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Abstract-In this paper, we present the formulas of the covari- 
ances of the second-, third-, and fourth-order sample cumulants 
of stationary processes. These expressions are then used to obtain 
the analytic performance of FIR system identification methods 
as a function of the coefficients and the statistics of the input 
sequence. The lower bound in the variance is also compared for 
different sets of sample statistics to provide insight about the 
information carried by each sample statistic. Finally, the effect 
that the presence of noise has on the accuracy of the estimates 
is studied analytically. The results are illustrated graphically 
with plots of the variance of the estimates as a function of the 
parameters or the signal-to-noise ratio. Monte Carlo simulations 
are also included to compare their results with the predicted 
analytic performance. 

I. INTRODUCTION 
IGHER order statistics have been shown to be very H useful in applications were non-Gaussian signals are 

present. It is well known that second-order statistics (i.e., 
correlation) are phase blind and that only by using, implicitly 
or explicitly, higher order statistics is it possible to estimate 
the true phase of a linear process or the parameters of a 
nonlinear model [ 11, [2]. Higher order statistics have also been 
applied in problems were colored Gaussian noise is present 
since cumulant-based methods can still provide asymptotically 
unbiased estimates in this case. In addition, it is also important 
to mention that the use of higher order statistics can drastically 
improve the performance of methods based only on second- 
order statistics. 

Several cumulant-based system identification methods are 
now available in the literature. Nevertheless, in almost all 
the cases, the performance of these developed methods has 
been evaluated only through Monte Carlo simulations and 
for a limited number of cases. Clearly, these simulations are 
insufficient to predict the general behavior of cumulant-based 
algorithms. The main purpose of this paper is to develop the 
analytic tools required to perform the asymptotic performance 
evaluation of parametric methods based on second-, third-, and 
fourth-order sample cumulants. Only the analysis of parametric 
methods is considered in this paper. Nonparametric polyspec- 
tral methods can be analyzed directly from the asymptotic 
theory of estimates of higher order spectra [9], [lo]. 
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The first and most difficult step encountered in the analytic 
study of cumulant-based methods is the calculation of the 
covariances of higher order moment estimates. This task was 
addressed in part in [3], where the asymptotic covariances of 
second- and third-order sample moments of stationary linear 
processes were derived. Here, those results are completed with 
the covariances of sample fourth-order moments, and these 
new expressions are then used to obtain both the covariances 
of third- and fourth-order sample cumulants. Moreover, we 
present expressions that are valid for any stationary process, 
for example, linear processes in noise. 

Even if the process is known to be zero mean, the sample 
cumulants are usually computed after subtracting the sample 
mean from the given samples of the process. This subtraction 
does not modify the asymptotic covariances of second-order 
statistics, but it does affect the covariances of the estimated 
cumulants. Our results show that the covariances of the sample 
cumulants are simpler than the covariances of the sample 
moments, i.e., they have a significantly reduced number of 
terms. 

The derivation of the covariances requires the computation 
of up to eighth-order moments, which involves several hundred 
terms. Although it is possible to manipulate these terms using 
a compact notation [7], hand calculation and simplification of 
explicit expressions is quite discouraging. Symbolic algorithms 
for Mathematica [8] have been used to avoid hand derivations 
and obtain simplified expressions. With this symbolic math 
package, it is not difficult to obtain the general expression of 
moments of any order as a function of the cumulants of the 
process. Then, we can program the steps followed in [3], as 
well as additional simplification rules, to obtain expressions 
of the covariances of sample moments. Using the relation 
between sample cumulants and sample moments, the analytic 
simplified expression of the covariances of sample cumulants 
can also be obtained. 

11. MOMENTS AND CUMULANTS 

Let I = { x I , x ~ ~ . . . , x ~ }  be a set of random variables. 
The moment of I, i.e., the expectation of the product of the 
elements in I will be denoted as 

With this notation, cumulants can be defined as a function of 
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moments with the expression [7], E141 

I , = I  p=l 

where the summation extends over all partitions of set I, i.e., 
the unordered collection of nonintersecting nonempty sets I ,  
such that U;=,IP = I. The moment-to-cumulant (2.1) can be 
inverted to obtain the cumulant-to-moment formula 

0 

A complete example that illustrates the use of (2.1) and 
(2.2) for the case m = 4 can be found in Appendix A of [2]. 
For that case, the number of partitions is 15, but it increases 
very quickly with the order and for m = 8, the number of 
partitions is 4140. For zero mean variables, the partitions that 
have a subset with one element can be discarded. Even in 
this case, the number of terms is still 715 for m = 8. The 
partitions required by (2.1) and (2.2) can be found grouped in 
a manageable form in [7] for orders up to m = 8. 

A.  Stationary Processes 

The mth-order moment of a strictly stationary random 
process z( t ) ,  which is denoted by M m , z ( i l ,  i2,. . . , im-l), is 
defined as the joint mth-order moment of the random variables 
{z ( t ) , z ( t  + il),...,X(t + im-l)} 

The mth-order cumulant is similarly defined as 

Due to the stationarity of the process, the right side of 
(2.3) and (2.4) are independent of t, i.e., the mth-order 
moment and cumulant are only a function of the m- 1 lags 
21,apr...,t,-1. 
. .  

B.  Lineal- Processes 

Although in the next sections of this paper we present results 
that are valid for a more general class of stationary process, we 
pay special attention to linear processes and linear processes in 
stationary noise due to their importance in signal processing. 

Linear processes are defined as the output y(t) of a linear 
system whose input is a sequence of independent, identically 
distributed (i.i.d.) random variables. 

00 

y(t) = h ( n ) v ( t - n ) .  (2.5) 
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We will assume the following: 
Al) The impulse response h(t)  is exponentially stable, i.e., 

for some a > 0, A > 0, 

Ih(t)l 5 Ae-tlal. 

