kernel halfwidths to (3.3).

V. MULTIPLE EVOLVING SINUSOIDS

We now consider signals which consist of a sum of slowly evolving sinusoids in

colored noise:

yj =
L∑

ℓ=1

Aℓ(tj) cos(φℓ(tj)) + ẽj . (5.1)

We assume that φℓ (t) = ωℓ t + φo,ℓ + φ̃ ℓ(t), where the frequencies, ωℓ , are given and

distinct. We require the bandwidth conditions: F [Aℓ(t)] vanishes for |ω| > ωb and

F [cos(φℓ(t))] vanishes for |ω − ωℓ| < ωb, where ωb is fixed. Furthermore, we assume

that the supports of F [Aℓ(t)cos(φℓ(t))], ℓ = 1, . . . L, have negligible overlap.

We initially estimate ˜Aℓ cos(φℓ ), ℓ = 1, . . . L, ignoring the bias from the other

sinusoids. We then attempt to remove the effect of the other sinusoids. Given esti-

mates, ̂Aℓ′ cos(φℓ )(t), of the other sinusoids, we define the ℓth corrected data set, ỹ(ℓ),

to be

ỹ
(ℓ)
j ≡ yj −

L∑

ℓ′=1

ℓ′ 6=ℓ

̂Aℓ′ cos (φℓ′ (tj)) . (5.2)
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We estimate the ℓth instantaneous frequency using the corrected dataset. The cor-

rection and estimation may be iterated.

To determine when we can neglect the bias from the other line frequencies, we

compare the relative size of the bias from the time evolution of Aℓ, with coherent

interference from the other line frequencies. We denote ˜Aℓ′ cos(φℓ′ ) ≡ Aℓ′ cos(φℓ′ ) −
̂Aℓ′ cos(φℓ′ ), which is the error in the kernel estimate of Aℓ′ cos(φℓ′ ). We assume

that the support of the Fourier transform of ˜Aℓ′ cos(φℓ′ ) is contained in the interval

[−ωb, ωb]. We can neglect the interference of the ℓ′ line in (2.7) if

|Cq,p∂
p
tAℓ(t)h

p| >>
∣∣∣Ãℓ′(t)U(|ωℓ − ωℓ′ | − ωb)

∣∣∣ , (5.3)

where U(ω) is the Fourier transform of µ. The expected size of the error in removing

the ℓ′th sinusoid from the estimate of the ℓth sinusoid, ˜Aℓ′ cos(φℓ′ ), is given by (2.8).

The bias from the other line frequencies can be included as a correction to (2.6).

The kernels of (2.9) and Appendix B are designed to minimize the total error under

the assumption that the signal is well resolved. These “minimal loss” kernels tend

to have larger frequency sidelobes because their design criterion does not explicitly

penalize sidelobes. Many other digital filters and differentiators [5] have been designed

to have power spectra which decay rapidly away from zero frequency, and thereby

reduce the interference terms because U(ωℓ′ − ωℓ ) ≪ 1.

If interference from sidelobes is significant, we replace the minimal loss kernels

with kernel which satisfy U(ωℓ′ − ωℓ ) ≪ 1 for broad banded bias protection. Our

particular choice is to construct a kernel from the first (p + 1) sinusoidal tapers of

[19]. The sinusoidal tapers are defined by v(k)n =
√

2
N+1

sin( πkn
N+1

) where k is the taper

number, N is the length of the kernel and n = 1 . . .N . Imposing (2.3) and the

condition that the kernel vanish at the ends of its support gives p+ 1 conditions and

p+ 1 free parameters.

VI. DISCUSSION

In this article, we have treated time-frequency distributions as an estimation prob-

lem for slowly varying sinusoids. This model generalizes the Rife and Boorstyn prob-

lem [20] of estimating a pure sinusoid in noise. This approach is valid and appropriate

when we know a priori that the signal consists of one or more coherent signals in

a noise background. When the signal is incoherent with a slowly varying spectral

density, the evolutionary spectrum of Priestley [16] is the appropriate model. In [17],

we use a two-dimensional cross-product kernel smoother to estimate the evolutionary

spectrum, S(ω, t).

To our knowledge, none of the previous instantaneous frequency estimators [2]

include the effects of bias error from the time variation of the frequency in their

8



analyses. The multiple stage kernel estimators of the appendix yield the optimal rate

of convergence for nonparametric estimation. When the instantaneous frequency is

known a priori to have a particular parametric form such as a “chirp”, more accurate

estimators are possible. The well-known Cramer-Rao bound of Rife and Boorstyn

[20] applies when the instantaneous frequency is time independent.

