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Nonseparable Two- and Three-Dimensional Wavelets

Jelena Kovatevi¢ and Martin Vetterli

Abstract— We present two- and three-dimensional nonseparable
wavelets. They are obtained from discrete-time bases by iterating filter
banks. We consider three sampling lattices: quincunx, separable by two
in two dimensions, and FCO. The design methods are based either on
cascade structures or on the McClellan transformation in the quincunx
case. We give a few design examples. In particular, the first example of
an orthonormal 2-D wavelet basis with symmetries is constructed.

1. INTRODUCTION

During the past decade, the field of filter banks, or subband
coding, has established itself firmly as one of the very successful
methods for compressing signals ranging from speech to images to
video [1], [2]. At the same time, and from another field—applied
mathematics—the theory of wavelets emerged as a powerful tool
for providing time-frequency localized expansions of signals [3]. Re-
cently, it has been shown that the two—filter banks and wavelets—are
closely connected, in that one can use iterated filter banks to obtain
continuous-time wavelet bases [3]-{5], as well as see filter banks as a
“discrete wavelet transform” [6]. While most of these developments
concentrated on 1-D signals, and the multidimensional case was
handled via the tensor product, some of the more recent efforts
concentrated on the “true” multidimensional case, both from the
filter bank and the wavelet aspects [7]-[17]. By true we mean
that both nonseparable sampling and filtering are allowed. Although
the true multidimensional approach suffers from some drawbacks,
such as higher computational complexity, it offers a few important
advantages. For example, using nonseparable filters leads to more
degrees of freedom in design, and consequently better filters. Then,
nonseparable sampling opens a possibility of having schemes better
adapted to the human visual system. Finally, some previously im-
possible solutions, such as linear phase and orthonormal filters when
the sampling is separable by two in two dimensions, can be achieved
using true multidimensional systems.

The main difference when compared to the 1-D treatment is that
multidimensional sampling requires the use of lattices. A lattice is the
set of all vectors generated by Dk, k € 2", where D is the matrix
characterizing the sampling process. Note that D is not unique for
a given sampling pattern. Using the expressions given for sampling
rate changes, analysis of multidimensional filter banks (see Fig. 1)
can be performed in a similar fashion to their 1-D counterparts. One
of the basic tools is the polyphase domain representation, where all
signals and filters are decomposed into their polyphase components,
each one corresponding to one coset of the sampling lattice. The
net result of this process is that, effectively, a single-input single-
output periodically time-varying system can be analyzed as if it were
a multiple-input multiple-output time-invariant system. The results
on alias cancellation and perfect reconstruction are very similar to
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Fig. 1. Analysis/synthesis filter bank with NV branches and sampling by D.

their 1-D counterparts [1]. For example, perfect reconstruction with
FIR filters is achieved if and only if the determinant of the synthesis
(analysis) polyphase matrix is a monomial. On the other hand, to
synthesize filter banks we use cascade structures. They are convenient
since perfect reconstruction with additional properties such as linear
phase can be easily obtained while having low complexity. In the
quincunx case, we will also use the McClellan transformation since it
has been recognized as a way to build multidimensional filter banks
[13], [14] as well as wavelet bases (that is, filter banks that could
lead to wavelet bases) [10], [12].

To obtain wavelet bases, we iterate the filter bank as shown in
Fig. 2. We identify as Ggl) (w) the equivalent filter in the low branch
after 7 steps of filtering and sampling by D, where Ggo)(w) =1
Now, as in the 1-D case, to make a connection with continuous time,
we construct a continuous-time “graphical” function based on the
iterated filter ¢ [k]: ) (t) = N/2g(V K], (D")'t € k +[0. 1)".
where k = (k3 kn)T is an n-dimensional integer vector and
t = (t tn )[. We are now interested in the limiting behavior
of this “graphical” function. The limit of #D(t) exists and is in L
if the lowpass filter is regular, and we will call this limit the scaling
function (t). By regularity we loosely mean that the obtained
scaling function has to have a certain degree of smoothness, that
is, following [3], we will try to impose a zero of the highest possible
order at all aliasing frequencies [10], [12]. The scaling function
satisfies a two-scale equation, that is, it is a linear combination of
scaled and shifted versions of itself. Once the scaling function exists,
the wavelets can be obtained from