A2) The cumulants of orders up to 2m of the i.i.d. input 
w ( t )  are finite 

ck,v(il,i2,'..,im-l) 

y k  if il = i2 = ... = i,-l = 0 15 IC 5 2m. = {  0 otherwise 
Then, the cumulants of the linear stationary process 

y(t) are related to the impulse response h(t)  by the 
Bartlett-Brillinger-Rosenblatt formula 

where 
00 m - 1  

It is also straightforward to check that the cumulants 
Cm,y(il, i2,. . . , z,-1) are finite and summable, i.e., infinite 
summation over any or all of the indices is also finite. 

The output may be observed in presence of stationary 
additive noise w(t). Wee assume the following 

A3) The noise w(t) is independent of the input. 
A4) The cumulants of the noise Cm,w(il, 22 , .  . . , L - 1 )  are 

Then, the cumulants of the resulting process 
finite and summable. 

are the sum of the cumulants of each term 

and Cm,z(il, 22,. . . ,&-I) is also summable. 

111. SAMPLE MOMENTS AND CUMULANTS 

Most of the methods for estimating the parameters of a 
given process z ( t )  are based on sample moments. These can 
be defined, in the first-, second-, third-, and fourth-order cases 
as 

(3.la) 
l N  

l N  

m 1  = - CZ(t) 
t=l 

7np(i) = - C X ( t ) z ( t  + i) 
t=l 

N 

(3.lb) 
N 

m3(i,j) = - l N  C z ( t ) z ( t  + i).x(t + j >  

t=l N 
(3.lc) 

n=--03 t=l 
i. 



I 

FONOLLOSA: SAMPLE CUMULANTS OF STATIONARY PROCESSES: ASYMPTOTIC RESULTS 969 

These definitions give unbiased estimates of the moments. 
Other definitions are possible, depending on the type of data 
windowing employed [ 151. Asymptotically, all the definitions 

the true moments with the same asymptotic covariance. 
Sample cumulants are then computed using (2.4) and the 

moment to cumulant (2.1) with sample statistics replacing true 
statistics. In practice, the sample mean ml is subtracted from 
z( t ) ,  and then, the simpler but equivalent formulas that follow 
are used to compute the sample cumulants of the process: 

also has the properties i)-iii). In particular, S N  converges 
almost surely to S = g ( M ) ,  i.e. 

lim S N  = S a.s. 

and its asymptotic covariance is given by the following 
theorem: 

are equivalent, i.e., they all converge with probability one to N-CC 

Theorem I (31: Under the above assumptions 

P ( M )  = lim N E [ ( S N  - s ) ( S N  - s ) ~ ]  
" 0 0  

= G ( M ) . z ( M ) G ~ ( M )  

1 
c2( i )  = - Cz,( t )z , ( t  + 2)  

t=l N 

(3.2a) 

(3.2b) 

(3.2~) 
t=l 

* .  

. zo(t + IC) - c2( i )cz (k  - j )  

- c a ( j ) c ~ ( k  - i )  - c z ( k ) c a ( j  - i )  (3.2d) 

The derivation of the covariances of sample cumulants 
begins with the computation of the covariances of sample 
moments. Then, the above relation between sample moments 
and sample cumulants is used to obtain the covariances of 
these statistics. We observe that even if the process is known to 
be zero mean, we consider that the sample mean is subtracted 
from the given samples z( t )  using (3.2a). This step is usually 
recommended in the literature [l]. We will show that this 
subtraction affects the covariances of the sample cumulants 
reducing the number of terms in their formulas. 

Let m N  = (mi(...),mj(...),...)t be a vector of sample 
moments, and let M = (Mi,,(. . .), Mj,x(. . .), . ' .)t be the vec- 
tor with the same-indexed true moments. Assuming Cm,,(.) is 
absolutely summable, the sample moments are known to have 
the following properties [3], [9]: 

i) They converge almost surely to the moments of the 
process, i.e. 

lim m N  = M a.s. 
N+CC 

ii) Their covariance is O(N- l ) ,  i.e. 

lim NE[(" - M)(mN - M)7  = E ( M )  < 00. 
"-03 

iii) Their third- and fourth-order central moments are 
o(N- l ) ,  i.e. 

lim NE[(" - M)i(" - M)j(mN - M)k] = O 

lim NE[(" - M);(mN - M), 
N+-03 

N-00 

. (" - M)k(" - M)l]  = 0. 

Let g ( m N )  be a vector-valued continuous function with 
continuous and bounded partial derivatives of first and second 
orders in some open neighborhood of M, then, sN = g(mN) 

where G ( M )  is the Jacobian matrix of g ( m ) ,  evaluated at 
m = M .  

This theorem allows one to obtain the asymptotic per- 
formance of any parametric method based on higher order 
statistics if we are able to compute the asymptotic covariance 
E(M) of the sample moments and the Jacobian G ( M )  of the 
method with respect to these statistics. 

Since S N  has the same properties as " ,  Theorem 1 can be 
applied recursively to a function of S N .  In fact, since most of 
the methods based on higher order statistics deal directly with 
cumulants instead of moments, it will be easier to work with 
the covariances of the sample cumulants and the Jacobian of 
the method with respect to these statistics. The computation 
of the asymptotic covariances of the sample moments and 
cumulants is discussed in the following section. Then, as an 
example of their application, we analyze the performance of 
cumulant-based methods in different applications. 

Iv. ASYMFTOTIC COVARIANCES OF THE SAMPLE 
MOMENTS AND CUMULANTS OF STATIONARY PROCESSES 

A. Sample Moments 

The asymptotic cross covariance of two sample moments 
m;(a l , . . - , a i - l )  and mj(bl , . . . ,b j - l )  is given by the sum- 
mation [3] 

lim Ncov(mi(a1, ... ,ai-l) ,mj(bl, .  .. ,bj-l)} 
N - m  

-03 

= cov{z(o)z(al)~~~ X(Ui-l), 

t=-m 

z(t)z(t  + bl) . . .z(t + b j - 1 ) )  
00 

= (Mi+j,a(al,...,ai-l,t,t+bl,...,t+bj-l) 

- ~i,,(al,...,az-l)~j,x(bl,...,bj-l)). (4.1) 
t=--03 

In fhe following, we will assume this summation is finite. 
For linear stationary processes, this is always true under 
assumptions AI) and A2) of Section 11. 

