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Abstract—Conventional blind channel identification algorithms
are based on channel outputs and knowledge of the probabilistic
model of channel input. In some practical applications, however,
the input statistical model may not be known, or there may not
be sufficient data to obtain accurate enough estimates of certain
statistics. In this paper, we consider the system input te be an
unknown deterministic signal and study the probiem of blind
identification of multichannel FIR systems without requiring the
knowledge of the input statistical model. A new blind identifica-
tion algorithm based solely on the system ouiputs is proposed.
Necessary and sufficient identifiability conditions in terms of the
multichannel systems and the deterministic input signal are also
presented.

1. INTRODUCTION

INCE Sato [20] first proposed the innovative idea of self-
Srecovering (blind) adaptive identification, blind chaanel
identification and equalization, as research problems, have
been extensively studied by many researchers [3], [5], [8],
[91, [12], [20], [22], [26]. Since it is well known that the
second-order stationary statistics of a scalar system output do
not contain sufficient information on a possibly nonminimum
phase system, higher order statistics were adopted to identify
the system [4], [5], [9], [12], [18], [22], [26]. Although
these algorithms provide satisfactory estimation results in
certain scenarios, they often require a relative large number
of data samples, which may limit their applications in a
quickly changing environment. Gardner [8] showed that the
second-order statistics of cyclostationary signals contain phase
information that can be used for nonminimum phase system
identification. More recently, a second-order based approach
for blind channel identification was proposed using oversam-
pled output data to recover the lost phase information of an

FIR channel [14], [24], [25], [27]. Although this algorithm

requires less data samples in comparison with the high-order
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methods, it assumes that all the input symbols are mutually
uncorrelated and of the same power.

It is important to point out that the above blind identification
methods are blind only in the sense that the system (channel)
input is not used in the identification; they do require some
statistical assumptions on the input. However, the statistical
model of the input may not be available, or there may not be -
enough data samples to find a reasonably accurate statistical
estimate. For example, in a fast fading environment, the
multipath channels in wireless communications vary rapidly,
and we only have a few data samples corresponding to the
same channel characteristics. In this kind of scenario, it is not
reasonable to assume that the estimates of the signal statistics
are close enough to their true (known) values. Hence, it may
be easier to solve this problem by treating the input as a
deterministic signal. This brings up a new challenge in the area
of channel identification: Is it possible to identify channel(s)
without even having knowledge of statistical models of the
input?

In this paper, we show that, under certain conditions, 1t
is possible to identify multichannel FIR systems (as shown
in Fig. 1) based only on the channel outputs [15]. A novel
algorithm for blind channel identification is presented. More
importantly, we also present sufficient and necessary condi-
tions under which such blind identification is possible. The
basic idea behind this new approach is to exploit differ-
ent instantiations of the same. input signal by multiple FIR
channels. Here, the concept of multichannel should not be
limited to multiple physical receivers or sensors. As we will
show, temporally oversampled digital communication signals
can aiso be modeled as a multichannel system. There are
two striking differences between the proposed approach and
most of the existing probabilistic methods: First, under some
mild conditions that we will elaborate upon later, the new
approach applies to an input sequence with arbitrary statistical
characteristics, such as nonstationary input or correlated input
with unknown correlation functions. Second, if the channel
order is known, the identification equation in the proposed
approach is linear,! which may lead to simple implementations.
Computer simulations and RF éxperiments show promising
results in dealing with short data sequences. We also study the
necessary and sufficient identifiability conditions in terms of
the channel and the input signal.

During the review procedure, many interesting resuits on
the exploitation of the output data structure for blind channel

1 Other recently proposed techniques [1], [17], [21], [23] also have this nice
property. )
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identification emerged [1], [17], [21], [23]. Among them, an
almost identical algorithm has been derived independently
by Giirelli and Nikias [11]. The contribution of this paper
is that we provide a more complete study of the new ap-
proach, including the necessary and sufficient identifiability
conditions and relationship between the proposed approach
and the method introduced in [24].

