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Space-Alternating Generalized 
Expectation-Maximization Algorithm 

Jeffrey A. Fessler, Member, IEEE, and Alfred 0. Hero, Member, IEEE 

Abstract- The expectation-maximization (EM) method can 
facilitate maximizing likelihood functions that arise in statis- 
tical estimation problems. In the classical EM paradigm, one 
iteratively maximizes the conditional log-likelihood of a single 
unobservable complete data space, rather than maximizing the 
intractable likelihood function for the measured or incomplete 
data. EM algorithms update all parameters simultaneously, which 
has two drawbacks: 1) slow convergence, and 2) difficult maxi- 
mization steps due to coupling when smoothness penalties are 
used. 

This paper describes the space-alternating generalized EM 
(SAGE) method, which updates the parameters sequentially by 
alternating between several small hidden-data spaces defined by 
the algorithm designer. We prove that the sequence of estimates 
monotonically increases the penalized-likelihood objective, we de- 
rive asymptotic convergence rates, and we provide sufficient con- 
ditions for monotone convergence in norm. Two signal processing 
applications illustrate the method: estimation of superimposed 
signals in Gaussian noise, and image reconstruction from Poisson 
measurements. In both applications, our SAGE algorithms easily 
accommodate smoothness penalties and converge faster than the 
EM algorithms. 

I. INTRODUCTION 
N a variety of signal processing applications, direct calcula- I tions of maximum-likelihood (ML), maximum a posteriori 

(MAP), or maximum penalized-likelihood parameter estimates 
are intractable due to the complexity of the likelihood func- 
tions or to the coupling introduced by smoothness penalties 
or priors. EM algorithms and generalized EM (GEM) algo- 
rithms [ l ]  have proven to be useful for iterative parameter 
estimation in many such contexts, e.g., [2] and [3]. In the 
classical formulation of an EM algorithm, one supplements 
the observed measurements, or incomplete data, with a single 
complete-data space whose relationship to the parameter space 
facilitates estimation. An EM algorithm iteratively alternates 
between an E-step, calculating the conditional expectation of 
the complete-data log-likelihood, and an M-step, simultane- 
ously maximizing that expectation with respect to all of the 
unknown parameters. EM algorithms are most useful when 
the Ad-step is easier than maximizing the original likelihood. 
The simultaneous update used by a classical EM algorithm 
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necessitates overly informative complete-data spaces, which in 
turn lead to slow convergence. In this paper we show improved 
convergence rates by updating the parameters sequentially in 
small groups. 

The convergence rate of an EM algorithm is inversely 
related to the Fisher information of its complete-data space [ 13, 
and we have previously shown that less-informative complete- 
data spaces lead to improved asymptotic convergence rates 
[4]-[6]. Less informative complete-data spaces can also lead 
to larger step sizes and greater likelihood increases in the early 
iterations [5]-[7]. Since the relationship between complete-data 
space information and convergence is therefore more than 
just an asymptotic phenomenon, we believe that one should 
strive to minimize the information of the complete-data space. 
However, in the classical EM formulation a less informative 
complete data space can lead to an intractable maximization 
step [l], [5] ,  due to the simultaneous update employed by EM 
algorithms. (As an example, the least-informative admissible 
“complete” data space would be the measurement space itself!) 

To circumvent this tradeoff between convergence rate and 
complexity, in this paper we extend the concepts in [4] and 
[6] by proposing a new space-alternating generalized EM 
(SAGE) method. This method is suited to problems where one 
can sequentially update small groups of the elements of the 
parameter vector. Rather than using one large complete-data 
space, we associate with each group of parameters a hidden- 
data space (Definition 2 in Section 11), which would be a 
complete-data space in the sense of [ I ]  if the other parame- 
ters were known. We define a flexible admissibility criterion 
that ensures that the algorithm monotonically increases the 
penalized-likelihood objective. In the examples we describe 
here and in [8], one can design the hidden-data space for each 
parameter subset to be considerably less informative than the 
natural single complete-data space. This reduction leads to 
faster convergence. 

Convergence rate is one of two motivations for the SAGE 
method. In applications such as tomographic imaging and 
image restoration, where the parameter space is very large, it 
is often necessary or desirable to regularize using smoothness 
penalties. Such penalties usually introduce couplings that ren- 
der intractable the maximization steps of classical EM methods 
[9]. Several approaches to this problem have been proposed, 
many motivated by emission tomography, including GEM 
algorithms [lo]-[ 121, linearizations of the penalty function [9], 
line searches [13], applying ad hoc smoothing in lieu of a 
smoothness penalty [ 141, red-black orderings [ 151, and ma- 
jorization of the penalty functional [16], [17]. These methods 
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are all rooted in the classical EM method, and often they share 
its slow convergence. In contrast, by using a separate hidden- 
data space for each parameter, a SAGE algorithm intrinsically 
decouples the parameter updates. Surprisingly, not only is the 
maximization simplified, but the convergence rate is improved 
as well. Two related approaches that also decouple the update 
are the hybrid ICM-EM algorithm of Abdalla and Kay [18] 
and the coordinate-wise Newton-Raphson method of Bouman 
and Sauer [19], 1201. 

A variety of methods have been proposed for accelerat- 
ing EM algorithms, most of which are based on standard 
numerical tools such as Aitken’s acceleration [21], over- 
relaxation 1221, line-searches [23], Newton methods [24], [ 191, 
and conjugate gradients [23], [25]. These methods, although 
often effective, do not guarantee monotone increases in the 
objective unless one explicitly computes the objective func- 
tion. The SAGE method is based fundamentally on statistical 
considerations, and monotonicity is guaranteed. The relative 
importance of monotonicity and convergence rate will of 
course be application-dependent. 

When the EM algorithm was first introduced, discussants 
questioned the term “algorithm” since the general method 
does not prescribe specific computational steps for particular 
applications 111. The SAGE method is similarly general, if 
not more so! Therefore, we devote much of this paper to 
a detailed comparison of SAGE and classical EM for two 
signal processing applications: estimation of superimposed 
signals in Gaussian noise, and image reconstruction from 
Poisson measurements. We have simplified the examples for 
the purposes of illustration, while hopefully retaining sufficient 
complexity that the reader will gain insight into how to apply 
SAGE to other problems. 

The organization of this paper is as follows. Section I1 de- 
fines the generalized concept of “hidden data space,” describes 
the general form of the SAGE algorithm, and establishes 
monotonicity in objective. Sections 111 and IV describe the 
applications. Appendix A discusses convergence of the al- 
gorithm and a region of monotone convergence in norm. 
Appendix B establishes that the region of monotone conver- 
gence is nonempty for suitably regular problems. Appendix C 
examines the relationship between convergence rate and Fisher 
information of the hidden-data spaces. 

11. THE SAGE ALGORITHM 

A. Problem 

Let the observation Y have the probability density’ function 
f ( y ;  Btrue), where Otrue is a parameter vector residing in subset 
0 of the p-dimensional space I R p .  Given a measurement 
realization Y = y, our goalAis to compute the maximum 
penalized-likelihood estimate 6’ of Btrue, defined by 

where 

@ ( e )  2 logf(y; e )  - P(6’). (1) 
’ For simplicity, we restrict our description to continuous random variables. 

The method is easily extended to general distributions [4]. 