The evaluation of the above formula requires the computa- 
tion of moments whose order is equal to the sum of the orders 
of each sample moment. Hence, if we are interested in the 
covariances of sample fourth-order moments, we have to be 
able to express the eighth-order moments of a process as a 
function of its parameters. 

For linear systems, the computation of these moments as a 
function of the impulse response is performed through the 
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Bartlett-Brillinger-Rosenblatt and moment-to-cumulant for- 
mulas. Although the catalog of complementary set partitions 
provided by McCullagh in [7] may simplify this task, symbolic 
packages as Mathematica [8] seem to be the best tools to deal 
with the huge number of cumulants required to compute sixth-, 
seventh-, and eighth-order moments of linear processes. 

The simplest example of the use of (4. I )  corresponds to the 
covariance of the sample mean. Equation (4.1) gives, in this 
case 

03 

Explicit expressions for the covariances of sample moments 
of order three or less were derived in [3]. Here, we complete 
that work presenting the expressions of the covariances of 
sample fourth-order moments and the cross covariances of 
these moments with others of lower order. In addition, we deal 
with expressions valid for any stationary process. This allows 
us to study nonlinear processes or the effect of additive noise. 

Even if the process is symmetrically distributed, i.e., its 
odd-order cumulants are zero, the resulting formulas in the 
fourth-order case have hundreds of terms and will be omitted 
in this paper. Since most of the methods based on higher order 
statistics deal directly with cumulants instead of moments, 
the covariances of sample moments are interesting only as 
an intermediate step in the calculation of the covariances of 
sample cumulants. 

B .  Sample Cumulants 

Let SN be a vector of sample cumulants as given by (3.2). 
From the asymptotic covariances of sample moments (4.1) and 
applying Theorem I ,  we obtain the asymptotic covariances 
of sample cumulants. In this section, we present the explicit 
expressions of the covariances of the second-, third-, and 
fourth-order sample cumulants of stationary processes derived 
using this procedure. 

The covariances of the sample second-order cumulants are 
well known and simple to obtain. They are included here 
for completeness. The third-order cases were first studied 
in [3] for sample moments of linear processes. For zero- 
mean processes, it is known that the covariances of sample 
second-order moments are equal to those of sample cumulants, 
i.e., the subtraction of the sample mean does not affect the 
asymptotic covariance of the autocorrelation. This is not the 
case when third-order statistics are considered. The following 
equations show a reduced number of terms compared with 
those presented in [3] for third-order moments of zero-mean 
processes. In addition, the presented expressions are also valid 
for nonzero mean and nonlinear processes. 

Let us denote 

(4.3) lim Ncov{cz(i), ~ ~ ( 1 ) )  
N-CC 

= G4(i, 1 )  + G22(l- i )  + Gzz(Z+ i ) .  (4.19) 
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TABLE I 
TWENTY FOUR TERMS CORRESFQNDINC TO G2222(-j + I .  - j  + 7)). -k  + ?$){24} 

G2222(-i+l,-j+m,-k+n) + G2222(-i+l,-k+m,-j+n) + G~22~(i+l,i-j+m,i-k+n) + G2222(i+l,i-k+m,i-j+n) + 
G2222(-j+l,-i+m,-k+n) + G2zzz(-j+l,-k+m,-i+n) + G22z2(i-j+l,i+m,i-k+n) + G2222(i-j+l,i-k+m,i+n) + 
G2222(j+l,-i+j+m,j-k+n) + G2222(j+l,j-k+m,-i+j+n) + G2222(-i+j+l,j+m,j-k+n) + G2222(-i+j+l,j-k+mJ+n) + 
G2222(-k+l,-i+m.-j+n) + Gz222(-k+l,-j+m,-i+n) + G2222(i-k+l,i+m,i-j+n) + G2222(i-k+l,i-j+m,i+n) + 
Gz222(j-k+lj+m,-i+j+n) + G2222(j-k+l,-i+j+mj+n) + G2222(k+l,-i+k+m,-j+k+n) + G2222(k+l,-j+k+m,-i+k+n) + 
G2222(-i+k+l,k+m,-j+k+n) + G2222(-i+k+l,-j+k+m,k+n) + G2222(-j+k+l,k+m.-i+k+n) + G2222(-j+k+l,-i+k+m,k+n) 

The asymptotic expression for the cross covariances of the 
sample third-order cumulants and the sample second-order 
cumulants of stationary processes is 

and the asymptotic expression for the covariances of the 
sample third-order cumulants of stationary processes is 

lim Ncov{c3(i,j), c3(1, m)} 
N-CC 

= G6(i,j, 1, m) + G222(1 - 2, m - j )  

+ G222(m - i ,  1 - j )  + G222(1+ i ,  m + i - j )  

+ G222(1+ j ,  m + j - i )  + Gzz~(m + i ,  1 + i - j )  
+ G222(m + j ,  1 + j - i )  

+ G33(i, - j  - 1, m - j - 1) 
+ G33(i, - j  - m, 1 - j - m) 
+ G33(j1 1 - i, m - i )  
+ G33(j, -i - 1, m - i - 1) 
+ G33(j, -a  - m, 1 - i - m) 

+ G33(i, 1 - j ,  m - j )  

+ G33(j - i , i  - m,l+ 2 - m) 
+ G33(j - i , i  - 1,m + i - 1) 
+ G33(j - i , i  + l , i  + m) 
+ G24a(j - i ,  1 - i ,  m - i )  

+ G24a(j - 2, -m - i ,  1 - m - i )  

+ G24a ( j ,  2 + i ,  m + i) 
+ G24a(j, - I  + i ,  m - 1 + i )  
+ G24a(jr -m + i ,  1 - m + i )  

+ G24a(z, -1 + j ,  m - 1 + j )  

+ G24a(ir -m + j ,  1 - m + j ) .  