eit) =VN Y gilklp(Dt k).
kezn .
i=1l-.N-1 m

where N = det (D). Note that the coefficients used in the two-scale
equation and (1) are the impulse response coefficients of the perfect
reconstruction discrete-time filters. The wavelets obtained in such a
fashion actually produce an orthonormal basis for L2(R"™) [12]. One
more fact that will be needed later is that for the scaling function to
exist, the lowpass filter go [K] has to have at least one zero at all of the
aliasing frequencies, that is, Go(w = 2r(DY)"'k) = 0. k € 2",
where 27(D?)"'k are the aliasing frequencies. Once a particular
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Fig. 2. Filter bank with iterated lowpass branch used for constructing
continuous-time wavelet bases.

solution is found, one has to verify that the function to which it
converges will be at least continuous. A fast way of estimating it is
by monitoring the behavior of the largest first-order differences of
the iterates. However, this is only an indicator. In [16], the author
develops a method for checking the regularity (actually, continuity)
of a 2-D filter. Since the theory behind it is quite involved, here we
just outline the process; for more details, the reader is referred to [16].
First, one computes the iterated filter and then finite differences in two
directions. This is followed by identifying all polyphase components
of these finite differences, and by finding estimates for each one of
them. Finally, the maximum of all the above estimates—p—is found.
Then the lower bound on regularity is s = — log, /5 p, [16]. For the
solution to be at least continuous, s has to be positive, that is, we
stop the process as soon as p < L

II. QUINCUNX SAMPLING

We will start with the quincunx case, that is, the simplest mul-
tidimensional sampling structure that is nonseparable, and will use
the following sampling matrix: Do = (} _}). It is called a “sym-
metry” dilation matrix, used in [12]. Its determinant equals two,
and therefore, the corresponding critically sampled filter bank will
have two channels. We will now concentrate on design issues. Let us
first present a cascade structure that can generate filters being either
orthogonal or linear phase. It is obtained by the following:

K1
Gp(z1, z22) =Ro - [H (é 591)

i=1

Ry, ((1) 22(_)1 ) Rgl}. 2)

For the filters to be orthogonal the matrices R;; have to be unitary,
while for them to be linear phase matrices have to be symmetric.
In the latter case, the filters obtained will have opposite sym-
metry. Consider, for example, the orthogonal case. Then, R =
(1/v1T+a?) (] 7%), and the smallest lowpass filter obtained from
the above cascade would be

1
go[n1, n2] =
b el = T @)
—a —aopad1
—as —agd2 —ao 1]. (€))
agaiady —a1az
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TABLE I
Two SOLUTIONS YIELDING A LowPass FILTER
WITH A THIRD-ORDER ZERO AT (7, 7)

a; || Solution 1 | Solution 2
ag 0.18086073 | —0.14101995
a; || —0.07356250 0.25065223
as || —0.35310838 | —0.27860678
asz || —0.16178988 | —0.23216639
aq 0.19127283 | —2.80190711
as 1.52618074 | —0.90189581

TABLE 11
THE SUCCESSIVE LARGEST FIRST-ORDER DIFFERENCES FOR
THE FILTER OBTAINED USING THE SECOND SOLUTION
GIVEN IN TABLE I, COMPUTED ON THE RECTANGULAR GRID

Iteration Largest first Rate of
number || order difference | convergence
2 1.00396460
4 0.61660280 1.62822
6 0.35251753 1.74914
8 0.21656604 1.62776
10 0.12829728 1.68800

The highpass filter is obtained by modulation and time-reversal. This
filter, with some additional constraints, is the smallest regular 2-D
filter, the counterpart of the Daubechies’ Do filter {3].

