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We will also use the Levinson recursion for the prediction error
variances:

A Note on Recursive Maximum
Likelihood for Autoregressive Modeling

Marvin L. Vis and Louis L. Scharf

Abstract- In this paper, we rederive recursive maximum likelihood
(RML) for an autoregressive (AR) time series using the Levinson decom­
position. This decomposition produces a recursive update of the likelihood
function for the AR parameters in terms of the reflection coefficients,
prediction error variances, and forward and backward prediction errors.
A fast algorithm for this recursive update is presented and compared with
the recursive updates of the Burg algorithm. The comparison clarifies the
connection between Burg's algorithm and RML.

where I is the identity matrix, and J is the exchange matrix
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I. INTRODUCTION

Begin with the multivariate normal density for the normal random
variable x
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.en = -In ID~I- Nln[Qn(x)]

where Qn (x) is the quadratic form

Qn(X) = x TAnD;;-2A~x.

The idea behind RML is to manipulate .en into a function of the
"known" parameters {k;} ~ -1 and x and the "unknown" parameter
k n so that we can maximize C; with respect to k n . The recursion
for the determinant term -In ID~ I is

-In ID~I = nln(l- k~) -In ID~-II, In IDol = O. (II)

Now, consider the quadratic form Qn(X) = IID;;-IA~xr The
original derivation of RML in [I] used a formula found in [2] to
write out this quadratic as a~ Sn an, but here, we instead use the
Levinson decomposition of R f n to obtain an equivalent expression
for the quadratic. Because we have fixed {k;}~-1 (and thus have
also fixed {a;};=1 for j = 1.2..... 71 - 1), An- 1 is known, and

Using this decomposition, we can write the density for x, which is
now indexed by the assumed order 71, as

fn(x) = ~ lexp{-AxTAnD;;-2A~X}. (8)
(2iTu~)'ID~12 «:

Taking log-likelihood, compressing with respect to u~, and ignoring
constants, we get the compressed likelihood formula

Assuming that x comes from an AR( 71) process, it can be shown
that the ith reflection coefficient k, is zero for i > 71, and therefore,
the LDU factorization of Rfn ;f;;Rx x is

A~RfnAn = D~

Rf~ = An D ;;- 2A~

2 1.2 22 2
D n = 2d1ag(uo, ... , Un-I' Un.· ... Un)
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{xt} = A(z) {ut}

A(z) = 1 + alz-1 + ... + s,:»,
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II. NEW DERIVATION OF RML

The strategy we use to obtain the likelihood function is to first
assume that the snapshot x = [:roxl ... :rN-lf is the output of an
AR(n) filter driven by unit variance WGN. Next, using the Levinson
recursions and their inverse LDU factorization of the covariance
matrix R x x , we write the density fn(x) in terms of x, the nth­
order AR parameters and the prediction error variance u~. From this,
we get the likelihood function, which we compress with respect to
u~ to get the desired compressed likelihood function .en (an), where
a~ = [a~ ... a?1].We can then express the AR(71) parameters of an

in terms of the AR(n - 1) parameters of an-l and the nth reflection
coefficient k; using the Levinson recursions

f(x) = Ni, exp {_~xTR;:-;X}.
(2rr)'IRx x I2 2

The vector x is an N -length snapshot of a pth-order autoregressive,
AR(p), time series

where {ut} is a white Gaussian noise (WGN) sequence with zero
mean and unit variance. We want to find the set of AR parameters
{ai}f that maximizes the probability of the occurrence of x.

The approach to AR parameter estimation advocated by Kay [1]
is to "recursively maximize" exact likelihood by assuming at the nth
iteration (71 :s: p) that the time series x comes from an AR(n) process
and that the set of reflection coefficients {k;} ~ -1 is known. Then, the
density fn(x) can be manipulated into a function of data {X;}~'-I,

known parameters {k;}~'-I, and k«. Thus parameterized, fn (x) may
be maximized with respect to k«. In this correspondence, we have
derived a fast algorithm for recursively updating the order-increasing
likelihood function by using the Levinson decomposition of R:;} .
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O:'n-l == [.:co J'1 ... J~n-l Jan - 1 .