+ G24a(j - i ,  -1 - i ,  vz - E - i )  

+ G24a(i, 1 + j ,  m + j )  

(4.2 1) 

The above expressions are valid for any stationary process. 
In the fourth-order case, we need to restrict ourselves to a less 
general class of processes to avoid formulas with thousands 
of terms or complicated index notations. 

Since fourth-order sample cumulants are especially inter- 
esting in processes with null odd-order cumulants, in the 
following formulas, we will consider only these processes. The 
resulting expressions of the covariances are quite simpler than 
in the general case, but they still present up to 147 G terms. 

The asymptotic expression for the cross covariances of the 
sample fourth-order cumulants and the sample second-order 
cumulants of stationary processes is 

and the asymptotic expression for the covariances of the 
sample fourth-order cumulants of stationary processes is 

where the numbers in brackets indicate the number of similar 
G terms. The complete list of G2222, G224, G26, G44a, and 
G44b terms can be found in the Tables I-V. 

As we have mentioned before, these expressions of the 
covariances of sample cumulants are also valid for nonzero 
mean stationary processes. Furthermore, it is also interesting 
to observe they do not depend on the mean of the process. 

C.  Stationary Linear Processes 

For linear processes or linear processes in noise, (2.6)-(2.8) 
are used to obtain the final expressions of the covariances as 
a function of the impulse response and the cumulants of the 
noise. 
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TABLE I1 
SEVENTY Two TERMS CORRESPONDING TO G221(i.I,-j + 71). - k  + ? 1 ) { 7 2 }  

G224(i,l,-j+m,-k+n) + 
G224(i.-l+m.-j-l,-k-l+n) + 
G224(i,-l+n,-j-1.-k-l+m) + 
G224(j.1.-i+m,-k+n) + 
G224(j.-l+m,-i-l,-k-l+n) + 
G224(j,-l+n,-i-I.-k-km) + 
G224(-i+j,l,i+m,i-k+n) + 
G224(-i+j,-l+m,i-l,i-k-l+n) + 
G224(-i+j,-l+n,i-l,i-k-l+m) + 
G224(k,l,-i+m,-j+n) + 
G224(k,-l+m,-i-l,-j-I+n) + 
G224(k.-l+n,-i-l,-j-l+m) + 
G224(-i+&l,i+m,i-j+n) + 
G224(-i+k,-l+m,i-l.i-j-l+n) + 
G2~(-i+k,-l+n,i-l,i-j-l+m) + 
G224(-j+~l,j+m,-i+j+n) + 
Gz24(-j+k,-l+mf-l,-i+j-l+n) + 
G224(-j+k.-l+nJ-l,-i+j-l+m) + 

G224(i,l.-k+m,-j+n) + 
G224(i.-l+m,-k-l,-j-I+n) + 
G224(i,-l+n,-k-l,-j-I+m) + 
G224(jJ.-k+m,-i+n) + 
G224(i,-l+m,-k-l,-i-I+n) + 
G224(j.-l+n,-k-l,-i-I+m) + 
G224(-i+j,l,i-k+m,i+n) + 
G224(-i+j,-l+m,i-k-I,i-l+n) + 
G224(-i+j,-l+n,i-k-l,i-l+m) + 
G224(k,l,-j+m,-i+n) + 
G224(k.-l+m,-j-l,-i-l+n) + 
G224(k.-l+n,-j-l,-i-l+m) + 
G224(-i+k,l,i-j+m,i+n) + 
G224(-i+k,-l+m,i-j-l,i-l+n) + 
G224(-i+k,-l+n,i-j-l,i-l+m) + 
G224(-j+k,l,-i+j+m,j+n) + 
G224(-j+k.-l+m,-i+j-l,j-l+n) + 
G224(-j+k,-l+n,-i+j-l,j-l+m) + 

G224(i,m,-j+I,-k+n) + 
G224(i,n,-j+l,-k+m) + 
G224(i.-m+n,-j-m,-k+I-m) + 
G224(j,m,-i+l,-k+n) + 
G224(j,n,-i+l,-k+m) + 
G224(j,-m+n,-i-m.-k+l-m) + 
G224(-i+j,m,i+l,i-k+n) + 
G224(-i+j,n,i+l.i-k+m) + 
G224(-i+j.-m+n,i-m,i-k+l-m) + 
G224(k,m,-i+l,-j+n) + 
G224(k,n,-i+l,-j+m) + 
G224(k,-m+n.-i-m,-j+l-m) + 
G224(-i+k,m,i+l,i-j+n) + 
G224(-i+k,n,i+l.i-j+m) + 
G224(-i+k,-m+n,i-m,i-j+l-m) + 
G224(-j+k,m,j+l,-i+j+n) + 
G224(-j+k,n,j+l,-i+j+m) + 
G224(-j+k,-m+n,j-m,-i+j+l-m) + 

G224(i,m.-k+l.-j+n) + 
G224(i,n.-k+l.-j+m) + 
G224(i.-m+n,-k-m,-j+I-m) + 
G,,,(j,m,-k+l,-i+n) + 
G224(i,n,-k+l,-i+m) + 
G224(j,-m+n,-k-m.-i+I-m) + 
G224(-i+j,m,i-k+l,i+n) + 
G224(-i+j,n,i-k+l,i+m) + 
G224(-i+j,-m+n,i-k-m,i+l-m) + 
G224(k,m,-j+l,-i+n) + 
G224(k.n,-j+l,-i+m) + 
G224(k.-m+n,-j-m,-i+I-m) + 
G224(-i+k,m,i-j+l,i+n) + 
G224(-i+k,n,i-j+l.i+m) + 
G224(-i+k,-m+n,i-j-m,i+l-m) + 
G224(-j+k,m,-i+j+l,j+n) + 
G224(-j+k,n,-i+j+l,j+m) + 
G224(-j+k,-m+n,-i+j-m,j+l-m) 

