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Fast Orthogonal Least Squares Algorithm 
for Efficient Subset Model Selection 

S .  Chen and J. Wigger 

Abstract-An efficient implementation of the orthogonal least squares 
algorithm for subset model selection is derived in this correspondence. 
Computational complexity of the algorithm is examined and the result 
shows that this new fast orthogonal least squares algorithm significantly 
reduces computational requirements. 

1. INTRODUCTION 
A general nonlinear modelling approach is first to perform a fixed 

nonlinear expansion and then to combine the resulting terms linearly. 
This gives rise to the following regression model: 

y = X(-) + e (1) 

where the size of the matrix X is -1- x .U, AY is the number of data 
and .If is the number of model regressors. Examples of this kind of 
model include the Volterra series model [ 11, the radial basis function 
network [2], the fuzzy basis function network [3], and the general 
functional-link network [4]. 

Because the model size .\I is usually excessively large, subset 
model selection is necessary. Optimal subset selection techniques 
are computationally prohibitive and impractical. A practical method 
is the forward selection, and the orthogonal least squares (OLS) 
algorithm [ 1 j, 121 is an efficient implementation of this subset 
selection procedure. In the case of JI  << .I-, computational re- 
quirements can further be reduced by employing a preprocessing 
scheme based on Gram-Schmidt orthogonalization procedure [ 5 ] .  In 
this correspondence, we derive a fast implementation of the OLS 
algorithm for subset model selection, which results in significant 
reduction in computational complexity. We refer to this new version 
of the OLS algorithm as the fast OLS (FOLS) algorithm. This FOLS 
algorithm is much simpler than the schemes presented in [ 5 ] .  

11. THE OLS ALGORITHM 

We briefly summarize the OLS algorithm [ 11. [2]. This will enable 
us to analyze where saving in computation can be made. Let an 
orthogonal decomposition of X be X = WA. The model ( I )  can 
be rewritten as 

y = W g + e  (2) 

Because 
I 

y7‘y = !,,;w:‘w, + e”e (3) 
, = I  

where wJ are the columns of W, the error reduction ratio due to 
wI, is given by 
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This error reduction ratio provides a criterion for forward subset 
selection. 

At the beginning of the 11th stage of the selection procedure, X 
has been transformed into X”’-” = [ W I  . . . wI,- I xj,’-’) . . . x::;-’)] 
and y into y( / ’ - ’ ) ,  The 11th stage consists of  

i )  For p 5 j 5 .If, compute 

ii) 

iii) 

(8) 
!I/’ = w:Y’”-l’/Jw: w7,) 
y‘”’ - - y“’-‘ - gl,wl, 

The selection is terminated at the .If,th stage when a preset 
tolerance is satisfied 

11- 

1 - - y [ f r r ] ,  < E .  (9) 
/ ‘ = I  

This produces a subset model containing M3 significant regressors. 
This procedure is suboptimal. However, it offers a realistic and 
efficient method for tackling the problem of huge model dimension 
encountered in nonlinear modelling. Subset models found using the 
forward-selection search are generally good enough for practical 
applications. 

111. THE FAST OLS ALGORITHM 
It is clear that most of the computation in the above OLS al- 

gorithm is consumed in the calculation of inner products such as 
( x ( 7 J -  1 j 1 I y(/,- 1) .  Instead of updating column vectors as in (7) and 
(8) and then computing inner products in the next stage, substantial 
saving in computation can be achieved by directly updating scalar 
inner products themselves. This can easily be done, for example 

J 

p + 1 5 J 5 . \Iandj 5 k 5 ‘\I. (10) 

Define two matnces B = [Xly]‘[Xly] and C = [Alg]. The 
elements of B and C are denoted by b ,  and ct ,. respectively. 
Obviously, bzr+l \!+I = y‘y. We propose the tollowing fast 
implementation of the OLS algorithm for subset model selection. 

The 11th stage of the selection procedure consists ot: 

i) For p 5 j 5 Jf, compute 
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Fig. I .  Computational requirement for X matrix of size 500 x 80 

ii) 

iii) 

The j,th column of B is interchanged from the pth row 
upwards with the pth column of B, and then the j,th row 
of B is interchanged from the pth column upwards with the 
pth row of B. The jpth column of C is interchanged up to the 
( p  - 1)th row with the pth column of C. 
For p + 1 5 j 5 ,If + 1, compute 

(‘P J = b p  / Ib? ’  1’ (13) 

For p + 1 5 j <_ ‘ I f  and j 5 IF 5 AI + 1, compute 

The selection is terminated at the MA stage when the stopping 
criterion (9) is satisfied. As in the case of the OLS algorithm, a 
simple mechanism can be included to avoid ill-conditioning problem 
by comparing b,,J with a small energy threshold. If bJ , ,  is smaller 
than this threshold. it will not be selected. 

IV.  COMPLEX^ ANALYSIS 
The number of multiplications required by the OLS algorithm to 

select a subset model of size it& from the matrix X of size N x M is 

no. of multiplications (OLS) = N - A& ( N  + 1 ) 

The number of multiplications required by the FOLS algorithm to 
perform the same subset model selection is 

N(iIf + 1 ) ( M + 2 )  
- 3 M ,  

2 no. of multiplications (FOLS) = 

For the normal case of M 5 A’, the FOLS algorithm requires 
significantly less computation compared with the OLS algorithm. 
Only in the extreme case of N << Af, does the original OLS 
algorithm have obvious advantages. Several examples for different 
sizes of X are illustrated in Figs. 1 4 .  
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Fig. 2. Computational requirement for X matrix of size 500 x 500. 
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Fig. 3. Computational requirement for x matrix of size 500 x 600. 
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Fig. 4. Computational requirement for X matrix of size 500 x 1000. 