We determine the instantaneous frequency by estimating eiφ̃ (t) and ∂te
iφ̃ (t) with

kernel smoothers. The bias error is proportional to h2∂3
t e

iφ̃ (t). We demodulate by

e−i(ωot+φo) to reduce this bias. The variance of the estimate of ∂te
iφ̃ (t) scales as

σ2

|A|2Nh3 . Minimizing the expected error yields the optimal kernel halfwidth, h1,3 ∼
[

σ2

A2N |∂3
t (e

iφ̃ (t))|2

] 1
7

and L2(∂̂tφ(tj)) ∼ |∂3
t e

iφ̃ | 67
(

σ2

A2 N

) 4
7 .

Our optimal kernel smoother approach has two disadvantages. First, it is compu-

tationally more intensive than many of the alternative methods. Second, the asymp-

totic expressions are based on a Taylor series expansion of eiφ̃ (tj ) about eiφ̃ (t). If ht is

the radius of validity of the third order expansion,

eiφ̃ (tj ) ∼ eiφ̃ (t)+(tj − t)∂te
iφ̃ (t)+

(tj − t)2

2
∂te

iφ̃ (t)+
(tj − t)3

6
∂te

iφ̃ (t) + o((tj − t)3+δ) ,

our analysis shows that the optimal halfwidth is given by (3.4) if ho is less than ht.

Since the optimal halfwidth scales as the 1/7 root of the signal to noise ratio divided

by the number samples per characteristic time, we are often in the limit where ho > ht.

In this case, our analysis shows only that the best kernel halfwidth is greater than or

equal to ht. The failure of the Taylor series approximation often corresponds to an

order one phase difference between eiφ̃ (tj) and eiφ̃ (t). Thus the lower bound on the

kernel halfwidth is useful and is often close to optimal value.

APPENDIX A: DATA ADAPTIVE MULTIPLE STAGE KERNEL ESTIMATORS

In this appendix, we construct multiple step kernel estimators which have optimal

relative convergence rates. We return to the case of a nonmodulated real signal

(φ(t) ≡ 0). We consider data adaptive estimators which estimate g(q)(t) in the final

stage with a kernel of order (q, p) where the kernel parameters are determined with

a kernel pre-estimate of g(p)(t) of order (p, p+ 2). The more accurate the estimate of

g(p)(t) is, the closer the expected loss of the “plug-in” kernel estimator will be to the

optimal value with known g(p)(t). If the estimated value of ĝ(p)(t) differs from g(p)(t)

by O(N−α), then

E
[
|ĝ(t|ĥ0,q)− g(t)|2

]
∼
(
1 +O(C2

rN
−2α)

)
E
[
|ĝ(t|h0,q)− g(t)|2

]
, (A1)

9



where h0,q is given by (2.7) and ĥ0,q is its empirical estimate. We say that CrN
−α is

the relative convergence rate of the kernel halfwidth estimate. (The convergence is

relative to the rate with the known, optimal value of h.) If the relative convergence

rate tends to zero as N → ∞, then the estimate is asymptotically efficient.

To achieve the optimal rate of convergence, the “pre-estimates” of ∂p
t g(t) are

estimated with a different kernel length than the estimate of g(t). Equation (2.7)

shows that the optimal h scales as N−1/5 for kernels of order (0, 2) and (2, 2), and

that h scales as N−1/9 for kernels of order (0, 4) and (2, 4). For pre-estimates with

kernels of order (p, p+ 2), the relative convergence rate is O(N
−2

(2p+5) ).

In the first step of any multistep estimation scheme, the kernel halfwidth for the

next step needs to be selected. There are three common methods to initialize the

kernel smooother: characteristic time scale initialization, parametric fit initialization,

and goodness of fit initialization. In the characteristic time scale initialization, the

signal is assumed to have a characteristic amplitude, Ā, and to vary on a characteristic

time scale, τ , where Ā and τ are given a priori. In the initial halfwidth estimate,

Ā/τ p is sustituted for g(p)(t) in (2.7).

In the parametric fit initialization, g(t) is fit with a prescribed functional form

with a small number of free parameters. The parametric fit is then substituted into

(2.7) to initialize the kernel estimate.

In the goodness of fit initialization, h is determined by minimizing an expression

which includes the residual sum of squared errors but which corrects for the number

of degrees of freedom which are used in a kernel smoother [9,14,16,18].

In general, both the characteristic scale initialization and the parametric fit ini-

tialization produce order one errors in ĝ(p)(t). The goodness of fit criteria have a slow

relative rate of convergence, O(N−1/10) [9]. In contrast, the pilot kernel estimator of

order (p, p+2) has a relative convergence rate of O(N−2/9). Therefore we recommend

a multiple stage kernel estimator where g(p) is estimated prior to the estimation of

g(t).