TABLE 111 
SIXTEEN TERMS CORRESWNDING TO G26( t ,  j ,  k - I ,  k - I + 7 1 1 .  k - I + ? I ) {  16) 

G26(i,j,k-l,k-l+m,k-l+n) + Gz&j,k+l,k+m,k+n) + G26(ij,k-m,k+l-m,k-m+n) + G26(i,j,k-n,k+l-n,k+m-n) + 
G26(i,k,j-l,j-l+m,j-l+n) + G26(i,k,j+l,j+m,j+n) + G26(i,k,j-m,J+l-m,j-m+n) + G26(i,k,j-n,j+l-n,j+m-n) + 

G26(i,k,i-m,i+l-m,i-m+n) + G26(j,k,i-n,i+l-n.i+m-n) + G26(j,k,i-l,i-l+m,i-l+n) + G26(j,k,i+l,i+m,i+n) + 
G26(-i+J,-i+k,-i-l.-i-l+m,-i-l+n) + G26(-i+j,-i+k,-i+l,-i+m,-i+n) + G26(-i+j,-i+k,-i-m,-i+l-m,-i-m+n) + G26(-i+j,-i+k,-i-n,-i+]-n,-i+m-n) 

TABLE IV 
EIGHTEEN TERMS CORRESPONDING TO Gado ( i .  -1 + k .  I .  -1 + 711. - j  + 71 I{ 18) 

G44a(i,-j+k,l,-j+m,-j+n) + G44a(i,-j+k,m,-j+l,-j+n) + G44a(i.-j+k.-l+m.-j-l,-j-l+n) + G44,(i,-j+k,n,-j+l,-J+m) + 
G44a(i.-j+k.-l+n.-j-l,-j-l+m) + G44a(i,-j+k.-m+n,-j-m,-j+l-m) + G44,(i,-i+k,l,-i+m,-i+n) + G44a(j.-i+k.m,-i+l,-i+n) + 
G44a(i,-i+k,-l+m.-i-I,-i-l+n) + G44a(i.-i+k,n,-i+l,-i+m) + G44a(j.-i+k,-l+n,-i-l,-i-l+m) + G44a(i,-i+k,-m+n,-i-m,-i+l-m) + 
G44a(-i+j,k,12+m,i+n) + G44a(-i+j.k,m,i+l,i+n) + G44a(-i+j,k,-l+m,i-l,i-l+n) + G44a(-i+j,k,n,i+l,i+m) + 
G44a(-i+j,lc,-l+n,i-I,i-l+m) + G44a(-i+j,k,-m+n,i-m,i+l-m) 

TABLE V 
SIXTEEN TERMS CORRESPONDING TO G 4 4 b ( i . j .  - k  - I ,  - k  - I + W. - k  - I + u){ lG}  

G44b(ij,-k-l,-k-l+m,-k-l+n) + G44b(i,j,-k+l,-k+m,-k+n) + G44b(i,j.-k-m,-k+l-m,-k-m+n) + G44b(i,j,-k-n,-k+l-n,-k+m-n) + 
G44b(i,k,-j-l.-j-l+m,-j-l+n) + G4,,(i,k,-j+l,-j+m,-j+n) + G44b(i.k,-j-m,-j+l-m,-j-m+n) + G44b(i,k,-j-n.-J+l-n,-j+m-n) + 
G44b(j.k,-i-l.-i-l+m,-i-l+n) + G44b(j,k,-i+l,-i+m,-i+n) + G44b(j.k.-i-m,-i+l-m,-i-m+n) + G44b(i,k.-i-n,-i+l-n,-i+m-n) + 
G44b(-i+j,-i+k,i-l,i-I+m.i-l+n) + G44b(-i+j,-i+k,i+l,i+m,i+n) + G44b(-i+j,-i+k,i-m.i+l-m,i-m+n) + G44b(-i+J,-i+k.i-n,i+l-n,i+m-n) 

For example, for a linear process in white Gaussian noise 
with variance g2, we obtain 

For the MA process without noise or in presence of noise 
with a finite number of nonzero cumulants, the number of 
nonzero terms in (2.7), (2.8), and (4.3H4.18) is finite, and 
both the H and G terms are computed directly as the summa- 
tion indicated in those formulas. 

~~ ~ 

For ARMA processes, the exact or symbolic computation of 
the H and G terms is quite more complicated. The procedure 
followed in [3] for H I ,  H2, and H3 can be extended easily for 
H4, although the computational cost increases exponentially 
and may be prohibitive for high-order systems. The exact 
computation of G22, G23, G222, G24, and G33 is described in 
[3] for linear systems without noise. Similar expressions can 
be derived for the G2222, G224, G26, G44a, and G44b terms, but 
the complexity and computational cost for high-order systems 
limit their practical interest. 

Under assumption Al), the products of H terms are also 
exponentially stable. Hence, in practice, approximate results 
may be obtained considering only a finite number of terms in 
the G summations. With this truncation, we can easily include 
the effect of noise with known cumulants. 

Additionally, for linear process without noise or in additive 
Gaussian noise, the summations G4, Gg, G6, G66, and Gg 
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V. PERFORMANCE ANALYSIS: EXAMPLES 

To date, higher order statistics are widely used in signal 
processing applications. However, when addressing specific 
problems or applications, it is not easy to compare and choose 
a good solution. Although a great quantity of simulation results 
can be found in the literature, many questions of theoretical 
or practical interest still remain unanswered. Simulations are 
usually very limited in scope and do not allow one to predict 
the general behavior of the derived algorithms. 