Unfortunately, direct maximization of @ is often intractable 
due to the complexity of f, the coupling in P ,  or both. 
Thus, one must resort to iterative methods, and in many 
problems it is natural to consider subsets of the elements of 
the parameter vector 6’. (Updating in subsets also often leads 
to remarkably fast convergence, e.g., [26].) The following 
definition formalizes this idea. 

Dejinition I :  A set S is defined to be an index set if it i) 
is nonempty, ii) is a subset of_ the set { 1 , . . . , p } ,  and iii) has 
no repeated entries. The set S denotes the complement of S 
intersected with { 1, . . . , p } .  

Let the cardinality of S be vi. Then, we use 19s to denote 
the m dimensional vector consisting of the m elements of 6’ 
indexed by the members of S. Similarly, define 6‘s to be the 
p -  m dimensional vector consisting of the remaining elements 
of 6’. For example, if p = 5 and S = { 1,3,4} ,  then S = { 2 , 5 } ,  
6‘s = [e, 6’3 e,]’, and 6’s = [e, e,]’, where ‘ denotes 
matrix transpose. Note that when we use S as a superscript, 
as in q5s defined below, it serves as a reminder that the function 
or matrix depends on the choice of S. 

One more notational convention will be used hereafter. 
Functions like @( 6’) expect a p-dimensional vector argument, 
but it is often convenient to split the argument O into two 
vectors: 6’s and 03, as defined above. Therefore, we define ex- 
pressions such as the following to be equivalent: @(OS, Os) = 

In a “grouped coordinate-ascent” method, one sequences 
through different index sets S = Sa and updates only the 
elements OS of O while holding the other parameters 6’s fixed 
[27]. At the rth iteration one would usually like to assign 0:“ 
to the argument that maximizes @(OS, 6’;) over 6’s. However, 
in applications such as the imaging problem described in 
Section 111, there is no analytical form for the maximum 
of @ ( 6 ’ ~ ,  6’3) over Os, even if the index set S contains only 
one element. One could apply numerical line-search methods, 
but these can be computationally demanding if evaluating 
@(Os, 0;) - @(ez) for several values of 0 s  is expensive. 

The basic idea behind the SAGE method is borrowed 
directly from the EM method. By introducing a “hidden- 
data” space for 6’s based on the statistical structure of the 
likelihood, we replace the maximization of @(OS, 6’;) over 6’s 
with the maximization of another functional @(OS; 6”). If the 
hidden-data space is chosen wisely, then one can maximize 
the function dS(.; e t )  analytically, obviating the need for line 
searches. Even if one cannot maximize q5’ analytically, one 
can often choose hidden-data spaces such that it is easier to 
evaluate @ ( . ; e t )  - 4 s ( ~ > ;  0%) than a(., 6;) - @(eh,  e;) ,  so 
line searches for maximizing @(.; 6’’) would be cheaper than 
line searches for maximizing @(.;e>) .  Just as for an EM 
algorithm, the functionals q5s are constructed to ensure that 
increases in q5s yield increases in @. Furthermore, we have 
found empirically for tomography that by using a new hidden- 
data space whose Fisher information is small, the analytical 
maximum of +s(.: 19%) increases a(.. OB) ,  nearly as much as 
maximizing a(., 6’;) itself. This is formalized in Appendix C, 
where we prove that less informative hidden-data spaces lead 
to faster asymptotic convergence rates. In summary, the SAGE 

@(e) .  
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method uses the underlying statistical structure of the problem 
to replace cumbersome or expensive numerical maximizations 
with analytical or simpler maximizations. 

B. Hidden-Data Space 

To generate the functions q5’ for each index set S of interest, 
we must identify an admissible hidden-data space defined in 
the following sense: 

A random vector Xs with probability density 
function f(x; 0)  is an admissible hidden-data space with respect 
to Os  for f ( y ;  0)  if the joint density of Xs and Y satisfies 

(2) 

Definition 2: 

f ( Y ,  z; 0)  = f ( Y  I 2;  03)f(z; 0) 

i.e., the conditional distribution f ( y  I z; 0,) must be independent 
of O s .  In other words, X s  must be a complete-data space (in the 
sense of [l]) for 0s given that 03 is known. 

A few remarks may clarify this definition’s relationship to 
related methods. 

The complete-data space for the classical EM algorithm 
et al. [1] is contained as a special case of Definition 2 
by choosing S = (1,. . . , p }  and requiring Y to be a 
deterministic function of X s  141. 
Under the decomposition (2), one can think of Y as the 
output of a noisy channel that may depend on 0s but not 
on Os, as illustrated in Fig. 1. 
We use the term “hidden” rather than “complete” to 
describe X s ,  since in general X s  will not be complete 
for 6’ in the original sense of Dempster et al. [l]. Even 
the aggregate of X s  over all of S will not in general be 
an admissible complete-data space for 8. 
The most significant generalization over the EM 
complete-data that is embodied by (2) is that the 
conditional distribution of Y on X s  is allowed to 
depend on all of the other parameters 0s (Fig. 1). 
In the superimposed signal application described in 
Section IV, it is precisely this dependency that leads 
to improved convergencerates. It also allows significantly 
more flexibility in the design of the distribution of X s .  
The cascade EM algorithm 1281 is an alternative gener- 
alization based on a hierarchy of nested complete-data 
spaces. In principle, one could further generalize the 
SAGE method by allowing hierarchies for each X s .  

C. Algorithm 

An essential ingredient of any SAGE algorithm is the 
following conditional expectation of the log-likelihood of X s :  

QS(0s;8)  = QS(Os;es,es) 

We combine this expectation with the penalty function: 

qhS(Os;G) QS(Os;e) - P(Os,es).  (4) 

Let 0’ E 0 be an initial parameter estimate. A generic 
SAGE algorithm produces a sequence of estimates {Oi}go 
via the following recursion: 

Fig. 1. 
channel C whose input is the hidden-data ?is. 

Representing the observed data E’as the output of a possibly noisy 

SAGE Algorithm 

z = O , l ,  . . .  { 
Choose an index set S = S‘. 
Choose an admissible hidden-data space Xs‘ for OsL. 
E-step: Compute q5s’ (Ost ; 0’) using (4). 
M-step: 

0;:’ = arg max@’ (ost; 0.1, ( 5 )  

@+1 = 0’- (6) 
@sa 

st S” 

Optional:2 Repeat steps 3 and 4. 

where the maximization in (5) is over the set 

(7) 

If one chooses the index sets and hidden data spaces appropri- 
ately, then typically one can combine the E-step and M-step 
via an analytical maximization into a recursion of the form 
0;:’ = g S a ( O Z ) .  The examples in later sections illustrate this 
important aspect of the SAGE method. 

Note that if for some index set S one chooses X s  = Y, 
then for that S one sees from (3) and (4) that $S(8s;O’) = 
@ ( O S .  0;). Thus, grouped coordinate-ascent [27] is a special 
case of the SAGE method, which one can use with index sets 
S for which @ ( O S ,  0;) is easily maximized. 

Rather than requiring a strict maximization in (5) ,  one could 
settle simply for local maxima [4], or for mere increases in q5’, 
in analogy with GEM algorithms [ 11. These generalizations 
provide the opportunity to further refine the tradeoff between 
convergence rate and computation per iteration. 

