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On Reconstruction Methods for Processing 
Finite-Length Signals with Paraunitary Filter Banks 

Ricardo L. de Queiroz and K. R. Rao 

Abstract-New expressions are developed for the perfect reconstruction 
of the boundary regions of a finite-length signal after subband processing. 
The time-invariant filter bank is required to be uniform and paraunitary, 
using FIR filters regardless of phase or symmetry. They accomodate a 
linear boundary extension in the analysis section, and avoid periodic 
extensions or storage of extended subband signals. The reconstruction 
methods are based on the formulation of linear systems that are built as 
a function of the filters. 

I. INTRODUCTION 
The theory of multirate filter banks [1]-[3] often assumes infinite 

length signals, while the problem of processing a finite length signal 
has recently attracted the attention of some researchers [4]-[13]. 
Finite-length 1-D signals are frequently used to model images assum- 
ing separable transforms. Recently, they were also studied to construct 
time-varying wavelet packets [14], [15]. The study of the boundary 
distortion is nearly as old as the idea of subband coding of images, 
including periodic extensions and the use of convolution in D F I  
domain [4], inclusion of few extra samples [5], or perhaps a simple 
study of which extension would minimize the border distortions [6]. 
However, it is quite easy to see that if the extension and the subband 
filters are symmetric, the deleted subband samples could be recovered 
by a simple symmetric extension of the subband signal [7]-[lo]. In 
general, two-channel filter banks are assumed. In [lo] and [ll], these 
results were extended for more than two channels, and in [ l l ]  a 
reconstruction method was developed for nonlinear phase filters. In 
[12], an alternative approach to [ l l ]  was proposed. Size-limited filter 
banks are discussed in [13] and there are several proposals based on 
applying special filter banks (basis functions) to the borders in order 
to assure full orthogonality [14], [15]. 

samples and let 
x = [ . r ( ~ ) .  . . . . ~ ( ~ 1 7 . 5  - I)]' . A nonexpansive analysis system will 
convert x into subband samples, which we similarly merge 
into vector y, for simplicity. After processing or quantization, the 
resulting subband vector y is submitted to a synthesis system that 
will recover the vector x. Following [13], models for the size-limited 
analysis or synthesis systems are shown in Fig. l(a) and Fig. l(b), 
respectively. In these models, finite-length processing is accomplished 
by converting the signal to a symmetric-periodic sequence, which is 
processed and windowed. On the other hand, for real filter banks 
there is a linear transform G such that y = Gx. Thus, the perfect 
reconstruction synthesis is accomplished by x = G-ly.  However, it 
is not always practical to invert a dV\ x ,Vs matrix, nor to perform 
analysis or synthesis through a x 2V.s linear transform. We will 
deal here with uniform paraunitary FIR filter banks, with arbitrary 
phase response. The popular linear-phase filters are a particular 
example, and although the results here can be surely applied in such 
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Assume the finite-length signal . r ( r t )  has 
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Fig. 1. Extension and windowing in the analysis and synthesis of a fi- 
nite-length signal. The finite-length signal is transformed into an infinite-length 
signal by assuming a linear (e.g. periodic) extension. After processing, 
the desired sequence is extracted from the resulting signal by applying a 
rectangular window. (a) Overall analysis section. (b) Overall synthesis section. 

a case, they may offer a simpler solution because of the assumed 
generality of the impulse responses of the filters. In addition, we 
do not impose any symmetry restriction for the boundary extension 
process. Under these conditions, given the boundary extension used 
in the analysis section and the filter bank, we prove in the appendix 
that assuming a linear boundary extension, G is always one-to-one 
and onto, therefore, its inverse is unique. Also, all reconstruction 
methods lead to identical results and have the same sensitivity to 
quantization or processing of the subbands. We will limit ourselves to 
the case where only time or subband samples are used to reconstruct 
the original signal (while a combination of both can be found in [ 1 11 
and [12]) and assume y = y. 