The expressions of the covariances provide us with an im- 
portant tool to study the properties of cumulant-based methods 
and find an answer to most of the open questions. In this 
section, we present several applications of these expressions 
to cumlant-based system identification problems with the aim 
of obtaining the first answers to some of these questions. In 
the context of FIR system identification problems, we study 
the information carried by different statistics of different or 
the same order, the performance of different linear methods, 
and the effect of noise in the performance of the algorithms. 
Monte Carlo simulations are also included to corroborate the 
analytic results. 

Theorem 1 and the discussion following it allows one 
to compute the covariance of the estimates given by any 
cumulant-based method from the covariances of the sample 
cumulants and the Jacobian matrix of the estimates with 
respect to the sample cumulants. Again, with the help of 
a symbolic algorithm, we obtained the performance of FIR 
system identification methods as a function of the coefficients 
and the statistics of the noise. Using these expressions, the 
variance in the estimation of the MA parameters is analyzed 
and plotted in different conditions and for different methods. 
The Jacobian matrices of the methods considered in the 
examples can be found in Appendix B. 

In [3], Porat and Friedlander obtained the lower bound on 
the asymptotic covariances of all estimates based on a specific 
set of statistics, and in [3] and [13], they proposed a method 
with this optimum performance. The high complexity of this 
algorithm limits its practical interest, but the lower bound itself 
is of great importance as a reference. It is also a clear choice 
to compare the information carried by different sets, and we 
use it here for this purpose. 

In the following examples, we consider that the statistics 
of the input are unknown to the estimation method. The finite 
impulse response or coefficients corresponding to a MA( q )  
processes are denoted as b,, 0 5 n 5 q, (bo = 1). 

Example I :  In this example, we compare the information 
carried by second- and third-order sample cumulants of an 
MA( 1) process as a function of the coefficient bl .  The input to 

Fig. 1 .  Asymptotic standard deviation in the estimation of the coefficient 
bl of an MA(1) process as a function of its value. Lower bound using only 
autocorrelation (L2), using only third-order cumulants (L3). and using both 
(L23). 

the linear system is a zero-mean i.i.d. exponentially distributed 
random sequence. The cumulants ym of this input sequence are 

7 1 = 0  72 =1 73 = 2  
74 = 6  75 =24 7 6  =120. 

To compare the three sets of statistics, we consider the lower 
bound in the variance of any estimate of the coefficient b l  
based on each set of sample statistics [3]. The three curves of 
Fig. 1 show the asymptotic standard deviation in the estimation 
of b l  for each of these sets. L2 corresponds to the lower 
bound using the sample autocomelations (c2(0) and c2(0)), 
L3 to the lower bound using the sample third-order cumulants 
(c3(0,0),c3(0, l ) ,  and ~ ( 1 ,  l)), and L23 to the lower bound 
using both sets of sample statistics. From this figure, it is clear 
that second-order statistics, apart from being phase blind, do 
not provide good estimates when the coefficient bl is close to 
1 or to - 1 .  

In general, correlation-based MA or ARMA system identifi- 
cation methods do not provide good estimates when the zeros 
are close to the unit circle. In these important cases, cumulant- 
based methods provide clearly better results for non-Gaussian 
processes. 

Example 2: This example is an analytic study of the sim- 
ulation results obtained by Mendel and Wang in [l 11 for the 
following nonminimum phase MA(2) model: 

H ( z )  = 1 + b l ~ - ' +  b22-' = 1 - 2.3332-1 + 0 . 6 6 7 ~ - ~  

with the same type of i.i.d. input of Example 1. 
In [ 1 1 1 ,  the authors applied the estimated cumulants c3(0,0), 

cz (2) to a structured network training algorithm to determine 
the MA parameters. They observed that accurate parameters 
were obtained by using higher order cumulants only, and 
correlation information did not seem to speed convergence. 
They also study the effect of different orderings of the training 
pattems. The results seem to indicate that the first cumulants 
c3(0,0), ~ ( 0 ,  l ) ,  and cg(1,l) provide more information about 
the parameters than the other sample statistics. 

c3(01 l ) ,  c3(1, l ) ,  c3(0i c3(1, 2), C3(2r C2(O), c2(1), and 
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1 on 3,9 Number of Sample Cumulants Number of Sample CUmUlanlS 

Fig. 2. Asymptotic standard deviation in the estimation of the coefficient 
bz of the MA(2) model of Example 2. Lower bound using different sets of 
second- and third-order cumulants. 

Fig. 3. Asymptotic standard deviation in the estimation of the coefficient bz 
of the MA(2) model of Example 2. Cumulant-matching method using different 
sets of second- and third-order cumulants. 

Our analytic performance evaluations corroborate those 
simulation results. We compared the information carried by 
different sets of statistics, and we found that the sample 
cumulants c3(0, 0), c3(0, l), and cg(1 , l )  were clearly the 
most important, i.e., the lower bound in the variances of the 
estimates was not reduced significantly when more cumulants 
were considered. These results are illustrated graphically in 
Fig. 2. Let us define the following ordered lists of sample 
cumulants: 

Fig. 2 shows the lower bound in the standard deviation of 
the estimate of b2 as a function of the number of statistics con- 
sidered n and for each list of sample cumulants. For example, 
the plot corresponding to SA gives at n = 5 the lower bound 
in the standard deviation of any method using the first five sta- 
tistics of this list, namely, c3(0, 0), c3(O, l), ~ ( 1 ,  l),  c3(O, 2), 
and c3( l ,  2). For n = 3, SA clearly provides the estimate with 
the lower standard deviation. Of course, as n increases, the 
three curves converge to the same point since the all the lists 
have the same nine sample cumulants. 