D. Choosing Index Sets 

To implement a SAGE algorithm, one must choose a 
sequence of index sets Sa, i = 0, 1,. . .. This choice is as 
much art as science, and will depend on the structure and 
relative complexities of the E- and M-steps for the problem. 
To illustrate the tradeoffs, we focus on imaging problems, for 
which there are at least four natural choices for the index sets: 
1) the entire image, 2) individual pixels, i.e. 

(8) Si = { 1 + ( i  modulo p ) }  

*Including the optional subiterations of the E- and M-steps yields a “greed- 
ier” algorithm. In the few examples we have tried in image reconstruction, the 
additional greediness was not beneficial. (This is consistent with the benefits of 
under-relaxation for coordinate-ascent analyzed in [29].) In other applications 
however, such subiterations may improve the convergence rate, and may be 
computationally advantageous over line-search methods that require analogous 
subiterations applied directly to a. 
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(this was used in the ICM-EM algorithm of [ l8]), 3) grouping 
by rows or by columns, and 4) "red-black" type order- 
ings. These four choices lead to different tradeoffs between 
convergence rate and ability to parallelize. A "red-black'' 
grouping was used in a modified EM algorithm in [15] to 
address the M-step coupling introduced by the smoothness 
penalties. However, those authors recently concluded [ 161 that 
a new simultaneous-update algorithm by De Pierro [17] is 
preferable. Those methods use the same complete-data space 
as in the conventional EM algorithm for image reconstruction 
[3],  so the convergence rate is still slow. Since the E-step 
for image reconstruction naturally decomposes into p separate 
calculations (one for each element of e) ,  it is natural to update 
individual pixels (8). By using the less informative hidden-data 
spaces described in Section 111, we show in [8] and [30] that 
the SAGE algorithm converges faster than the GEM algorithm 
of Hebert and Leahy [lo], which in tum is faster than the new 
method of De Pierro [17]. Thus, for image reconstruction, it 
appears that (8) is best for serial computers. 

As noted by the reviewers, for image restoration problems 
with spatially-invariant systems, one can compute the E -  
step of the conventional EM algorithm using fast Fourier 
transforms (FFT's). A SAGE algorithm with single-element 
index sets (8) would require direct convolutions. Depending 
on the width and spectrum of the point-spread function, the 
improved convergence rate of SAGE using (8) may be offset 
by the use of direct convolution. A compromise would be 
to group the pixels altemately by rows and by columns. This 
would allow the use of 1-D FFT's for the E-step, yet could still 
retain some of the improved convergence rate. Nevertheless, 
the SAGE method may be most beneficial in applications with 
spatially-variant responses. 

Regardless of how one chooses the index sets, we have 
constructed 4' to ensure that increases in 4' lead to monotone 
increases in @, as shown next. 

E. Monotonicity 

Let S and Xs respectively denote an index set and hidden 
data space used in a SAGE algorithm. Under mild regularity 
conditions [ I ] ,  [4], one can apply Bayes' theorem to (3) to 
see that 

Qs(Os;e) = / f ( z  I Y = y;e) logf(z;Os,BS)dz 

= L ( O S , Q  + H S ( 8 s ; e )  - wS(e) 

L ( W S )  l og f (Y;6 ' s ,~S) ,  

(9) 

where 

f ( z  I Y = y ; Q l o g f ( y  I Z;eS)dz. 

Note that W s  is independent of OS, so it does not affect 
the maximization (5). Using these definitions and Jensen's 

inequality [l], one can easily show that 

HS(Os;8) 6 HS(&;8) ,  V'BS, ve (1 1) 

from which the following theorem follows directly. 
Let 6" denote the sequence of estimates gener- 

ated by a SAGE algotithm (5). Then 1) @(!') is monotonically 
nondecreasing, 2) if 0 maximizes @, then 6' is a fixed point of 
the SAGE algorithm, and 3) 

Theorem 1: 

- @ ( e a )  2 #?'(e;.+l;et) - 4,s(e;;e*). 
Proofi From (4) and (9) it follows that 

@(e&) - @(8) 
= $ S ( e , ; e )  - HS(6's;B) - ( @ ( & ; B )  - H S ( e s ; e ) ) .  

n u s ,  if@(Os;e) 2 q P ( B S ; B ) ,  then @ a ( ~ s , e g )  2 @(e) using 
(1 1). The results then follow from the definition of the SAGE 
algorithm. 0 

Standard numerical methods require evaluation of 
@ ( O i + l )  - @(ei) to ensure monotonicity. That requirement 
is obviated for SAGE methods by the monotonicity theorem 
above. 

F. Convergence 

For a well-behaved objective @, the monotonicity property 
ensures that the sequence { e i }  will not diverge, but it does not 
guarantee convergence even to a local maximum of @. (Some 
EM algorithms have fixed points that are not local maxima 
[l], [31].) Therefore, in the appendices we provide additional 
theorems that give sufficient conditions for convergence in 
norm, and that characterize the asymptotic convergence rate. 
To summarize briefly, these theorems show under suitable 
regularity conditions that: 

If a SAGE algorithm is initialized in a region suitably 
close to a local maximum in the interior of 0, then 
the sequence of estimates will converge monotonically in 
norm to it. (This may not apply when the local maximum 
lies on the boundary of 0, as often happens in the example 
in Section 111.) 
For suitably regular objectives, the region of monotone 
convergence in norm is guaranteed to be nonempty [43]. 
The asymptotic convergence rate of a SAGE algorithm 
will be improved if one chooses a less informative hidden- 
data space. 

This last point is subtle, but is perhaps one of the most 
important conclusions of our analyses since it emphasizes 
the need for careful design of the hidden-data spaces. Less 
informative hidden-data spaces yield faster convergence, but 
more informative hidden-data spaces may yield easier M-steps 
[51, [81, P O I .  

111. EXAMPLE 1 
LINEAR POISSON MEASUREMENTS 

The EM method has been used for over a decade to compute 
ML estimates of radionuclide distributions from tomographic 
data, such as that measured by positron emission tomography 
(PET) [3], [32]. In this section we present a brief review of the 
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classical EM algorithm for this problem, and then introduce 
two SAGE algorithms. The second SAGE algorithm is based 
on a new hidden-data space, and converges faster than even 
an accelerated EM algorithm. For simplicity we focus in this 
paper on ML estimation; the penalized version is described in 
[8] and [30]. 

Assume that a radionuclide distribution can be discretized 
into p pixels with emission rates X = [ X I , .  . . , &]'. Assume 
that the emission source is viewed by N detectors, and let 
Nnk denote the number of emissions from the kth pixel that 
are detected by the nth detector. Assume the variates N n k  

have independent Poisson distributions: 

N n k  N Poisson{a,kXk} (12) 

where the U n k  are nonnegative constants that characterize 
the system [3]. The detectors record emissions from several 
source locations, so at best one would observe only the sums 

N n k ,  rather than each Nnk. Background emissions, ran- 
dom coincidences, and scatter contaminate the measurements, 
so we observe 

P 

Yn = C N n k  + Rn 
k = l  

where { R,} are independent Poisson variates 

R, N Poisson{r,} (13) 

with means { rn}  assumed known for simplicity. Thus 

Y, N Poisson a n k X k  + r,  . (14) 
{ k : l  ) 

Given realizations {yn} of {Y,}, the log-likelihood for this 
problem is given by 131: 

N 

logf(y;  = (-gn(X) + ynlog%n(X))  
n=l 

where 
P 

Y,(X) = a n k A k  + rn.  
k = l  

We would like to compute the ML estimate 
To apply coordinate ascent directly to this likelihood, one 

might try to update X I ,  by equating the derivative of the 
likelihood to zero 

from y. 