In terms of notation, our conventions are: unidimensional concate- 
nation of matrices and vectors is indicated by a comma; [ 1' means 
transposition, while [ ]+ and [ 1- stand for pseudo-inverses of a 
matrix, as A+ = (A'A)-'A' and A- = A'(AA' ) - I ;  I,, is the 
n x ) I  identity matrix; O,, is the n x null matrix; and J,, is the 
71 x 71 counter-identity, reversing, or exchange matrix. For example 

0 0 0 1  
0 0 1 0  

1 0 0 0  
J 4 =  1 0 "1 

11. TRANSFORM MATRIX OF A PARAUNITARY FILTER BANK 

We assume an FIR uniform paraunitary filter bank (PUFB). We 
have JI analysis and synthesis filters. Let L be the maximmum 
number of taps and we define L to be a multiple of ,\I, as L = LVilI, 
where S is the smaller integer such that the maximum filter length 
lies between A V M  and ('1- - 1)M. If a filter's impulse response 
does not have length L,  we pad zeros so as to reach length L .  
The analysis and synthesis filters are, thus, denoted as f k ( n )  and 
y r ( n ) ,  respectively, ( k  = 0.1 :... M - 1: n = 0.1 : . . . L  - 1) .  
Let the input signal .r( 7 1 )  have its polyphase components denoted 
as . r t ( r n )  = s ( m M  + i )  and the subband signals be denoted as 
y, ( i n ) .  ( I  = 0.1.. . . . JI - 1: m integer.) Define a signal y(  n )  
whose polyphase components are the subband signals, i.e., y, ( i n  ) = 
y ( m M+ 2 ). It is well known that a PUFB is a special form of a block 
filter [l], governed by a paraunitary FIR transfer matrix E( z ) ,  which 
relates the polyphase components of . r ( n )  and y ( n ) .  Also, E(-)  has 
S impulse response matrices [l]. For a PUFB [2], [3] a transform 
matrix P of size M x L and elements y,,  ( /  = 0.1.' . . , JI - 1: 
J = 0.1. '  . . . L - 1) can be defined as 
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P can be divided into S square sub-matrices, yielding 

P = [PO.Pl :... P,\-1]. (2) 

Therefore, we can express P as the impulse response matrices of 
E(-) as 

TheparaunitarinessofE(;),i.e.,E(-)E' ( : - I )  = E'(:-') E(:) = 
I . b f ,  is also given by [2] 

,,,=o ,,,=O 

where 6 ( l )  is the Kronecker delta. We will use the matrix notation 
for the analysis and synthesis using PUFB's that basically follow a 
noncausal notation (see [I] for details on paraunitary systems and 
filter banks and [2] and [3] for details in using transform matrices 
in the description of PUFB's). Let x and y represent the time- 
domain and subband vectors of ly\ samples (containing signals s( )) ) 
and y ( n ) ) .  Using linear boundary extensions, x is first extended by 
X = ( L  - M ) / 2  samples in each border, originating the vector X, 
which is, thus, transformed by matrix T ,  resulting in the subband 
vector y. Assume the signal has AV5 = S H J ~  samples, where -TB 
is an integer, then T is a block-Toeplitz-like matrix [2], [3] given by 

Po PI . ' '  PL-I 
P.\ - 1  ... Po P1 T =  I 

\ O  
( 5 )  

Note that T has A \ r ~  block-rows, is a nonsquare matrix (AV\ x + 
2X),  and it cannot be inverted. Denoting by x and y the vectors in 
the synthesis section, analysis and synthesis are described by [2], [3] 

y = T X  x = T ' y .  (6) 

The PR conditions in (4) tell us that TT ' = I L ~, but, obviously, 
T' T # I. If y = y (no processing or quantization), we have 

ii = T' TX. (7) 

111. RECONSTRUCTING DISTORTED DATA 
The analysis operation would require the knowledge of X samples 

outside the range of x. Setting these samples to zero or using circular 
convolution can generate undesirable high-frequency components due 
to discontinuities at the borders. The extension of x into X will be 
restricted here to be a linear boundary extension where the unknown 
samples are found by a linear combination of samples contained in x. 
We assume that, for each border, the X samples accross the border are 
found as a linear function of at most X boundary samples of the signal. 
We adopt the notation shown Fig. 2' where x is divided into three 
regions as x" = [$'. xf . xT], and the extended vector is formed by 

. x, . r ] .  Then, we have X" = [ x ~ - , ~ .  xi , x,. . x,. . x?.,], 
where 

X , . I  = Rlxr. x~,,. = R,x , .  (8) 

The size of each subvector is indicated in Fig. 2 and RI and R,. are 
arbitrary X x X matrices to extend the signal on the left and right 

' The expressions left and right are used to designate the extremes of the 
vector x just as if it is displaced horizontally. In this case, ,r( 0 )  is the leftmost 
sample, while Z ( ~ V S  - 1) is the rightmost one. 