Fig. 3 illustrates the performance of the cumulant matching 
method [12] (or MA Optimization-I [2]), instead of the lower 
bound. This method performs a minimization of the sum of 
the squared differences between the sample cumulants and the 
cumulants of the proposed model, and it is closely related 
to the structured network approach of [ 1 I]. As in Fig. 2, the 
standard deviation of the estimate of b~ is depicted in Fig. 3 as 
a function of the set of statistics used by the cumulant matching 
method. Results are similar to those presented in Fig. 2, but an 
important difference is observed: In some cases, the variance 
of the estimate increases when more sample cumulants are 
considered in the minimization. 

Example 3: We study here the identification of a MA(1) 
process using linear methods based on second- and/or third- 
order cumulants. As in Example 1 ,  the input to the linear 
system is an i.i.d. exponentially distributed random sequence. 
Fig. 4 shows the performance (asymptotic standard deviation 
in the estimation of b l )  of the three linear methods. GM 
is the method proposed by Giannakis and Mendel in [4], 
and GMT is the modification to reformulated G M  algorithm 
described in [5 ] .  These two algorithms use second- and third- 
order cumulants, whereas the WS method developed in [6] 
uses only third-order cumulants. 

The relative performance of the different three different 
methods depend on the value of b l .  The analysis of the 
GM method reveals the consistency problems of this method 
when bl approaches 1. The performance of the GMT and WS 
methods is similar in the range of values shown, although the 
WS method only uses third-order cumulants. 

Exampled: Table I shows the almost perfect agreement 
between the predicted analytic performance and the simulation 
results for both the GMT and WS method and for three differ- 
ent values of b l .  The columns corresponding to the analytic 
performance evaluation show the asymptotic (normalized) 
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TABLE VI 
NORMALIZED STANDARD DEVIATION OF THE ESTIMATE FOR 

THE GMT AND WS METHODS. ANALYTIC AND SIMULATION 
RESULTS OF IO00 MONTE CARLO RUNS WITH S = lo00 

Parameter 

br =-0.80 1.2969 1.3025 1.1604 1.1611 

bl I -1.25 2.0264 2.0523 2.1834 2.1162 

b l =  1.25 3.0512 3.0562 2.8146 2.8395 

I I I I I ' I ' I ' I  
' 0  0.1 0.2 0.3 0.4 0.5 0 6  0.7 0.8 0.9 1 

r 

Fig. 5. Asymptotic standard deviation in the estimation of bl with the WS 
method as a function of the ratio between the power of the white Gaussian 
noise and the power of the output signal (MA(1) process with bl = 1.25). The 
lower line corresponds to the lower bound of any method using the sample 
third-order cumulants ~ ( 0 . 0 ) .  ~ ( 0 .  l),  and ~ ( 1 . 1 ) .  

standard deviations as in previous examples. For the Monte 
Carlo simulations, the number of samples of each record was 
N = 1O00, and in this case, the value of the normalized 
standard deviation shown in the tables was computed from the 

results as JS. Since we were interested in a accurate 
estimation of the variance, we performed 1000 Monte Carlo 
runs for each value of bl. 

Example5: Fig. 5 shows the performance of WS method 
[6] as a function of the noise power for an MA(1) process 
with bl = - 1.25. The lower bound of the asymptotic standard 
deviation is also included. The additive noise is white and 
Gaussian. In these two figures, the vertical axis represents 
the values of the asymptotic standard deviation, whereas the 
horizontal axis represents the value of the ratio between the 
power of the noise and the power of the output signal (MA 
process). 

Although, in Fig. 5, the power of the signal is always greater 
then the power of the noise, in general, we have found that 
for signal-to-noise ratios below 0 dB, the performance of any 
cumulant-based method degrades very quickly. 

Example 6: In this last example, a BPSK signal is used 
instead of the exponentially distributed input considered in 
previous examples. A BPSK signal is a sequence of statisti- 
cally independent and equiprobable symbols with value 1 or 
-1. The cumulants ym of this sequence are 

y 1 = 0  y 2 = l  y 3 = 0  y4=-2  
7 5  = 0  76 =16 77 = 0  7 8  =-272. 

ro,, , B B  

Fig. 6. Number of samples required to estimate the coefficient b i  with 
with a standard deviation equal to 0.1 as a function of its value and the 
SNR. BPSK signal transmitted through an MA(1) channel with additive 
white Gaussian noise at the output. Lower bound using sample fourth-order 
cumulants c~(O.O.O),c~(1,1,1) and c4(-1,-1.-1). 

A BPSK signal is transmitted through an MA(1) channel, 
and we want to estimate bl  from the sample fourth-order 
cumulants c4(0, 0,0), c4(l, 1, l),  and Q(-1, -1, -1) of the 
received signal. Fig. 6 depicts the lower bound in number of 
samples required to obtain a relative standard deviation of 
0.1 in the estimation of b l  as a function of the value of b l  
and for different signal-to-noise ratios. The relative standard 
deviation ffT is defined respect to the total energy of the 
impulse response, i.e. 

(5.1) 

Hence, the lower bound in the number of samples N is 
computed from the lower bound in the asymptotic variance 
LB(b1) as 

The value of the signal-to-noise ratio is defined as 

(5.2) 

(5.3) 

where U; is the power of the white Gaussian noise added to 
the MA process. 

From the results, we can observe a fast increase in the 
required number of samples when the signal-to-noise ratio is 
below 10 dB. 

VI. CONCLUSION 
We have presented the expressions of the covariances of the 

second-, third-, and fourth-order sample cumulants of station- 
ary processes, placing emphasis on linear processes and linear 
processes in noise. These formulas are of great importance in 
the analysis of the increasing number of parametric methods 
based on cumulants and to clarify the interest of higher order 
statistics in signal processing applications. 