N 

N where a , k  = a n k .  Unfortunately, this equation has no 
analytical solution. A line-search method would require mul- 
tiple evaluations of (13, which would be expensive-hence 
the popularity of EM-type algorithms [3] that require no line 
searches. 

The complete-data space for the classical EM algorithm [3] 
for this problem is the set of unobservable random variates 

(16) N 
x1 = {{Nnk)z,1, {Rn)}n=I. 

For this complete-data space, the Q function (3 )  becomes (see 
(4) of [31) 

N w  

where [3] 

Maximizing Q1(  .; Xi) analytically leads to the algorithm which 
follows. 

ML-EM Algorithm for Poisson Data 

for i = 0, I , . .  . { 

for k = 1, . . . , p  { 

In words, the previous parameter estimate is used to compute 
predicted measurements, those predictions are divided into the 
measurements and backprojected to form multiplicative cor- 
rection factors, and the estimates are simultaneously updated 
using those correction factors. This EM algorithm converges 
globally [3], [5], but slowly. The root-convergence factor is 
very close to 1 (even if p = 1 [5]), since the complete-data 
space is considerably more informative than the measurements 
[51, 181, [301. 

We now derive two SAGE algorithms for this problem, both 
of which use individual pixels for the index sets: Si = { k } ,  
where k = 1 + (i modulo p ) .  The most obvious hidden-data 
for X I ,  is just 

which is a subset of the classical complete-data space (16). 
The Qsk function for the kth parameter is: 

Maximizing QSk (.; X i )  analytically yields the following algo- 
rithm: 
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ML-SAGE-1 Algorithm for  Poisson Data 

Initialize: jj, = E:=, a n k X E  + r,, 
for i = O l l , .  .. { 

n = 1,. . . , N .  

f o r  k = I , .  . . , p  { 

This SAGE algorithm updates the parameters sequentially, 
and immediately updates- the predicted measurements y, 
within the inner loop, whereas the ML-EM algorithm waits 
until all parameters have been updated. ML-SAGE-1 is the 

Fig. 2. Companison of log-likelihood increase 1% f(?J 0') - log f ( Y :  0') 
versus iteration i for ML-EM, ML-LINU, and ML-SAGE-2 algorithms, for 
image reconstruction from PET measurements with 9% random coincidences. 

unregularized special case of the ICM-EM algorithm of [ 181; 
a local convergence result for ICM-EM was mentioned in 
[181. 

We found that ML-SAGE-1 converges somewhat faster than 
ML-EM for well-conditioned problems, but the difference is 

ML-SAGE-2 clearly reaches the asymptote sooner. 

derivation as in [3] (see [8] and [30] for details), one can show 
N 

minimal for poorly-conditioned problems. The reason is that 
X S k  is still overly informative since the background events are 

Q S k  ( A k ;  A') = c ( - a n k ( A k  + z k )  + Z n k  l o g ( a n k ( A k  f z k ) )  

n = 1  
isolated from the parameter being updated (c$ (12) and (13)) 
[81, [301. Therefore, we now introduce a new, less informative 
hidden-data space that associates some of the uncertainty of the 
background events R, with the particular parameter Xk as it is 
updated [8], [30]. Whereas the ordinary complete-data space 
has some intuitive relationship with the underlying image 
formation physics, this new hidden-data space was developed 
from a statistical perspective on the problem and its Fisher 
information. First, define 

where 

znk = ~ ( 2 , ~  I y = a;  = (A; + Z k ) a n k Y n / y n ( ~ z ) .  

Maximizing QsA (.; Az) analytically (subject to the nonnega- 
tivity constraint) yields the ML-SAGE-2 algorithm, which has 
the same sequential structure as ML-SAGE-1, except that (18) 
is replaced by: 

Ai+1 := maX { ( X i  f z k ) e k / a  k - Z k ,  o}. 
z k  = min { r n / a n k }  

n a , k # O  Provided z k  # 0, which is always the case in PET since 
random coincidences are pervasive, this remarkably small 
modification yields significant improvements in convergence 
rate. 

The Fisher information for the classical complete-data space 
with respect to X is diagonal with entries 

and define unobservable independent Poisson variates 

z n k  A, Poisson{ank(Ak + z k ) }  

a k / i k  

Tn  - a n k Z k  + anJA3 
J # k  

and let the hidden-data space for X I ,  only be 

N X S k  = { Z n k r  B n k } , = 1 .  

provided the ML estimate i is positive. In contrast, the Fisher 
information for the new hidden-data space is diagonal with 
entries 

Then, clearly a . k / ( i k  + z k )  

yn = &k + B n k  

has the appropriate distribution (14) for any particular k .  We 
have absorbed all of the background events into the terms Z , k  

and B,k which are associated with Ak. Thus, the aggregate of 
all p of the hidden-data spaces is not an admissible hidden- 
data space for the entire parameter vector A. Using a similar 

which is clearly smaller since Z,$ > 0. The improved conver- 
gence rate of ML-SAGE-2 is closely related to this difference. 

To illustrate, Fig. 2 displays the likelihood @ ( e i )  versus 
iteration for the ML-EM algorithm and for ML-SAGE-2 
applied to a simulation of PET data. The image was an 80 x 
110 discretization of a central slice of the digital 3-D Hoffman 
brain phantom ( 2  mm pixel size). The sinogram size was 70 
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radial bins ( 3  mm wide) by 100 angles. A 900000-count noisy 
projection was generated using (6-mm-wide) strip-integrals 
for {a,k} [29], including the effects of nonuniform head 
attenuation and nonuniform detector efficiency. A uniform 
field of random coincidences was added, reflectin a scan 
with 9% of the total counts due to randoms (i.e., T, FZ 

0.1 y,(X)), a typical fraction for a PET study. Further 
details can be found in [8] and [30], including comparisons 
over a large range of T,’s. Also shown in Fig. 2 is the 
LINU unbounded line-search acceleration algorithm described 
by Kaufman [23]. The ML-SAGE-2 likelihood clearly in- 
creases faster and reaches its asymptote sooner than both the 
ML-EM and ML-LINU  algorithm^.^ (ML-SAGE-2 was also 
considerably easier to implement than the bent-line LINU 
method.) 

The convergence in norm given by Theorem 3 of Appendix 
A is inapplicable to this Poisson example when the ML 
estimate has components that are zero, i.e., when the ML 
estimate lies on the boundary of the nonnegative orthant 1331. 
See [30] for a global convergence proof for ML-SAGE-1 and 
ML-SAGE-2 similar to the proofs in [3] and [17]. 

The reader may wonder whether one can also find a better 
complete-data space for the classical EM algorithm. Because 
the EM update is simultaneous, one must distribute the back- 
ground events among all pixels; therefore, the terms Zk are 
reduced by a factor of roughly fi [8], [30]. Since JiT is in 
the hundreds, the change in convergence rate is insignificant, 
which is consistent with the small reduction in Fisher infor- 
mation [SI, [30]. Other simultaneous updates [17] similarly do 
not improve much [30]. Apparently one benefits most from 
this less informative hidden-data space by using a SAGE 
method with the parameters grouped into many small index 
sets. 