V. CONCLUSIONS 
A fast version of the orthogonal least squares algorithm has 

been presented, which offers significant reduction in computational 
complexity for forward selection of subset models. In the case that 
the number of model regressors is smaller than the number of data 
points, this algorithm has a further advantage of saving in memory 
requirement. 
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and the kernel 01.( k )  has the form 

if -T 5 Ikl 5 T. (3) 9 7 . ( k )  = e - : j k L i I , 2  

Adaptive Cone-Kernel Time-Frequency Analysis 

Richard N. Czerwinski and Douglas L. Jones 

Abstruct- We present a technique to adaptively optimize the perfor- 
mance of the cone-kernel distribution (CKD) by varying the cone length in 
response to changing signal properties. The result is an adaptive CKD that 
preserves the outer hull of signal time support, yields excellent results on 
real signals, outperforms fixed-length CKD’s, and requires only slightly 
more computation than a fixed-kernel distribution. 

I. INTRODUCTION 

Time-frequency analysis [ I ]  is used in many fields to study 
signals with time-varying spectral content. Recent work [2]-[6] has 
illustrated the benefits of signal-dependent time-frequency analysis, 
in which the algorithm is allowed to adapt in response to the signal 
to optimize performance. Unfortunately, many adaptive techniques 
involve complicated and expensive optimization procedures whose 
cost may overshadow the benefits of adaptation. These methods can 
also represent overkill in  applications where one or two degrees of 
freedom are sufficient for near-optimal results. 

In this correspondence, we develop an approach to adapting the 
popular cone-kernel distribution (CKD) that is simple, fast, versatile, 
and offers high performance. We introduce a technique for adapting 
a single important parameter of the distribution, and derive a fast 
algorithm to efficiently implement this adaptation. Finally, we apply 
the adaptive CKD to synthetic and naturally occumng test data to 
demonstrate its capability. On real data sets, we have often found that 
this algorithm gives better results than any other technique known to 

The constraint that defines the CKD was first discussed in Claasen 
and Mecklenbrauker [7], and has more recently been developed into 
a sound, general purpose distribution by Zhao et al. [8], Loughlin et 
al. [9], and Oh and Marks [IO] .  Because of its excellent resolution 
of abrupt signal transitions, the CKD has gained widespread support. 

US. 

The CKD is defined as 

where 

The d parameter controls the rate of tapering in the kernel; the 
kernel used by Zhao et al. [8], corresponds to 13 z 4.6. The properties 
of the CKD can be altered by changing the cone length T.  Impulse- 
like transient signal components are best analyzed by a very short 
cone, while longer duration components call for a longer cone length. 
Since any given signal may contain components of both short and 
long duration, it is desirable to select the cone length adaptively in 
response to changing signal structure. 

11. A TECHNIQUE FOR ADAP~NG THE CONE LENGTH 

Every bilinear TFD is affected to some degree by oscillating 
cross-terms that appear midway between every two auto-components 
in the time-frequency plane. The cross-terms contribute to certain 
theoretical properties of the TFD, but they can also obscure true signal 
features in the time-frequency plane. Kernel design has traditionally 
been a matter of imposing constraints on the kernel to trade off 
cross-term suppression and desirable properties. 

Since auto-components are centered at the origin of the I?-T 
(ambiguity) plane, and cross-components are located away from the 
origin, a lowpass kernel is needed to suppress the cross-terms [3], [9]. 
A CKD of finite r-extent is inherently lowpass, so it suffices to match 
the length of the cone to the extent of the auto-component energy. 
The benefits of matching the kernel to the signal are well known in 
high-resolution time-frequency analysis [3], [ 1 11; the lowpass cone 
kernel can only effectively match the lowpass auto-components. We 
propose a procedure that approximately optimizes the match between 
the kernel and the auto-components while rejecting highpass cross- 
components, thus producing a desirable TFD. 

To select the optimal cone length at each point in time, we consider 
a family of normalized-energy cone kernels of different lengths and 
choose the one whose pointwise product with a locally defined short- 
time ambiguity function has the greatest energy. Equivalently, this can 
be formulated as a problem of selecting the normalized cone kernel 
that produces the TFD of maximum energy. Using a manipulation 
similar to that in [12], we write the TFD energy at each time as a 
function of T ,  the cone length, which is described in (4) through (6) 
at the top of the next page. The parameters MI ( 7 1 .  k )  and M 2 (  7 1 .  k) 
control the length and shape of the analysis interval, the signal 
values that are allowed to affect the optimization procedure. Ideally, 
Ml( 1 1 ,  k ) and ( 7 1 .  k ) should vary in time so that no magnitude- 
squared terms from outside the local signal component come under 
consideration. In this discussion, however, we fix XI1 ( /). k )  = -N/2  
and X & ( n ,  k )  = :V/2 - 1 for a total of i1; samples, where N is the 
FFT length. In practice, one should be very careful in selecting the 
analysis interval, since a large interval can lead to the cone length 
being adapted to nonlocal signal characteristics. 

In adaptively optimizing the CKD, we seek the value of T 
maximizing (6) at each time. That expression has the form of an inner 
product between a window function (squared), and a bracketed term 
strictly independent of the cone length, T. Denoting the bracketed 
quantity by E,,, we compute the optimal T by 
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where A?. is a normalization constant and (,. .) denotes the inner 

energy of the kernel of length T ,  and is included in (7) as a penalty 
against increasing the cone length; we are effectively choosing as 

The authors =e with Coordinated Science Laboratory, Urbana, IL 61801 product. The constant is the Of the 

IEEE Log Number 9412003. 