Several experiments have been conducted to obtain a 
first answer to different questions related to the behavior of 
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cumulant-based methods. From the results of examples, it is 
clear that higher order statistics in many cases, apart from pro- 
viding phase information, carry useful information to reduce 
the variance of the estimates. For example, methods using only 
second-order statistics or methods based on a first estimation 
of a spectrally equivalent model using second-order statistics 
do not provide a good estimate of the model when a zero 
is close to the unit circle. On the contrary, zeros on the unit 
circle do not represent a problem to cumulant-based methods. 

The lower bound on the asymptotic covariance of the esti- 
mate was used to study the information provided by different 
sets of sample cumulants. Cumulants close to the origin seem 
to be more important than cumulants with higher indexes. The 
effect of noise on the estimates has also been addressed in 
Examples 5 and 6. We have found that for signal-to-noise 
ratios below 0 dB, the performance degrades very quickly. 

Apart from the analytic study of the algorithms, we also 
performed Monte Carlo simulations. The results showed a 
close agreement with the variance predicted by the asymptotic 
analysis. 

APPENDIX A 
FORMULAS OF G4, G5, G6, G6b 

AND Gs FOR LINEAR PROCESSES 

For linear processes without noise or in additive Gauss- 
ian noise, the summation of cumulants required to compute 
G4, Gs, Gs, Gsb, and G8 can be avoided. In this Appendix, we 
include the complete derivation of the simplified expression 
of G4. The expressions of G.c,,G~ \ and G6b can be easily 
obtained with a similar approach. 

From the definition of G4, we have that for linear processes 
in Gaussian noise 

-03 

t=--03 

- 0 3 0 0  

= 7 4  h(n)h(n+i)h(n+t)h(n+t+j)  

=y4 h(n)h(n+i) h (n+t )h (n+t+j )  
n=--03 t=-m 
00 

= 74 h(n)h(n + i ) H Z ( j )  

APPENDIX B 
COVARIANCES OF THE ESTIMATES 

In this Appendix, we present the formulas of the covari- 
ances of the estimates given by the cumulant-based methods 
considered in the examples of Section V. 

Let O N  = g(c) be the estimated parameters and 6 = g(C) 
be the true parameters of a process, where c are the estimated 
cumulants and C = f (8)  the true cumulants. From Theorem 
1 and the discussion following it, we have that the asymptotic 
covariance of the estimated parameters is 

(P(8 )  = lim NE[(8N - 8 ) ( e N  - N-00 

where G(8) is the Jacobian matrix of g ( . )  evaluated at C = 
f ( O ) ,  and E(0) is the asymptotic covariance of the sample 
cumulants, i.e. 

~ ( 6 )  = lim N E [ ( .  - C ) ( C  - C ) t ] .  (C.2) 
N--03 

The following formulas give the asymptotic covariances 
of the estimates for different methods. For the sake of com- 
pleteness, we include the lower bound [3], which is also the 
asymptotic performance of the weighted cumulant matching 
method [13] (or MA Optimization-:! [2]). 

Lower Bound: Let us denote 

(C.3) af - = F ( z ) .  
az 

estimates g(c) is given by 
The lower bound on the asymptotic covariances of all 

B( e)  = [ P ( e ) q e ) F (  e ) ] - l .  (C.4) 

Cumulant Matching Method: The asymptotic covariance 

(C.5) 

of estimate O N  obtained via the global minimization of 

V ( z )  = ;(fW - .)"f(4 - 4 
which is given by 

P("")(e) = [ ~ ~ ( ( e ) ~ ( e ) ] - l ~ ~ ( ( e )  

. ~(8)F(e ) [F(8 )Ft ( ( e ) ] - ' .  (C.6) 

Proof: It is straightforward to show, by standard differ- 
ential analysis, that the Jacobian matrix of the above estimate 
is given by 

where the terms of the right-hand side can be easily computed 
from (C.4) 

Substituting (C.8) and (C.9) into (C.7) and then in (Cl ) ,  

Least Squares Estimates: The GM [4] and GMT [5] sys- 
we obtain (C.6). 

tem identification methods are based on a linear relation 

A(C)B = b(C). (C.10) 

When both the matrix A and the vector b are computed 
from the estimated cumulants c, we have an overdetermined 
linear system. Although there are other possibilities, the least 
squares solution is usually chosen as the estimate. 

The asymptotic covariance of the least squares solution 

8 N  = s(")(c) = [A(c) 'A(c)]- 'A(c)~~(c)  (c.11) 

is given by [3] 

P(lS) (e )  = [A( C)tA( C ) ]  -'A( C)tD( C )  
. ED(C)tA(C)[A(C)tA(C)]- l  (C.12) 
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where D(C)  is a matrix whose zth column is 

WS Method: The WS method [6] requires a separate 
analysis since a minimum norm solution is computed instead 
of a least squares solution. 

Let I1 = (0, .  . . . O ,  l)t. The asymptotic covariance of the 
WS estimate 

= ~ ‘ “ ’ “ ’ ( c )  = SdSEIS,StL]-lI1 (C.14) 

is given by 

p(Us)(o) GEG~ (C.15) 
where 

G = D1 + S,j[(I - S:S,)D2 - SfD3]  (C.16) 

and the ith column of the matrices D1. 0 2  and D3 is given by 

(C.17) 

(C. 18) 

(C. 19) 

All arguments on the right-hand side of (C.15) are under- 
stood to be evaluated at the point C = f (0) .  

Proof: Using the following notation 

s$ = SE [sus:] -1 (C.20) 
w =sp1 (C.21) 

p q C )  = SdW (C.22) 

we have that 

1 0 2  1 - SfD:j,L - Su#SILD~.l. (C.24) 

The final expression of the Jacobian matrix (C. 16) is obtained 
by substituting (C.24) into (C.23). 

SOFTWARE 
The software used to obtain the covariances of sample 

cumulants and the presented results is available via anonymous 
FTP (dttixO.upc.es) in the directory pub/cov. 
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