An alternative to SAGE is the coordinate-wise sequential 
Newton-Raphson updates recently proposed by Bouman and 
Sauer [19]. That method is not guaranteed to be monotonic, 
but when it converges it might do so somewhat faster than 
SAGE since it is even greedier. One can obtain similar (but 
monotonic) greediness by using multiple subiterations of the 
E- and M-steps in the SAGE algorithm, as indicated by 
Step 5 of the generic SAGE algorithm. However, for the few 
cases we have tested, we have not observed any improvement 
in convergence rates using multiple subiterations. Although 
further investigation of the tradeoffs available is needed, 
including comparisons with possibly superlinear methods such 
as preconditioned conjugate gradient [23], [34], it appears that 
the statistical perspective inherent to the SAGE method is a 
useful addition to conventional numerical tools. 

a 
N -  

IV. EXAMPLE 2 
LINEAR GAUSSIAN MEASUREMENTS 

The Poisson problem has important practical applications, 
but the nonlinearity of the algorithms complicates a formal 

Fast convergence is clearly desirable for regularized objective functions, 
but we advise caution when using “stopping rules” in conjunction with 
coordinate-based algorithms for the unregularized case, since for such al- 
gorithms the high spatial frequencies converge faster than the low frequencies 
1261. 

analysis of the convergence rates. In this section, we analyze 
the problem of estimating superimposed linear signals in 
Gaussian noise [2], [9] 

where A = [a1 . . . u p ] ,  and t is additive zero-mean Gaussian 
noise with covariance II, i.e., t N N(0,  II). For simplicity we 
consider a quadratic penalty P(B) = $#PO, so the penalized- 
likelihood objective function is 

1 1 
- @(e)  = -(y 2 - AB)’II-l(y - AB) + -@’PO. 2 

Such objective functions arise in many inverse problems 
[9]. We assume A has full column rank, P is symmetric 
nonnegative definite, and the intersection of the null spaces 
of P and A is empty, in which case the (unique) penalized- 
likelihood estimate is 

If A is large, or if positivity constraints on B are appropriate, 
then (21) is impractical and iterative methods may be useful. 
(One can also think of (20) as a linearization of the more 
interesting nonlinear problem [2] .) We present the linear 
version here since we can derive exact expressions for the 
convergence rates. We first present admissible hidden-data 
spaces for this problem, derive EM and SAGE algorithms, 
and then prove that the SAGE algorithm converges faster. 

Since the mean of Y is linear in 8, the conventional 
complete-data [2], [9] for the EM algorithm for this problem is 
also linear in B .  Here, we restrict our attention to hidden-data 
spaces X s  whose means are also linear in 0, and for which 
the conditional mean of Y given X s  is linear in X s  and 
0s. Considering a general index set S, the natural hidden-data 
space for BS is 

which is admissible provided the two normal distributions 
are independent and consistent with (20), i.e., As = GB, 
AS = GB + G, and II = W + GCG’. The log-likelihood 
for X s  is given by 

log f ( X S ;  os, 0;) = C l  

1 
2 

- - ( X s  - B0s - BS$)’C-l(Xs - BBs - BO:) 

3 1 
= c p  + ( B B ~  + Be$)’c-l xs - -(B& + Be;) 

( 2  

where c1 and cp are independent of 0s. By standard properties 
of joint normal distributions 

-S x = E { X S  I Y = y;@} 

= BO; + Be$ + CG’II-’(y - ABi). 
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The 4' function of (4) is thus 

which, maximized over O S ,  yields the generic combined E- 
and M-step 

e:+' = (Fxs + Pl)-'[B'C-'(XS - Bog) - P,O;] 

= 6'; + (Fxs + P1)-lAkII-l[y - ABi] 
- (Fxs + P I ) - ~ [ P ~ P ~ ] ~ ~  (22) 

where Fxs = B'C-lB is the Fisher information of X s  for 
0s. 

A. EM Algorithm 

The ordinary EM algorithm [2], [9] is based on the following 
choices for the complete-data space: S = (1,. . . , p } ,  B = 
diag{ak}, C = :I, @ II, G = (l', @ I,), and B = 

G = W = 0, where diag{.} denotes a diagonal or block- 
diagonal matrix appropriately formed, 1, denotes the p vector 
of ones, and @ is the Kronecker matrix product. Note that these 
choices distribute a fraction of the noise covariance II to 
each signal vector U k .  Thus, Fx = p diag{aLII-'ak}, which 
being a diagonal matrix is easily inverted. However, since 
S = { 1,. . . , p } ,  the penalized EM algorithm (22) requires 
inversion of Fx + P, which could be just as difficult as 
inverting A'II-lA + P for a general P. Therefore, we 
consider the case where P = diag{Pkk}, for which the EM 
algorithm simultaneously updates all parameters via 

1 
P 
+ (uLI I - '~~  + Pkk/p)-'~;II-'ak6'; (23) 

0;" = -(aLII-lak + Pkk/p)-'aLn-'(y - ABi) 

for k = 1, . . . , p .  

B. SAGE Algorithm 

Because of the additive form of (20), it is natural for the 
SAGE algorithm to update each parameter 6'k individually, 
i.e., Si = { k }  where k = 1 + (i modulo p ) .  In light of 
the discussion in Appendix C, we would like the Fisher 
information of the hidden-data space for t9k to be small, so we 
associate all of the noise covariance with the signal vector U k  

xSh N(akek, n) 
Y = X S k + C a ; o j .  

j#k 

Thus, F X S k  = a l n - l a k ,  which is p times less informative 
than the EM case, which associates only a fraction l /p  of the 
noise covariance with each signal. (This provides a statistical 
interpretation of the modified EM algorithms in [35] and [36].) 

The above choice for the hidden-data space corresponds 
to B = a k ,  C = II, B = W = 0, G = I, and G = 
[a1 . . . a k - l a k + l  . . . U,], which, substituted into (22), yields 
the following algorithm. 

SAGE Algorithm for  Superimposed Signals 

Initialize: 
for i = O , l ,  . . .  

E^ = y - AB0 

k = 1 + (i modulo p ) ,  S = { k } ,  
oL+l := e$ - (a',n-lak + Pkk)-'PkoZ 

o;+1 :=e; ,  

+ (U;rI- luk + Pkk)-la;IIIE^ 

E^ := E^ + (o;+1 - o;)ak, 

j = 1 ) . . .  l k  - l , k +  1 ) . . . ,  p ,  

1 
where P k k  is the kth diagonal entry of P,  and PI, is the 
kth row of P. Note that unlike the EM algorithm, the SAGE 
algorithm circumvents the need to invert P by performing a 
sequential update, so a nondiagonal smoothness penalty P is 
entirely feasible. 

C. Convergence 

To establish convergence of the EM and SAGE algorithms, 
we use Definition 3 and Theorem 3 of Appendix A. A few 
definitions are needed. Let H = A ' T ' A  + P be the Hessian 
for this problem, and decompose it by 

(24) 

where DH is a diagonal matrix with the diagonal entries of 
H, and L H  is a strictly lower triangular matrix. Similarly, let 

F = A'n-lA = LF + DF + Lh1 

H = LH + DH + L'H 

DH = D F  + Dp 

where Dp = diag{Pkk} and F is the Fisher information for 
Y with respect to 0. 