,I' - 7' x7' 7 T 7' 1,  7. 
- [x,,~. 

X . c 

X 

Fig. 2. Illustration of signal extension of vector x into vector X. In each 
border, X = ( L  -*11)/2 samples outside initial signal boundaries are found by 
linear relations applied to the X boundary samples of x, i.e., x, .' = Rlxl and 
x, , ,. = R, x I  . As only X samples are affected across the signal boundaries, it 
is not necessary to use the infinite-length extension. Also, XI and x, contain 
the samples possibly affected by the border distortions after synthesis. 

borders, respectively. For example, a popular extension method is 
the symmetric extension [7], [IO], which is mainly inherited from the 
use of linear-phase filters, i.e., RI = R, = JA. 

We will show solutions for the left border and the reader can easily 
infer the solution for the right border by simply reversing x and the 
columns of P. In (7), using (4), we see that 

I \ < - L X  1.  (9) [rL H R 

H = T ' T =  

The matrix H is block diagonal and HI and HK are 2X x 2 X  
matrices. For the left border, if we let 

1 To Po ' . '  " '  P . Y - , 3  

P.\-2 

Po 1 (10) 

then 

(11) 

From (7) and (9), and dividing Hi. into two equal parts as HI, = 
[He r.Hl], we have 

I HL = a. 

[";;'I = [H,.-I.H-I] ["xi'] 

and 

(14) 

Thus, XI is recovered from the distorted extended signal using only 
linear relations. 

Iv. SUBBANDS EXTENSION TO PREVENT DISTORTION 
The reconstruction problem is caused by the deletion of extra 

subband samples (resulting from the convolution with the subband 
filters) by the windowing process. There are li blocks of -\I of these 
samples deleted from each border, where Ii is the largest integer 
smaller than or equal to S / 2 .  If we could infer these samples from the 
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samples actually retained along with the subbands, we could extend 
the subbands, use one algorithm for the whole synthesis section, 
and window the output without any distortion. As in the previous 
case, we present the solution for the left border, and the reader can 
infer the solution for the right border, by reversing x, the subband 
signals, and the columns of P. Let x!,; = [ r . (O) .  .r( 1). . . . . .r(L - 
hf - l)] and y,’,, = [ y ( O ) ~ y ( l )  ....,y(l~~~l - l)]. Note that 
Y,’, [yo ( O  ). . . . . y,u - I ( o ) .  yo ( 1). . . . . YM - 1 ( 1 ). . . . . Y O  (Ii - 
1) : . . . y n l - ~ ( l i  - l)]. Let E7 and Eh. be square matrices and 
xout and yout be vectors, such that 

= 

yout = Efi.y,,, if xout = EI x,,,. (15) 

The physical meaning of these equations is: if xOut is an extension 
vector in time domain, then the extended subband signals are con- 
tained in yout. The relation between extended samples and samples 
actually existing in the signal is given by the matrices for extension 
in frequency (subbands) and time domains, Eh. and E?., respectively. 

Let, also, F be a matrix similar to T but with only 2Zi block- 
rows, and assume F is divided into four IiM x (S + 2 Z i  - 1 ) M / 2  
submatrices. 

1:: 2 F: 2 l - W e  For example, for S = 3, we have F = 

The above equation carries two equalities. Substituting one in the 
other, we get 

EF(FloET + F11)xin = (FooET’ + Fo1)xin. (19) 

Disregarding xir, and equating the matrices, we have one solution as 

For the special case of linear-phase filters, Eh. is simplified to a 
diagonal matrix with f l  as the diagonal elements, according to the 
symmetry of the filters [ l l ] ,  having, thus, a trivial implementation. 
In this case, symmetric extensions are often applied [7]-[lo]. 