(22)1{11--1 11 2 11-_1_112 T}Q n (X) = 2" D n ~n + D n ~n + l" ,

l~, = lien 11
2 + IIfn 11

2
•

Equations (19) and (21) are simply two different ways to write the
quadratic form Qn (x). Therefore, by summing them and dividing the
sum by two, we get the following:

The first two terms of (22), which we will call h~, can be written
using the recursive step

X=JX=[XN_1 .rN-2 ... xof. (20)

Therefore, we can also write the quadratic form Qn (x) as

(12)

(13)

(14)

J'n

XN-2
£J.'\/-n-1 ... :.rj\;'-2 :r~V-l

AT _ [A~-l 0] _[ ~" ]
"X - A~ x - X" a" '

X n =

we call write

where r., is known, and X" is the Hankel data matrix for the covari­

ance method of linear prediction assuming an nth-order predictor:

(Note: X; E R(N-n)x("+l) so that its dimension changes with

. order II.) Furthermore

This means we may write
(23)

1 [( 2)( 2 2 .2) 7 ]Qn(X)=2" 1-kn hn_ 1 + a n_ 1 + 3n _ 1 +In(kn). (26)

Finally, substituting (II) and (26) back into the compressed
likelihood formula of (9) and ignoring terms that are constants with
respect to k«, we have an update formula for L n as a function of kn :

h~ = 11i);;-l~n 11
2
+ 11i);;-l~n 11

2

= (1 - k~) (h~-l + O~_l + 13~_1)'

The remainder of (22) (Vn ) is the sum of squared forward and
backward prediction errors. It is this sum that Burg [3] minimized in
his estimator. Following his derivation, write this sum as

As pointed out by Burg [3], we can put a recursive step on d.; to
avoid calculating the sum of squared errors:

dn = v;,(k n ) - a;'-l - ;3~_1' (25)

Putting together the results of (23) and (24), we get Qn (x) as a
quadratic in kn :

Vn(kn) = IIenl1
2 + IIfn l12 (24)

= (1 + k~) (1Ien-1112 + Ilfn-1ln
+ 4kn (e~-dn-1)

= (1 + k~)dn-1 + 4k nc n-1.

(15)

(17)

= e n-1 + k nfn- 1

r, = [~1:] = XnJan

= XnJ(I + knJ) [ 0 ]
a n - }

Equation (16) is simply a quadratic function of k; and the forward

and backward prediction errors of the order n - 1 predictor. Define

the nth-order forward and backward prediction errors as

en = [~:] = x,«,

=Xn(I+knJ)[ 0 ]
an-l

Now, lets write the quadratic a~'X~'Xnan in terms of the Tlth

reflection coefficient k n and the known parameters in a n - 1 using the

Levinson recursion of (4). Substituting for an, we have

However, since R xx and R;; are J symmetric, xTR;;x

Qn(X) = 11i);;-1[nI1 2

+ IIenl1 2
(19)

= (1 - k~) (11i)~~1["_1112 + a~_l)

+ Ilen - 1 + kn fn - 1r

Now, we have the following expression for a~X~Xna,,:

T T 2 11_ - 11 2

anXnX"a" = Ilenll = e n - 1+ k n f " - l .

Thus, the quadratic form in (10) can be written as

(18)

£,,(k n ) = n In (1 - k~) (27)

- ,Yin [(1- k~)(h~_l + a~_l + 3~-I)

+ Vn(kn)].