Let llzll denote the standard Euclidian norm of a vector z, 
and for a nonsingular matrix T define 1 1 ~ 1 1 ~  = IITzlI, which 
induces the matrix norm 

In addition, let p(A) denote matrix spectral radius, the maxi- 
mum magnitude eigenvalue of A. 

SAGE Algorithm: From the SAGE algorithm given above, 
one can show (cf. proof of Theorem 3) that 

o(Z+l)P - 8 = M, . . . . . M1 . (02, - 8) (25) 

where 
MI, = 1 - ekH$ek'H, 

= H-',/'(I - H'/2ek(Hkk)-'ek'H1/' 1 H1/', 

= T-l(I  - tk(tktk)-'tk)T, 
= T - ~ P ~ T  

and where T = H1/', the kth column of T is t k ,  Pk is the 
orthogonal projection onto tk, and ek is the kth unit vector 
of length p .  Since an orthogonal projection is nonexpansive, 
I~MI,I(T 5 1, which confirms condition 2 of Definition 3. To 
confirm condition 3, rewrite the SAGE algorithm using (24) as 

o(i+')p - 8 = [I - (DH +LH)-~H](~Z* - 8) 
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which is the Gauss-Siedel iteration (see p. 72 of [37]). 
Condition 3 follows from p. 109 of [37] since 

111 - (DH + LH)-~HIIT = llMp.. . MIIIT < 1. 

EMAlgorithm: One can use (21) and (23) to show that 

ei+l - 8 = M .  (02 - 6 )  

for the EM algorithm, where (cf. (37)) 

M = I - (PDF + P)-lH. 

Thus, the EM algorithm is closely related to the simultaneous 
overrelaxation (JOR) iteration (p. 72 of [37]). To establish 
that JIMIIT < 1 for T = H1/2 using Theorem 4, we must 
show that S + S’ > H, where in this case S = PDF + P.  
Since H = LF + DF + L’F + P and P 2 0, it suffices 
to show that PDF > LF + DF + L’F, or equivalently that 
pI > E + I +E, where = D;’/’LFD;lI2. Since A ’ T I A  
is positive definite by assumption, z’(E + I + E’)z > 0 for 
any nonzero x ;  therefore, using x = ej k e k ,  we see that 
Ti3 E (-1,1). n u s ,  for any nonzero z, z’(E + I + L’)z < 
( c k  I z k  I p l l ~ J 1 ~ ,  where the second inequality is a 
special case of Holder’s inequality. The result then follows. 

We have thus established that both the EM and SAGE 
algorithm converge globally. The convergence is globally 
monotonic in norm with respect to the norm T = i.e., 
R+ is all of IRp. 

D. Convergence Rates 

To compare the root-convergence factors of EM and SAGE, 
we focus on the case where P is diagonal, since otherwise the 
EM algorithm is in general impractical. Therefore, from the 
results above 

PEM = P(I - (PDF + P)-’H) 

= P (I - ( ( p  - ~ ) D F  + D H ) - ~ H )  (26) 
(27) &AGE = p ( I  - (DH + LH)-’H) 

since P = DP for diagonal P.  
Theorem 2: For linear superimposed signals in Gaussian 

noise with a diagonal penalty matrix, the SAGE algorithm 
asymptotically converges faster than the EM algorithm, i.e. 

PSAGE < PEM < 1. 

Proofi The right inequality follows from pEM 5 
- ~ ( M ( ( T  < 1. From (24), I = EH + 15, + where 
LH = H - ~ / ’ L H H - ~ / ~  and EH = H-‘/’DHH-’/~. Thus, 
for any vector z 

~ L H X  = z ’ L ~ z  = ( 1 1 ~ 1 1 ~  - z’D~5)/2. (28) 

Since I - G-lH is similar to the real symmetric matrix 
I - G-l/’HG-ll2, the eigenvalues of I - (DH + L H ) - ~ H  
are real. For U = PSAGE E [0, 1) there exists ‘U # 0 such that 

[I - (DH + LH)-’H]’U = VU 

thus 

[I - (DH + LH)-l]z = vz 

where z = H1/2v. Rearranging and multiplying both sides 
by z’ 

11z112 = (1 - , ) , ’ (EH + DH)z. 

Combining with (28) 

By the invariance of eigenvalues under similarity transforms 

PEM = P(I - ( ( p  - ~ ) D F  + D H ) - ~ H )  
= p ( 1 -  ( ( p  - ~ ) D F  + DH)-1/2H 

x ( ( p  - ~ ) D F  + D H ) - ’ / ~ )  
llH1/2((p - l )DF + DH)-1/2~112 2 1 -  

11Z1I2 

for any z (by definition of spectral radius). In particular, for 
z = ( ( p  - l)DF + DH)1/2H-1/2z: 

1 
= I -  (1  + v)/(l - U) = (&)U 

> = PSAGE 

where the last inequality follows from v E [0, 1). 0 
The inequalities in this proof are rather loose, and often the 

difference in convergence rate between EM and SAGE is more 
dramatic than the proof might suggest. To illustrate, consider 
the case where P = 0. Then returning to (25), for the EM 
algorithm we have 

M = - l P  X M k  = T-l (: g pk) 
k = l  

Since eigenvalues are invariant to similarity transforms, it 
follows that root-convergence factors for the two algorithms 
are given by the spectral radii 

i.e., for the EM algorithm we have a convex combination of 
orthogonal projections and for the SAGE algorithm we have 
the product of those projections. Thus, this SAGE algorithm 
is closely related to the method of alternating projections [38], 
[39]. In particular, if P = 0 and the columns of A are 
orthogonal, then PSAGE = 0 whereas PEM 2 1 - l/p, i.e., 
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SAGE Algorlthm 

0.2 0.4 0.6 0.8 1 
cos(Comp1ementary Angle Between Subspaces) 

Fig. 3 .  Comparison of root-convergence factors for conventional EM algo- 
rithm and proposed SAGE algorithm versus complementary angle between 
subspaces of superimposed signals. The SAGE algorithm has a significantly 
improved convergence rate. 

the SAGE algorithm converges in one iteration, while EM 
converges very slowly. 

When p = 2, using a Gram-Schmidt argument one can 
show that t l  = [l 01’ and t2 = [ad=]’ where cy = 
I.:rr-’a21/(11.llllla~ll) is the cosine of the complementary 
angle between a1 and a2. Thus 

1 - cy2 -‘;f3) = 2 l a  + 5’ P E M  = .(; [-ad-- 

Fig. 3 illustrates that the root-convergence factor of SAGE 
is significantly smaller than that of EM, which substantially 
reduces the number of iterations required. 

Not only is PSAGE < PEM, but also PSAGE < P ~ M ,  
so one SAGE iteration is better than two EM iterations, at 
least when p = 2. Thus, even though the EM algorithm 
appears to have the advantage that one can parallelize the 
M-step using p processors that simultaneously update all 
parameters, in this case the convergence rate of the parallel 
algorithm is so much slower that a sequential update may 
be preferable. This depends, of course, on how difficult the 
M-step is; in the nonlinear case discussed in [ 2 ] ,  the M -  
step is presumably fairly difficult, so parallelization may be 
advantageous. Equations (26) and (27) help one examine these 
types of tradeoffs. 