This paper is organized as follows. In Section II, we review
the multichannel blind identification problem and transform
a single-receiver communication channel into a multichannel
system. The details of the identification derivation are given in
Section III. Section IV is dedicated to derivations and proofs
of the identifiability conditions. Connections with stochastic
blind channel approaches are explored in Section V. Section
VI gives a basic algorithm. Results of computer simulations
are provided in Section VIIL

Notations in this paper are fairly standard. Symbols for
matrices (in capital letters) and vectors are usually in boldface.
The notations (-)*, (-)7, ®, and (-)*) stand for Hermitian,
transpose, convolution, and the kth derivative operator, re-
spectively. [z] stands for the smallest integer that is greater
than or equal to z. a(z) = a(0)+a(1)z+---+a(p)z? denotes

a polynomial whose coefficients are the elements of vector a. -

A 6 denotes the estimate of the parameter f. The symbol I{0)
stands for the identity (zero) matrix or vector.

II. PROBLEM STATEMENT

As shown in Fig. 1, z;(-) denotes the output from the ith
channel with the FIR channel impulse response {£;(-)}, which
is driven by the same input s(-). Clearly, for linearly modulated
communication signals, the z;(-), s(-), and h;(-) are related as
follows:

L
zi(k)y =Y hi(j)sk—4), i=1---M. (1)

i=0

where M is the number of channels, and L is the maximum
order of the M channels. The blind identification problem
can be stated as follows: Given the observations of channel
output {z;(k),s = 1,---, M;k = L, ---, N}, determine
the channels {h;(:)}, and further recover the input signals
{s(-)}-

Here, we will show that the data from the channel of
a communication signal corresponding to a single physical
receiver can be transformed into a multichannel FIR system
if the sampling rate is higher than the baud rate. This is
done through an example shown in Fig. 2, where the channel
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Fig. 2. Special channel with L = 2 and s = *1.

lasts for L = 2 neighboring bauds, and the oversampling
rate is M = 4. Collecting the data samples of each baud
period to form the new vectors x; = [v(Mk), z(Mk +
1), -, x(Mk + M —1)]7, we have

x(k) = h(2)s(k — 2) + h(1)s(k - 1) +h(0)s(k). ()

Let us look at the ith element z;(k) of x; and express it in
terms of the symbols {si}:

zi(k) = hi(2)s(k — 2) + h;(1)s(k — 1) + h;(0)s(k) (3)

where h;(k) is the ith element of h(k), k = 0, 1, 2. Clearly,
(3) is the same multichannel expression as (1) for L = 2.

The above transformation of a scalar communication signal
to the vector output of a multichannel system is a special case
of the well-known fact that scalar cyclostationary signals can
be expressed in terms of vector stationary signals [7].

III. IDENTIFICATION EQUATIONS

At a first glance, this problem does not seem to have a
solution. Indeed, observing each individual channel, we find
that it may be impossible to determine h;(-) and s(-) uniquely
without any knowledge of the channel input s(:). However,
if we take the multichannel outputs into account, we can
find that all the outputs from multiple channels are actually
correlated since they are driven by the same input. In the
following, it is shown that this correlation may enable us to
derive a least-squares approach to blind channel identification
without requiring any a priori knowledge of the input. For
convenience of derivation, we temporarily ignore the noise.
The implementation for noisy data will be discussed in Section
VIL

A. Exploitation of Cross Relations Between
a Channel Output Pair

From Fig. 1 and (1), for any pair of two noise-free outputs
zi(k) and z;(k)

zi(k) = hi(k) © s(k),

z;(k) =h;(k) © s(k). @)
Then
h;(k) ® zi(k) = h;(k) © [hi(k) © s(k)]
=hi(k) © [h;(k) © s(k)]
=x;(k)
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The above equation shows that the outputs of each channel
pair are related by their channel responses. Clearly, if we
have adequate data samples of the outputs, by (5), we can
write out an overdetermined set of linear equations involving
hi(-) and h;(-). Under certain conditions upon which we will
elaborate later, A;(+) and h;(-) can be determined uniquely up
to a scalar multiple. The use of such a cross relation between
each output pair is the basic idea behind the new blind channel
identification. Note that this structure is not available in a
single channel system.