V. CONCLUSION 
We intended to show techniques to effectively achieve perfect 

reconstruction of the signal, regardless of the phase of the filters. Also, 
only a few restrictions are made on the boundary linear extensions. 
However, properties of these extensions are not explored here. We 
are also limited to uniform FIR PUFB, but the same solution can 
be applied to nonuniform filter banks, given that they could be 
constructed by cascading uniform ones. It should be noted that all the 
solutions using linear extension and time-invariant2 filter banks have 
very different approaches but are identical in essence and results. Of 
course, this assumes that the entire computation uses real arithmetic or 
suffers negligible rounding effects, compared to the effects of subband 

The filter bank can always be viewed as time-varying due to the borders. 
However, the expression time-invariant here implies processing over an 
extended sequence resulting from linear extension of the signal. 

quantization. So, sensitivity to quantization errors is only a function 
of the PUFB and of the extension method. 

In order to compare our results with other results applicable to 
nonlinear-phase PUFB’s, we may rule out the direct inversion of 
G because of the amount of computation (for inversion and for the 
analysis or synthesis transformation) involved for large -Y,, even 
considering G is a relatively sparse matrix. Both solutions in [ I l l  
and [12], as well as those presented here, allow the use of any 
algorithm designed for the PUFB in question. However, the solutions 
in [ l l ]  and [12] lead to the evaluation of systems, for each border, 
of the form v = As + Bt, where A and B are real matrices 
and v (A elements), s ( 2 l i M  elements), and t (2X elements) are 
vectors corresponding to reconstructed samples, subband samples, 
and time-domain samples, respectively. ([I 11 assumed -1- even, while 
[12] assumed S odd.) Here, subband and time-domain samples 
are not computed together, which makes the implementation easier. 
Furthermore, we require performing one linear transform per border, 
where the operator matrix can have size X x 2X (14) or lidf x 1i-U 
( 1 9 ,  reflecting computational savings over [ 1 I], [ 121. 

APPENDIX 

To evaluate if G has indeed full-rank, regardless of the linear 
extension, let 

?’ x, = [. . . .XI. ( R ~ ) ’ . ~ ~ .  ( R ~ ) ‘ .  . . .I (21) 

where R combines R1 and R?. In the worst case we may impose 
that S s  2 2X. The signal represented by x, is periodic with period 
22\-.5 given by xce, = [x”. ( R x ) ~ ] .  Define T, as T but with an 
infinite number of block-rows. Hence, yx = T,x, is also periodic 
composed by vectors of the form y,’cl. = [y’ . y;’], where nothing is 
said about the relation between y and yt , .  There exists a linear relation 
between yper and xper such that yprr = T , , c r ~ I , k ~ r .  where TI,,, is 
an orthogonal block circulant matrix [3]. Rewritting this relation, 
dividing Tpe, into four SS x SS submatrices, we have 

Then 

(23) y = [ T o o  + TolRIx = Gx. 

Since x can be any vector in RIss, all possible combinations of 
elements of xl,?, span a subspace of ;R’.’-s of dimension S,. As 
T,,, is orthogonal, rank{[Too.To1]} = -Y., (full rank), and from 
(22), all possible combination of elements of y span R-\s. Therefore, 
as the same applies for x, we see from (23) that G has full rank and 
is one-to-one and onto. Thus, its inverse is unique, concluding the 
demonstration. 
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Blind Restoration of Linearly Degraded 
Discrete Signals by Gibbs Sampling 

Rong Chen and Ta-Hsin Li 

Abstract-This paper addresses the problem of simultaneous parameter 
estimation and restoration of discrete-valued signals that are blurred by 
an unknown FIR filter and contaminated by additive Gaussian white 
noise with unknown variance. Assuming that the signals are stationary 
Markov chains with known state space but unknown initial and transition 
probabilities, Bayesian inference of all unknown quantities is made from 
the blurred and noisy observations. A Monte Carlo procedure, called 
the Gibbs sampler, is employed to calculate the Bayesian estimates. 
Simulation results are presented to demonstrate the effectiveness of the 
method. 