We will now show a few design examples. We try to impose
a zero of a highest possible order at (w, 7) on the lowpass fil-
ter go[m, ‘nz], that is, (3k—1G0(w1, wQ)/alwlak*l_lwz)l(m,) =
0, k=1,---.m-11=0,---. k-1, and then check its regularity
using Villemoes’ method [16]. We construct an eight-tap filter by
setting K = 2 in (2). After imposing a second-order zero at (7, )
on the lowpass filter, the following two solutions (ag. a1,. az, ) were
found: (Fv/3. FV3. 2 £ V3), and (£v/3. 0. 2 £ V/3). The first
solution leads to a regular orthogonal filter, while the second one,
interestingly enough, is the same as the well-known Daubechies’ D>
filter [3]. The regularity of the first solution was proven in [16].
This filter is then the smallest regular 2-D filter, a counterpart of
D,. For larger-size filters, obtaining algebraic solutions becomes a
very demanding task. However, numerical approaches are possible.
Thus, we set K = 4 and use only D;R,; in the last stage. The
filters obtained have 24 taps arranged in six rows (2, 4, 6,6, 4, 2).
After imposing a third-order zero at (m, 7) on the lowpass filter,
two numerical solutions are obtained and are given in Table 1. The
first-order differences for the second solution in Table I are given in
Table II, indicating that the solution will indeed lead to a continuous
wavelet basis. To check continuity, we use Villemoes’ method as
explained earlier. We iterate the filter in even steps on the separable
lattice (since the computation is then more efficient), and obtain p =
0.9601 in the eighth iteration, which means that the iterated filter will
converge to a continuous scaling function. Fig. 4(a) gives the sixth
iteration of the lowpass filter.

Another design method is based on the McClellan transformation.
Assume we apply the McClellan transformation on the 1-D filter from
(18] G(z) = (1494 a+bz+:"D+clz+27) +d=+
271 be(z + 27 1)%), where a = 0.474823, b = —0.654174, ¢ =
0.364721, d = —0.095712. ¢ = 0.01, and the filter is given in
the form convenient for further transformation. After applying the
McClellan transformation a 2-D filter is obtained. Its fourth iteration
is given in Fig. 4(b) and the first-order differences given in in Table
TII. Again using Villemoes” method, we obtain very fast convergence
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Fig. 3. Three sampling lattices of interest: (a) Quincunx; (b) separable by
two in two dimensions; and (c) FCO.

and p = 0.8929 in the sixth iteration. Therefore, this iterated filter will
produce a continuous scaling function, and consequently, a wavelet
basis as well.

[Il. SEPARABLE SAMPLING BY TWO IN Two DIMENSIONS

Let us now examine the system with the sampling lattice as in
Fig. 3(b). This lattice is separable, and the sampling matrix is D, =
21. The analysis filters are denoted by Ho(z1. 22), -+ Hs(z1, 22),
and they are nonseparable. Their synthesis counterparts are denoted
by Go(z1. 22). - G5(z1. z2). To obtain perfect reconstruction,
we will try for G, (2. ) H,(:f. 53) = ¢~ sTRz P21 where
the matrices H,. G, are the analysis/synthesis polyphase matrices,
respectively. We will now see how this can be achieved using 2
cascade that offers us both orthogonality and linear phase. In [19],
a cascade structure was presented generating four linear phase and
orthogonal filters of the same size, where two of them are symmetric

and two are antisymmetric

k
G,(21. 22) = Gy, H D(z. 22)U; “4)
i=1
and Gp, was chosen to be the matrix representing the
‘Walsh-Hadamard transform of size 4, D is the diagonal matrix of
delays (1 P = :f‘:;l), and U; are scalar persymmetric
(that is, they satisfy U; = J'U,J) unitary matrices. However, it turns
out that without simplifications, the above cascade is very difficult
to use for constructing wavelets. It has been observed that the
number of channels is responsible for the fact that many results look
algebraically similar irrespective of the number of dimensions. Thus,
we are going to use the factorization of the matrix U; developed
for the 1-D case to simplify our cascade [20]. Note first that the
matrix U; can be expressed as follows:

A, B
Ui‘(JBiJ JAJ)

1 /1T 1 ro; 1 /1 1
=P — L
505 e ) 76 )T

~ et N e’
w R; w
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Fig. 4. Quincunx case. (a) Sixth iteration of the regular filter obtained using
the second solution given in Table L (b) Fourth iteration of a regular filter,
obtained using the McClellan transformation of the filter given in Section L.