B. Identification Using an Output Pair

More specifically, for k¥ = L,---, N, where N is the
last symbol index in the received data z;(k) and z;(k), (5)
becomes N — L +1 linear equations involving h;(-) and h;(-):

X(0) | =X, 1] =0 ©®
where By, 2 [Am(L), -+ , hin(0)]T and
X (L) = .
T (L) T (L + 1) Zm(2L)
T (L + 1) T (L + 2) Zm(20 + 1)
2N —L) om(N —L+1) (V)
_ )

For each pair of (i, j), we can always write out a set of
linear equations. Here, we propose to combine ail of them and

write a larger set of linear equations in terms of hy, --- , hy
or simply h £ [b7, .-, hT]T and solve all the channel
responses simultaneously. Denote -
XHL) =
o -+ 0 Xi_|_1(L) ——Xi(L) 0 ]
E : 0 0

0 - 0 Xu(I) o0 ~X,(L)

i—1 blocks M —4+1 blocks

M — iblocks

where each block, e.g., 0 or {X,,(L)}, has the size (N — L+
1) x (L + 1). In the noise-free case, h is in the null space of
the following large matrix:

XH(L) M(M -1
X(L) = : MM =1) 4 ocks ®)
XM—l(L)

N ——
M blocks
where the actual size of X(L) is of (N — L + 1)[M(M -

1)/2] x (L 4+ 1)M, or equivalently
X(L)h = 0. )
2 As mentioned earlier, the equation is similar to the algorithm indepen-

dently developed by Giirelli and Nikias [11]. It is also related to the approach
[19] relying on higher order statistics.
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In comfrast to the stafistical approaches to blind channel
identification that often involve solving bilinear or even more
complicated nonlinear equations, the new proposed approach
is based on solving a linear equation (9), which may lead to
simpler implementations. In the following, we shall consider
under what conditions (9) has a unigue solution or what types
of channels and input signals are identifiable.

IV. IDENTIFIABILITY CONDITIONS

The topic of identifiability conditions is often regarded as
difficult, and there is extensive literature in this field (see [2],
[16], and the references thereto). As we know, the input signal
used can be critical to the identification results: Research has
been done on the design of informative input for the best
identification. However, the situation is different in the blind
identification problem, where the input signal is unknown
and to be determined. Our objective here is to find out the
conditions when the channel outputs contain information rich
enough for blind channel identification. Two issues need to be
considered in this regard: 1) the condition of the identifiable
channels and 2) the condition of the informative input. These
two conditions may not be decoupled for the proposed blind
channel identification approach. This will become clear as we
proceed. '

A. Some Results on Finite Hankel Matrices

Although the proposed algorithm does not require - any
knowledge of the input, the input characteristics are certainly
not negligible. An obvious degenerate case is that the input
data are all zeros. Then, no channel information is contained
in the outputs, and the channels carinot be identified. Before
we study the identifiability conditions, we give three lemmas
on the finite Hankel matrix, which characterizes the input.
Given finite input data {s(n), n = 0, ---, N}, denote S(r)
the rth-order Hankel matrix of {s(-)} as follows: '

5((1>) 3(;) os(r —1) |
S(r) = 73(: : S(: : S@ o
s(N—r—1) s(N-7) s(N)

Lemma I: Given a fixed number (V) of data, let p be the
highest rank of the Hankel matrices S(r), » = 1.- - N + 1.
The rank of S(r) is given by

Rank{S(r)} =
T r<p -
{p p<r<N-p+2 (11)
N+2—-7r N-p+2<r<N+1
Proof: See Appendix A.
Lemma 2: The null space of a rank deficient Hankel matrix
S(r) (r > p) can be uniquely characterized by a pth-order
polynomial a(z) = a(0) +a(1)z + - - - + a(p)z*. The standard
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form of the null space can be expressed as -

) _
a(1) a(0)
a(l)
a(p) a(0) 12
a(p) a(1)
L - a(p) |

Proof: See Appendix B.