V. DISCUSSION 
We have described a generalization of the classical EM 

algorithm in which one alternates between several hidden-data 
spaces rather than using just one, and updates only a subset of 
the elements of the parameter vector each iteration. By updat- 
ing the parameters sequentially, rather than simultaneously, we 

demonstrated that SAGE algorithms yield faster convergence 
than EM algorithms in two signal processing applications. 

The particular SAGE algorithms that we presented in this 
paper sacrifice one important characteristic of the EM algo- 
rithm: they are less amenable to a parallel implementation 
since they are coordinate-wise methods. However, the general 
SAGE method is very flexible, and work is in progress on 
more parallelizable algorithms using index sets S consisting of 
several elements of 0 [30]. The benefits of parallelization must 
be weighed against the convergence rates for each application. 

It is probably no coincidence that the applications we put 
forth are ones in which the terminology “incomplete-data’’ and 
“complete-data’’ as introduced in [ 13 are somewhat unnatural. 
In most of the statistical applications discussed in [l], there 
is a clearly identifiable portion of the data that is “missing,” 
and hence one natural complete-data space. In contrast, there is 
nothing really “incomplete” about tomographic measurements; 
the problem is simply that the log-likelihood is difficult to 
maximize. The EM algorithm is thus just a computational 
tool. (To further illustrate this point, note that in classical 
missing data problems the estimates of the missing data may 
be of some intrinsic interest, whereas the “complete-data’’ for 
tomography is never explicitly computed and would be of little 
use anyway.) SAGE algorithms may be most useful in such 
contexts. 

We have emphasized that the SAGE algorithm improves 
the asymptotic convergence rate. The actual convergence rate 
will certainly depend on how close the initial estimate is 
to a fixed-point. In tomography and image restoration, fast 
linear algorithms can provide good initializers for penalized 
likelihood estimation. A greedy algorithm like SAGE is likely 
to be most beneficial in applications where such initializers 
are available. 

APPENDIX A 
MONOTONE CONVERGENCE IN NORM 

Because the SAGE “algorithm” is so general, a single 
convergence theorem statemendproof cannot possibly cover 
all cases of interest (see, for example, the variety of special 
cases considered for the classical EM algorithm in [40].) Here 
we adopt the Taylor expansion approach of [4] since it directly 
illuminates the convergence rate properties and prescribes 
a region of monotone convergence in norm. However, this 
general approach has the drawback that it assumes the fixed 
point lies in the interior of 0. This restriction is often not 
a necessary condition, and at least for some applications 
one can often find specific convergence results without the 
restriction, e.g., [3] and [30]. Readers who are satisfied with the 
assurance of monotonicity of the objective @(ei), as provided 
by Theorem 1 ,  may wish to simply skim this Appendix. 

For simplicity, we discuss only the case where the index sets 
St are chosen cyclically with period K ,  i.e., St = Sk where 
IC = 1 + (i modulo K ) .  We also assume that Uk=’ Sk = 
{ 1,. . . , p }  so that each parameter is updated at least once per 
cycle. 

Before stating the convergence theorem, several definitions 
are needed. Consider an index set S, and let m denote its 

K 
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cardinality. Bearing in mind our notational convention that 
4S(0s;e) = @(Os;es,es), we define the m x m matrices 

( vz004s) (0s; 8) = (Ves 0'8, @) (6s; es, $3) 

and 

( V1lO@)( 0s; e) = (V& v'e, @)( os; es ,  3s) 

and the 712 x ( p  - m) matrix 

(VIO1 @) (6s; e) = (V& v'es CbS) (6s; es,  3s) 

where Q denqtes the (row) gradient operator and V' its 
transpose. Let B be a fixed point of the SAGE algorithm, and 
define 

US(&; e) 

VS(6,; e) 
= - ~l (VZOO@)( tOs  + (1 - t)es;t$+ (1 - t ) i ) d t  (29) 

= ~l(V''o$S)(tOs + (1 - t)es; te + (1 - t ) e )d t  (30) 

and 

WS(0s;8) = ~'(v'0'4~)(tos + (1 - t)e,; te+ (1 - t ) 8 ) d t .  
(31) 

Let RS denote the p x p permutation matrix that reorders 
the elements of { S ,  S} into { 1, . . . , p } .  Then define the p x p 
composite matrix 

where I, denotes the n x n identity matrix. 
In addition, define 

$(e) = (0, E OS(G)  : q5s(6s;$) 2 C $ ~ ( B S ; B ) } .  

With the above definitions, we can define^ the following 
region of monotone convergence in norm to 0. 

Dejinition 3: R+ c 0 is a region of monotone convergence 
in norm if there exists a nonsingular p x p matrix T such that 
R+ is an open ball with respect to the norm I( . I I T  and 

1. For b = 1, . . . , K ,  Usk (dsk ; 8) is invertible for all e E R+ 

2. For IC = 1,. . . , K ,  llMS ( O s k ;  0)llT 5 1 for all e E R+ 

3. There exists a: < 1 such that for any e', . . . , 0 E R+ 

and for all B S k  E Osk((B! (see - (7)). 

and for all B s k  E os'($), 
and O S k  E 0' (0 ), 

X I <  

- k -k 
IC = 1,. . . , K  

llMsK  OS^ ; e") . . . MS1 (6',1; e') I(T 5 a. (33) 

In general, T may depend on 8, but we do not allow T 
to vary with iteration. The hard work is to verify condition 
3 (see Appendix B), but if one can do so, the reward is the 
following theorem. 

Theorem 3: Assume i) S' = Sk where b = l+(i modulo K )  
and U:==, Sk  = { 1, . . . , p } ,  ii) 0 is a fixed point of the SAGE 
algorithm ( 5 )  in the interior of 0, iii) for all e E R+ the 
maximum over O S k  of q5sk ( O S k  ; 8) is in the interior of OSk (e), 
iv) dSk ( O s k  ; 8) is twice differentiable in both arguments Ve E 0 
and VOSk E Osk (e), and v) the region of monotone convergence 
R+ for a norm 1 1  . I I T  is nonempty. 

If 0' E R+ then 

Il@+' - illT 5 ll0' - e((, vi 

and 

(34) 

where a: < 1 is defined by (33). Therefore, I(B'" -  IT 
converges monotonically to zero with at least linear rate. 
The root-convergence factor [41] of the subsequence 
{OzK}z0 is given by the spectral radius 

2 h' 118('+1)" - 8llT 5 - ellT 

p ( MSK ( 8 , ~  ; 8) ' . . MS1 ( eSl ; 8)) (35) 

which is bounded above by a: < 1. 
Note that by the equivalence of matrix norms (p. 29 of [37]), 

monotone convergence with respect to the norm 1 1  . implies 
convergence with respect to any other norm, although probably 
nonmonotonically . Since the index sets are chosen cyclically, 
a "full iteration" consists of K updates; therefore, (34) bounds 
the convergence rate of the subsequence {QiK}go. 