TABLE i
THE SUCCESSIVE LARGEST FIRST-ORDER DIFFERENCES
FOR THE FILTER OBTAINED USING THE MCcCLELLAN
TRANSFORMATION OF THE LENGTH-19 ONE-DIMENSIONAL FILTER

Iteration Largest first Rate of
pumber || order difference | convergence
2 0.95161612
4 0.53629625 1.77442
6 0.24966172 2.14809
8 0.10269017 2.43121

where the notation is following [20]. Then for the above matrix to be
unitary, r2; and rais1 have to be unitary as well, that is, each r; is
characterized by one degree of freedom ( (NZ/ 2) in the general case of
N channels, where N is even). In addition, the starting matrix Gy,
has to be unitary and satisfy the linear phase testing condition given
in [19], and thus G, = RoWP. Therefore, the whole structure can
be written as
k
G,(z1. ) = RoWP [] DGt 5)PWR,WP (5
i=1
where each matrix r; in R is one Givens rotation r; =
(S ™ 1‘: i), The filters obtained in this manner are going to be
orthoéonal, have linear phase, and will be of size 2(k + 1) x 2(k+
1). The number of degrees of freedom will then be 2(k+ 1). Note
also that, as in [20], the above cascade is valid for all filter banks
with an even number of channels.
To construct wavelet bases, we first try to impose one Zero
at all aliasing frequencies, that is, at (21, 22) = (-1, -1),

(21, 22) = (1, -1), (21, 22) = (-1, 1). Note that to
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obtain filters, one has to upsample the polyphase matrix,
that is (Go(z1, 22), G121, 22), Ga(z1, 22), G321, 22))T =
Gp(zlz, 22)(1, zl_l, 27t 2 z;l)T. Thus, for z;,2 = £ 1, the
diagonal matrix of delays in (5), D(z1, z2), becomes an identity
matrix, and bearing in mind that P> = W? =1,

k
Gp(sf, )|y, ,=1 =RoWP [ PWR, WP

=1
k
= (H Ri) WP. (6)
=0

But
k

: [1=
H Ri=|"= k
=0
: HT2i+1

=0
& cos E g —sin E Qi
[[ri=] . ‘Z' z" ™
i=0 sin &2 COs [e DT

i i

and similarly for [[*_, r2i1. Calling @i = Y; a2 and b; =

S @2it1, we finally obtain

GZ(Z% 2§)|21,2::l:1

cos a; sin a; sin a; cos a;
—sin a; cosa; cosa; — sin a;
cos b; sinb; —sinb; —cos b;
—sinb; cosb;, —cosb, sinb;

Now the condition that Go(—1, —1) = 0 translates to cos a; =
sin a;. Bearing also in mind that Go(1, 1) = 2 [12}, we get that

a; = Z az; = 2n7w + % t))

that is, the sum of all even angles has to equal 2n7 + 7 /4. In a similar
manner, we get that Go(1, —1) = Go(—1, 1) = 0 by construction.
Thus, it is sufficient for the sum of all even angles to satisfy (8), and
the lowpass filter will have a zero at all three aliasing frequencies.
This is similar to the condition in the 1-D two-channel case, where
the sum of all angles has to be = /4 [21].

Having presented a cascade structurally producing filters being
both orthogonal and linear phase, let us now give a design example
leading to a continuous-time orthonormal wavelet basis character-
ized by a scaling function ¢(t, t2) and three “mother” wavelets
¥;i(ty, t2), ¢ = 1, 2, 3, where both the scaling function and the
wavelets are symmetric/antisymmetric. We start by using (5) with
k = 2 leading to filters of size 6 x 6, and requiring the lowpass filter
to have a second-order zero at all three aliasing frequencies, that is
Go(Zl, 22) = 0, 3G0(21, 32)/621,2 = 0, for (Zl, z2) = (—1, —1),
(21, z2) = (1, =1), (21, z2) = (=1, 1). Upon solving the set of
nonlinear equations, one gets the following solution:

ki .1
g =—, @] =7 —arcsin —,
4
as =0, a3 =2 arcsin % -,
.1
as =0, as= —g —arcsin . (C))

It is obvious from the above that the even angles indeed sum up to
w /4 as required by (8). As we said before, now we have to check the
regularity of the obtained solution. For this solution, the maximum
first-order differences decrease with an almost constant rate, but this
is only an indicator, and we will use the method from {16]. The lower
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(d)

Fig. 5. Fourth iteration of the scaling function (a) and wavelets ((b)=wavelet
1, (c)=wavelet 2, (d)=wavelet 3) obtained using cascade (5) with k = 2 and
angles as in (9).

bound on regularity in our case is found in iteration six and equals
to s = 0.2006 which tells us that the function is at least continuous.
The fourth iteration of the scaling function and the corresponding
wavelets are given in Fig. 5 (frontal view is given so as to make the
symmetries obvious).