We shall define a(z) = a(0) + a(1)z + --- + a(p)z® as a
characteristic polynomial of the deterministic input s(-). Its
roots {z1, -, 2p} are henceforth referred to as the modes of
5(+). The number of modes p, which is often referred to as
the linear complexity, is a measurement of diversity of a finite
sequence. It can be analogous to the number of frequency
components in an infinite data sequence. In the remainder of
this paper, we will use-C{s(n)} to denote the linear complexity
of {s(n)}.

S(r) will be of full rank if C{s(n)} > r.

Remark: When a(p) equals zero, we modify the character-
istic polynomial as z~Pa(z) such that z = oo is also the mode
of the input.

Lemma 3: A vector is in the null space of S(r) iff its
corresponding polynomial has roots equal to the modes of
() 21, -, Zpe

The proof is trivial and will be left to the reader.

B. Necessary and Sufficient Conditions

We now consider the identifiability conditions of mul-
tichannel blind identification associated with the proposed
algorithm that identifies the channels {h;} from the outputs
{.’L’,(k),z =1-.-, M, k=1L,---
affects these outputs is s(k), k = 0, ---, N. Therefore, all
the conditions shall be expressed in terms of these parameters
and the deterministic signal. We have the following results.

Observation: The multichannel system can be identified
uniquely by solving linear equations X (L)h = 0 iff the data
matrix X (L) is of rank M(L +1) — 1.

X(L) is a matrix of size M(M — 1)(N — L + 1)/2 x
M(L+1). The above theorem gives the general necessary and
sufficient conditions for channels to be uniquely identifiable.
The next three theorems give more explicit expressions and
provide more insights into the characteristics of the channels
and input signal.

Theorem 1 (Sufficient Condition): The blind 1dent1ﬁcat10n
problem has a unique solution if

1) the polynomials {h;(z)}}, are coprime or they do not
share any common roots
2) C{s(n)} > 2L +1

where L is the maximum order among {h;(z)}M;.

, N}. The input that.
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Proof: Let us rewrite X*(L) as

X4(L)
S(2L + 1)
. S(2L + 1)
3
i—1 blocks
o -+ 0 Hi+1 —Hi 0
: : o 0
0 .-+ 0 Hy 0 —-H;
= SHY, (13)
where
5(0) s(2L)
s(1 s(2L+1
sarin=| O @L+y
s(N —2L) s(N)
r hi(L) 0 0
hi(L—1)  hi(L) :
: hi(L—-1) . 0
Hi= | 5,0 : ’ hi(L)
0 h:(0) hi(L - 1)
| 0 0 hito) |
L1

If condition 2 is satisfied, then S(2L+1), and S will be of full
column rank (Lemma 2). If f is the solution of X(L)h
it follows that

Hl
: }ﬁ:Hﬁ:o. (14)
HM .
By (14), it is not difficult to see
hi(n) © hj(n) =h;(n) © hi(n),
or
hi(2)h;(2) = hi(2)hi(z), i, 5=1,---, M. (15)

By condition 1, {h;(z)}£; do not share any common roots.
Let us assume that h k(z) has the maximum order L. Then, by
(15), we have hy(2)hj(z) = h; (z)hk( z) for all j. Clearly

22} € ) (2@ Zhn(2)})