For simplicity, we consider a two stage estimate with a characteristic scale initial-

ization. We begin the adaptive estimate by selecting a global halfwidth, h2,4, using

a characteristic scale initialization. The resulting estimate of ∂2
t g achieves the opti-

mal convergence rate of L2(∂̂2
t g) ∼ C2N

−4/9. Because we use an arbitrary ansatz,

∂4
t g ∼ τ−4Ā, in the optimal halfwidth formula, the convergence rate differs from the

optimal value by an order one factor.

To estimate ∂tg(t) (as in instantaneous frequency estimation) we begin with the

ansatz that ∂5
t g ∼ Ā/τ 5, We insert this ansatz into (2.7) to determine a halfwidth to

estimate ∂3
t g(t) using a kernel of order (3,5). We then use the estimate of ∂3

t g(t) to

determine a halfwidth for a kernel of order (1,3).

10



Our estimate of g(t) achieves the optimal convergence rate of L2(ĝ(t))∼CN−4/5

and the optimal relative convergence rate of N−4/9. A similar, slightly more elaborate,

adaptive estimator was proposed by Müller & Stadtmüller (M-S) [15]. M-S begin by

determining a global halfwidth for the (2,4) kernel using the Rice criterion. Goodness

of fit initializations improve on the characteristic time scale initialization by selecting

an asymptotically efficient global halfwidth for the estimate of ∂2
t g(t). The M-S

scheme is actually a three stage estimator and the computational effort required on

the initial step can be large.

Since g(t) is Cp, we want ĝ to be smooth as well. The kernel halfwidth of (2.7)

using the “plug-in” derivative estimate in an infinite kernel halfwidth. Also, ∂̂p
t g is

at best is continuous, but need not be smooth. Therefore we convolve |∂̂p
t g|2 with

a regular kernel, G(·), with
∫
G(s)ds = 1. We choose the halfwidth of G to be

h ≡ maxt{ĥ(t)}. To apply our estimate of g(p)(t) to (2.7), we make the substitution,

|∂̂p
t g|2 →

1

2h

∫ h

−h
G(

s

h
)|∂̂p

t g(t− s)|2ds . (A2)

This smoothed estimate is asymptotically equal to |∂p
t g(t)|2, but robustifies the empir-

ical halfwidth for moderate values ofNh. When ∂p
t g(t) nearly vanishes, the smoothing

in (A2) models the effect of the higher order bias terms. In [15], the robust estimator

of ∂2
t g in (A2) is replaced by a simpler, but less accurate upper cutoff.

APPENDIX B: OPTIMAL KERNEL SHAPES

In (2.6), the expected loss is a quadratic function of the kernel, µ. For a fixed

kernel width, we can minimize the expected loss subject to the constraints that µ

is of type (q, p). For a given, positive definite, symmetric matrix, R̄ , we define the

minimal R̄ kernel of order (q, p), µ as the minimizer of

µ T R̄µ +
p−1∑

m=0

αm(µ · sm − δm,q), (B1)

where αm, m = 0 . . . p − 1 are p Lagrange multipliers and T denotes “transpose”.

When R̄ ≡ σ2I , we call µ the minimal variance kernel of type (q, p) and the solution

is given in [13]. The approximate expected loss is given by:

L(µ ) ∼ µ TRµ + |∂p
t g(t)|2|µ · s p|2 . (B2)

If bothR and ∂p
t g(t) are given, the minimal loss kernel, µ L, corresponds to the choice

of R̄ = R ≡ R + |∂p
t g(t)|2s (p)s (p)T . Thus the expected loss functional differs from

the minimum variance functional by a rank one perturbation.
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Thus the minimal R̄ norm kernel satisfies

R̄µ = −
p−1∑

m=1

αms
(m), (B3)

with the linear constraints of (2.3). We define theN×pmatrix, S(p) ≡ (s (0), .., s (p−1));

i.e. S(p), the matrix of the first p moment vectors, s (m), 0 ≤ m < p. We also define

the p vector, e (p)
q , to be the unit p vector in the q direction, and α to be the p vector

of Lagrange multipliers. The solution of (B2) is

ST R̄−1Sα = −e (p)
q , (B4)

µ = R̄−1S(ST R̄ −1S)−1e (p)
q . (B5)

Thus the minimal loss is e (p)T

q (ST R̄−1S)−1e (p)
q In [21], the optimal kernel shapes

given by (B5) are explicitly evaluated in the large sample limit.
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