Prooj? Consider the ith iteration and let S = Sk where 
k = 1 + (i modulo K ) .  Define 

z =  [;'I; i =  [I] 
0s 

and let @(z)  = qhS(Os;s). Let 

d ( z )  = d ( 0 s ; B )  = (V'e,qP)(z) 

then by assumption iv) we can apply the Taylor formula with 
remainder [42] to expand d ( z )  about 2 

d ( z )  = d ( 2 )  + (Qd) ( tz  + (1 - t ) i ) d t  ( 2  - 2 ) .  i' 
Since e is a fixed point of the SAGE algorithm, by assumption 
iii) and iv) d(2) = 0. Observe that by the definitions (29)-(31): 

( V d ) ( z )  = [-u~(e,;e)v~(e,;e)wS(e,;e)]. 
By assumptions iii) and iv) d(0$';02) = 0 for the SAGE 
algorithm (5) ,  so 

USk (e$'; 0i)(0$' - & k )  = vsk (e$'; e"(o;, - & k )  

+ wsk (e$';  O i ) ( O i k  - i s k ) .  
(36) 

By property 1 (invertibility) of Definition 3 

0s' - dSk = U S k ( O $ ' ;  Oi)-'vsk (o$1; 0i)(0& - e s k )  

+ usk (si t ' ;  0 y  Wsk(0$1; e")(ei, - i s l ; ) .  
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From (6) the components of 8$ are just copied, so after 
permuting using RS (32) 

@+1 - e = MSk(oifl.8i)(8i S k  ' - 8) (37) 

where MSk was defined by (32). Therefore, since 8' E R+ 
by property 2 of Definition 3 

ll8"' - 8llT 5 1162 - 8llT 
and therefore, it follows by induction that 82 E R+. A full 
cycle consists of one update over each of the K index sets; 
therefore, applying (37) K times 

) x  
( d ( i + l ) h -  - 6) = MSk (d(;+l lK.  @(i+')K-l 

S K  ' 
. . .  MS1(@$+';~iK)(~i" - 8). 

Thus, by property 3 of Definition 3 

Il6(2+')" - ellT 5 alldiK - 8llT 

and therefore, the subsequence { BiK},"_,  converges mono- 
tonically in norm to 8 as i -+ 00 with linear rate at most 

By continuity of the derivatives of CPSk one can show [4] 
that the root convergence factor of the subsequence Oi" is 
governed by the spectral radius 

cy. 

p ( M S K ( e , ~ ; e ) . . . M S ' ( 8 s ~ ;  8)). 

Since the spectral radius is bounded above by any matrix norm, 
0 the root convergence factor is bounded above by cy. 

APPENDIX B 
R+ Is NONEMFTY 

In this appendix, we show that the region of monotone 
convergence in norm R+ is nonempty for suitably regular 
problems. Thus, the conditions for Theorem 3 are reasonable, 
and the superimposed signals example in Section IV is a 
concrete example. 

First note that from (10) one can show that 

(V"'HS)(8s; 8) = -(0200Hs)(Bs; B) ,  
(V101HS)(eS; e) = 0 

(cf. (3.16) of 111). For an index set S ,  define 

Fxsly = -(V2"HS)(8s; 8) 
then from (lo), one can see that the matrix FxslY is the 
conditional Fisher information of Xs for OS, given Y = y 
and given all of the other parameters 8s. 

Define the Hessian of the objective at e by 

H = -V2@(8) 

and the following submatrices of the Hessian 

HS = -(VesVb,CP)(8) 

Hs,s = -(Vos Vb3 a)(@ 

(To simplify notation we leave implicit the dependence on 8.) 
Note that HS is the curvature of the objective CP with respect 

to OS, and Hs,s is the coupling between 8s and $3 induced 
by CP. Combining the above definitions with (29)-(31) 

Us = HS + Fxsly 
Vs = Fxsjy 

Ws = -Hs's. (38) 

If H is positive definite, then Us will be invertible; therefore, 
by (32) 

Substituting in (38) 

( R ~ ) ' M ~ R ~  

- + F ~ ~ ~ ~ ) - ~ F ~ ~ ~ ~  - ( H ~  + F ~ ~ ~ ~ ) - ~ H ~ - S  I 1 - 
0 

L A 

= I - [:I (HS + F , S ~ ~ ) - '  [HSHS>'] 

= I - [i] (HS + F , s ~ ~ ) - ~ [ I  O](RS)'HRS 

Thus 

L 

(39) 
For simplicity, we now consider the case the index sets are 
disjoint and are chosen cyclically in the natural order, i.e., 
Si = Sk, where k = (1 + i modulo K )  and {SI, . . . , S K }  = 
(1,. . . , p } .  In that case, it follows from (39) that 

M S ~ . . . M S ' = I - ( D ~ + D ~ + L ~ ) - ' H  (40) 

where DF is block-diagonal with F,slY in the kth block, and 

H = L H  + DH + L;, (41) 

where DH is a block diagonal matrix containing the diagonal 
blocks of H that correspond to the subsets Sk, and LH is 
the corresponding strictly lower block triangular matrix. We 
can thus establish that (JMSK . . . M s l I J ~  < 1 by using the 
following "splitting matrix" theorem (p. 79 of 1371). 

Theorem 4: If H is positive definite and S is invertible, then 

111 - S-'HJIT < 1 

for T = H+ if 

S + S' > H. (42) 

From (40), for a SAGE algorithm S = DH + DE. + LH, so 
in light of (41), condition (42) of Theorem 4 is satisfied. Thus, 
JIMSK . . .  MS1 1 1  < 1. 

Using the relationships derived above, one can establish the 
following result 1431. 

Theorem 5: Let I9 be a fixed point of a SAGE algorithm: and 
assume that @ is strictly concave on an open set local to 0 (so 
that H is positive definite). Then if @ and the functions 4' are all 
twice continuously differentiable near 19, there exists a nonempty 
region of monotone convergence in norm R+ satisfying the 
conditions of Definition 3 for the norm induced by T = H;. 
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APPENDIX C 
FISHER INFORMATION 

From (35) we see that the root-convergence factor of a 
SAGE algorithmis given by the spectral radius of a product 
of matrices MS(Os; 0) of the form (32). For an EM algorithm, 
this spectral radius increases towards 1 as the complete- 
data becomes more informative, i.e., as its Fisher information 
increases [l], [4], [5] .  In this section we demonstrate that a 
similar relationship holds for the convergence rate of a SAGE 
algorithm. 

Defining 

Si H3 . (Si - 4) 
we see from (39) that for Si small 

@+I 

This last equation suggests that minimizing FxsIy will im- 
prove the rate of convergence of llS2ll to 0. To demonstrate 
this more formally, let DF~ and D)F~ be the block diagonal 
aggregate of the Fisher information matrices for two SAGE 
algorithms with DF~ < DF~. Then one can use (40) with an 
argument similar to the proof of Theorem 2 to show that 

p ( 1  - (DH + D F ~  + L H ) - ~ H )  
< p ( 1 -  (DH + D F ~  + L H ) - ~ H ) .  

Thus, less informative hidden-data spaces lead to smaller 
root-convergence factors and hence faster converging SAGE 
algorithms. In particular, once one has chosen the index sets 
5’‘“ the optimal hidden-data space from the point of view 
of asympfotic convergence rate would simply be Xs = Y ,  
since then Fxsly = 0. But that choice will often lead to 
an intractable M-step. The SAGE algorithm allows one to 
choose hidden-data spaces whose Fisher information matrices 
are much smaller than that of the usual complete data of an 
EM algorithm. 

Finally, note that from (43) we see that since H is deter- 
mined by @, once the index sets are chosen, the only design 
issue left is to choose the hidden-data X s .  This choice should 
be made by considering the tradeoff between making Fxsly 
small but yet making the M-step tractable. 
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