J

= Z{h()} | (ﬂ Z{hj(Z)}) (16)

where Z[h(z)] denotes the roots of h(z). Since {h;(z)} have
to share some common roots, (); Z{h;(z)} = 0. By (16),
Z{hk(2)} € Z{hk(z)} Since the maximum order of fz(2)
is L, Z[hi(2)] = Z[hx(2)], and therefore, hi(2) = grhe(2),
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where g is any nonzero constant. By (15), letting ¢ = £,
we can easily show that h;(z) = grh;(z), which means that
h(z) = gxh(z), ie., the solution is unique up to a scalar
multiple. O

Theorem 1 gives the sufficient conditions for blind iden-
tification of a multichannel system. Digital communication
signals, e.g., white sequences, are generically rich in modes
and therefore the sufficient condition can-be satisfied by
increasing the length of the sample sequences. However, for
extreme short sequence, degeneration can easily occur.

It is worth noting that these conditions are the same as those
for identifying a rational function with the denominator and
numerator both of order L [13], [16]. It is true that our system
is only of order L and can be sufficiently identified with known
input s(-), which has L + 1 modes (sometimes referred to as
persistent excitation of order L+1 [2]). For blind identification,
the input is unknown, and more than L+ 1 modes are required
on the input signal. In fact, conditions 1 and 2 in Theorem
1 are the decoupled conditions regarding system observability
and informative inputs.

We have just given an upper bound of the number of input
modes. Now, we want to study its lower bound. The fol-
lowing theorem gives a necessary condition on blind channel
identification.

Theorem 2 (Necessary Conditions): The channels cannot
be uniquely identified if 1) there is a commeon zero shared by
all channels, or 2) C{s(n)} < L + 1.

Proof: First, if {h;(z)} share a common root zg, then
hi(z) = hi(2)(2—20). 2o becomes an unidentifiable parameter
of the channels. To see this, let /;(z) = h}(z)(z—z}), and any
choice of z;, can satisfy Hh=0 (14). Clearly, the same h also
satisfies X(L)h = 0. Therefore, one necessary condition for
the channels to be uniquely identifiable is that all the channels
share no common Zeros.

If C{s(n)} < L+ 1, we will first show that the channels
{hi(-)} are not uniquely identifiable even if s(-) is known.
Since blind channel identification does not have any knowi-
edge of s(-), the necessary condition of standard system
identification should also be that of blind channel identifica-
tion. With the known s(-), the identification of f;(-) or h; can
be found by solving ‘

S(L)h; = x; a7

where x; = [z:(L),++ ,2;(N)]T. Since C{s(n)} < L+1, by
Lemma 1, S(L) is of rank L, or it-is rank deficient. Clearly,
(17) does not have a unique solution. Therefore, it requires
L+ 1 or more modes to achieve blind channel identification.l]

By Theorems 1 and 2, if the coprime condition is satisfied,
the channel is identifiable if C{s(n)} > 2L + 1, and it is not
if C{s(n)} < L+ 1. What happens when L+ 1 < C{s(n)} <
2L+17 The following two theorems will address this issue and
give necessary and sufficient identifiability conditions. Unlike
those given in Theorems 1 and 2, the conditions on input
modes and channels cannot be decoupled.

Theorem 3: The blind equalization problem has a unique
solution iff
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D p = Cls(w)} 2 L+ 1+ [L/M — 112

2) The matrix
h(zl) ‘ 0 Z(Zl)
- : (18)
0 h(z,) Z(zp)
has a 1-D null space, where
hl(zk)
h(z) =
P (2x)
z(2y) 0
Z(z) = ,
0 z(2x)
Mb};cks
z(z) =1 2z - 2M]ms,.

Proof: See Appendix C.