I. INTRODUCTION 
Suppose a discrete-valued (digital) signal {rf} is blurred by an 

FIR linear filter {dz} and contaminated by additive noise {e,}, so 
that the observed signal {y t }  can be written as 

The so-called blind restoration problem is to simultaneously estimate 
the filter { dZ } and to recover the signal { .rt } solely from the observed 
data record {y t }  along with some partial statistical information 
about { z t } .  This problem stems from the equalization of digital 
communication channels in which the signals take only discrete 
values (e.g., [l], [14]). 

In the absence of noise, the restoration (or deconvolution) problem 
can be approached in many different ways under the assumption 
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that the st are independent and identically distributed (i.i.d.) (e.g., 
[l], [4], [7]). In particular, an efficient method along the lines of 
inverse filtering has been proposed ([9]-[ 1 1 1 )  that explicitly utilizes 
the discreteness of {.rt} yet does not require the stationarity or other 
statistical information of { .rf }. 

In this correspondence, we deal with the blind restoration problem 
under a Bayesian framework and by Gibbs sampling. The Gibbs sam- 
pling has been successfully applied to the ordinary image restoration 
problem by Geman and Geman [6] under the assumption that the filter 
{ o1 } and the statistical parameters of {.rt } and { e t  } are all available. 
In the present correspondence, we include these parameters in the list 
of unknowns and estimate them simultaneously with the signal { x f  }. 

11. FORMULATION OF THE PROBLEM 
Assume that the signal { . r t )  in (1) is a stationary first-order 

Markov chain with known state space A := { ( i l : . . . ( i k }  but 
unknown initial probabilities 0, := pr(,r1-4 = a , )  and unknown 
transition probabilities B,, := pr(.rt = ciIIst-1 = (it). It is clear 
that the probabilities should satisfy the constraints E:=, 8 ,  = 1 and 
E:=, B,, = 1 for i = 1.. . . . k. Let B denote the collection of these 
probabilities, namely B := {e i ,  H , ,  : i .  j = 1.. . . . k}. Although 
extensions to higher order Markov chains are quite straightforward, 
we restrict our effort to the first-order case for the simplicity of 
presentation. Assume further that { e t  } in (1) is Gaussian white noise 
with zero-mean and unknown variance u2 and is independent of { .rf }. 

Under these assumptions, the main objective of this correspondence 
is to simultaneously reconstruct the signal z := {XI  -,.... . . r , , }  
and estimate the FIR filter q5 := [bo. .. . . og]’ along with the 
statistical parameters u2 and B on the basis of the data record y := 
{yl .....Y,~}. Note that the values . .ro (that are outside 
the observation interval) are also included in z for reconstruction 
and that the filter can be minimum phase or nonminimum phase. 
Noncausal FIR filters can be accommodated into the problem by a 
transformation of time index. 

111. BAYESIAN APPROACH 

The problem is solved under a Bayesian framework: First, the 
unknown quantities z. 4. u 2 ,  and 0 are regarded as realizations 
of random variables with suitable prior distributions. The Gibbs 
sampler, a Monte Carlo method, is then employed to calculate 
the minimum mean-squared error (MMSE) estimates and/or the 
maximum a posteriori (MAP) estimates of the unknowns. 

A. Prior  Distributions 

In principle, prior distributions are used to incorporate our knowl- 
edge of the parameters, and less restrictive (or less informative) priors 
should be employed when such knowledge is limited. Computational 
complexity is another consideration that affects the selection. Conju- 
gate priors are usually used to obtain simple analytical forms for the 
resulting posterior distributions (e.g., [2]). To make the Gibbs sampler 
more computationally efficient, the priors should also be chosen such 
that the conditional posterior distributions, as we shall see next, are 
easy to simulate. 

For the restoration problem described above, the following priors 
are used in our procedure: to the filter q5, we impose a Gaussian 
distribution p ( 4 )  - SI), and to the noise variance u2 we 
impose an inverted chi-square distribution p ( u 2 )  - x - ~ (  v: A ) ,  
i.e., v X / a 2  - l2(v). Note that large values of CO and small 
values of v and X correspond to less informative priors. Further, 
we use independent Dirichlet distributions as priors of 0, and O,,. 
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