IV. FCO SAMPLING

In three dimensions, one can follow the same approach as before.
Thus, for the FCO sampling case (nonseparable sampling by two in
three dimensions) and matrix

1 0 1
Drco=|-1 -1 1
0o -1 0

with D30 = 21, the following cascade is used: Gp (21, 22, 23) =
R, -D;R;D;R:D;R; with the same notation as before. Imposing
a second-order zero at (w, w, ) leads to one of the possible solutions
as follows: ag = -2 - V3 a4 = -2+ V3,a3 =
V/3. Setting a2 = —aj, a different set of solutions is obtained,
a1 = =++/7+4+/3, where four combinations are possible, and
ao = (—4+13a;—a3)/2, a3 = a1(3—2+/3). Another useful cascade
is given in [12], which allows construction of an n-dimensional linear
phase solution from the (n—1)-dimensional one, for the two-channel
nonseparable case. A useful feature of this cascade is that the smallest
size filters (the first block in the cascade) are a general solution (which
is usually not the case with multidimensional solutions due to the
fact that factorizations theorems are lacking). Based on this cascade,
highly regular synthesis filters can be constructed as has been already
observed in [10], [12] for 2-D diamond shaped filters, as was shown
in Section L. In [22], a three-dimensional perfect reconstruction linear
phase filter pair is constructed using the above cascade and is used for
processing of digital video. In three dimensions, highly regular filters

—a; =
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are obtained by convolving the following filter: Go(z1, 22, 23) =
6+z14+27 2otz +z+ z; ', a number of times with itself.
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Non-Wiener Solutions for the LMS
Algorithm—A Time Domain Approach

N. J. Bershad and P. L. Feintuch

Abstract—A time domain analysis of the LMS algorithm is presented
for a sinusoidal deterministic reference input. For the sinusoidal reference
input only, the N-dimensional time-varying linear matrix recursion for
the weight vector is solved using a 2-D orthogonal subsp d po-
sition. Using this weight vector solution, it is shown that there exists a
linear time-invariant relationship between the desired input and the filter
output.

I. INTRODUCTION

The LMS adaptive filter algorithm is usually comprised of a tapped
delay line with uniform tap spacing a set of adjustable weights
that multiply the tap outputs, and a summer [2]. The weights are
adjusted recursively, based on the difference between the output of
the summer and an external desired signal. When the algorithm input
is deterministic, the behavior of the algorithm is often quite different
than when the input is a stochastic process [1], [3]. These cases. are
denoted non-Wiener solutions to the algorithm. This behavior was
studied for adaptive noise cancelling when the reference input was
a deterministic sine wave [1] and for a noise corrupted sine wave
reference when the desired signal is either a sine wave or white noise
in [3). The analysis in [1] was based on an approximation that led to
a time-invariant transfer function between the algorithm error and the
adaptive filter output (although the adaptive filter weights are time
varying even in steady state). This allowed the authors to apply Z
transforms to the adaptive loop and to find an equivalent steady-state
transfer function. Shensa [3] studied the case when the reference
was a deterministic sine wave in white noise. Conolly and Su [4]
studied the noiseless problem for a two-tap filter using a state-space
approach and obtained an exact closed-form solution. The solution
was based on finding a time-invariant state equation for the two-tap
weights. This work leads to a simple understanding of non-Wiener-
type adaptation but is not applicable to adaptive filters with more
than two taps.

This correspondence studies the same problem as in [1] but uses
a time-domain analysis of the adaptive filter behavior to obtain
results. In contrast to [1], where loop time-invariant system arguments
were used, an orthogonal decomposition approach yields results in a
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