This is our key finding. It shows that Burg's sum of forward
and backward prediction error variances Vn(kn) = IIenl1

2 + IIfn l12
accounts for only part of the quadratic dependence of likelihood on
the data x and accounts for none of the determinant dependence on

k".
The derivative L~ (k n ) with respect to k n is cubic as reported

in [I]. Furthermore, it can be shown, using the Gohberg-Semencul
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formulas [4] for the inverse of a Toeplitz matrix, that the above
recursive update on compressed likelihood is equivalent to the recur­
sive update derived in [1]. However, if we consider the calculations
required for finding the RMLE of the pth-order AR parameters from
an N-dimensional snapshot, we find that the algorithm in [1] requires
O(p2 N) operations in addition to rooting p third-order polynomials,
whereas our new approach requires O(pN) operations in addition
to rooting the p polynomials. The dominant p2 N operations for the
algorithm in [1] are a result of having to compute the coefficients
5,] for the expression xTRj:x = aTSa, which we avoid by using
instead recursions on the forward and backward prediction errors.

III. RML ALGORITHM

Summarizing the recursive updates for the compressed likelihood
formula, we have the following RML algorithm:

RML Algorithm:
To Compute:

RMLE of ap , a;, given p, x

Initialization:

ao = 1

2 1 T
ao = 7Vx x

eo = [~:] = x

fo=[~~]=x
Co = eno
do = 2Na6 - 0'6 - 36
h6 = 0

k o = 0

Body:

For n = 1 to p, do

\~,(kn) = (1 + k~)dn-1 + 4kncn-1

£n(kn) = nln (1- k~) - Nln [(1- k~)

x (h~-l + 0';'-1 +d~-d + Vn(kn)]

Root c; u; ) ----+ i;

an = (I + knJ) [ 0 ]
an~l

a~ = (1 - k~)a~_l

d.. = \~,(kn) - a;'_l - i3~_1

h~ = (1 - k~) (h;'-l + a;'-l + ;3~-d

[~] [!]
[

I knJ] [e n
-

1
]

k"I J f"-l
en = e~fn

(end loop on n)

IV. COMPARISON TO BURG'S ALGORITHM

Our update formula obtains the same answer as Kay's update, but
it does it differently, using a formula that is similar to Burg's. In fact,
Burg's update for forward and backward prediction error variances

is embedded in our recursion. The philosophy for recursive update
common to RML and Burg is to recursively estimate the nth reflection
coefficient k« by assuming that the set of previously estimated
reflection coefficients {k;}~-l (or, equivalently, the AR coefficients

{an:=l for j =1,2, ... , n -1) are known. The RML approach is to
choose k« such that the compressed likelihood function is maximized
under this assumption. The Burg approach is to minimize

v, (k n ) = lien 11 2 + Ilfn11 2
(28)

= Ilen - 1 + k"fn - 1 W+ Ilkne n - 1 + fn _ 1 11

2

with respect to k n .

As we saw in the derivation of RML, V;,(k n ) appears as a portion
of the quadratic form in the likelihood function. Hence, Burg's
algorithm updates only a part of the compressed likelihood function.
It does not account for the determinant term nor does it completely
account for the quadratic form, whereas RML updates the compressed
likelihood function.

V. CONCLUSION

We have derived a fast algorithm for recursive maximum likeli­
hood (RML) of AR parameters using the Levinson decomposition
of the correlation matrix R xx . The Levinson decomposition is a
natural approach for AR maximum likelihood in the sense that the
decomposition is given in terms of the prediction errors and the order­
increasing AR whiteners. Because the ith reflection coefficient is zero
for i > n in this decomposition (assuming an AR(n) process), the nth
recursive update can be calculated using the (n - 1) st forward and
backward prediction errors. Thus, the order-increasing AR whiteners
are never used explicitly as they are in Kay's algorithm for RML.

This derivation, together with the findings in [I], provide a means
to recursively fit higher order AR models to data using a fast
algorithm. Further, as pointed out in [I], the estimated AR model
is guaranteed to be stable. When we compare RML to the Burg
estimator, we find that the philosophy used by both estimators for
recursively updating the order-increasing models is consistent, but the
Burg algorithm optimizes only a portion of the compressed likelihood
function.
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