The above theorem gives the sufficient and necessary condi-’
tions for the blind identification of a multichannel FIR system
in terms of the input and channels. As shown in Appendix C

L 1.1 —h77
e —

P

is a basis vector of the null space of the matrix in (18). ‘An
mterpretation of condition 2 is that the input modes cannot
coincide with those values causing the ambiguity of the cross
relations among the channel responses h. A more insightful
alternative expression is given next.
Theorem 4: The sufficient and necessary conditions - for-
blind muitichannel identification can also be stated as follows:
) p=C{s(n)} > L+1+[L/M-1].
2) There is no polynomial g(z) of order between 1 and p—1
such that {h;(2)g(z)} can all be reduced to polynomials
with an order <L by other polynomials containing a(z)
as a common factor, i.e.

hi(z) = halz) g(2) + a(2) £i(2) i=1,--, M (19)
N
L L <p p <L

where a(z) is the characteristic polynomial of the input,
and {f;(2)}M, can be any polynomial.
Proof: See Appendix D.

If there exists such a g(z) with an order between 1 and
p—1, which satisfies (19), {h } become the ambiguous channel
responses that are not identifiable based on their outputs.
Equation (19} actually combines the identifiability conditions
on the input (fully characterized by a(z)) and channels {h;}
into one formula. The coprime condition is implied in this
formula. To see this, assume that {h;} are not coprime, i.c.,
hi(z) = hi(z)(z — zp). We can always carry out long division
of a(2)/(z — zo) until the step before last; then, we have
a(z) = —(z— 29)b(z) + (2 — 2{), where b(z) is of order p— 1.

3Here, we assume that all the modes are distinct and finite. Repeated and
infinity modes are treated in Remarks 1 and 2 after the proof of this theorern.
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TABLE I

SIMULATION PARAMETERS
# of Symbols __ # of Receivers Oversamp. Rate SNR (dB)  Channel Length # of Trials
Simu. 12 50 ~ 300 2 2 10 ~ 40 4T 500
Simu. 3 50 2 2 10 ~ 60 6T 500

Let us define g(z) = —b(z) and f;(2) & R.(z). Then
hi(z) = hi(2)g(2) + a(z) fi(2)
=hi(2)9(2) — (2 — 20)9(2)hi(2) + hi(2)(2 = %)
= hi(2)(z = 2))
which implies that (19) holds.

Thus far, we have not been able to obtain a satisfactory
interpretation of (19). We can only say that if the input signal
and channels have such a relation as in (19), the channels are
not identifiable. As for condition 1, an important observation
can be made regarding the number of channels M. First, if
M = 1, then the bound goes to infinity, and the channels
are not identifiable, which makes sense. As M increases, it
requires fewer modes to identify the channels. When M is
reasonably large, the number of modes required on the input
approximates L + 1, which is the minimum number of modes
required in standard system identification. In other words, in
cases in which there is a sufficient number of channels, blind
identification (with unknown s(-)) and conventional system
identification (with known s(-)) are not so different.

V. CONNECTIONS WITH ORIGINAL APPROACHES

In this section, we explore the connections among this,
the proposed approach, and the earlier approaches based on
second-order statistics [14], [241, [25], [27]. The original
methods assume that {s(n)} is a white process, i.e., they are
mutually uncorrelated and they have the same variance. In
addition, we often use a large number (N) of data samples
so that we can obtain accurate enough statistics. Under these
assumptions, the sufficient and necessary identifiability condi-
tion [25], [27] of the earlier stochastic methods is that all the
channels are coprime. This can also be seen from Theorem
1. As we pointed out earlier, a long enough data sequence
of white inputs is generically rich in modes (1/N — L +
1)S*(2L + 1)S(2L + 1) ~ E{s*(n)s(n)} = o1, where
s(n) 2 [s(n)s(n + 1) --- s(n + 2L)]. Since the rank of
S(2L+1) is the same as that of $*(2L+1)S(2L+1), S(2L+1)
is of full rank. Under this condition, following the proof of
Theorem 1, we can see that the iff identifiability condition is
indeed the coprimeness among {h;(z)}.

VI. THE PROPOSED ALGORITHM

The proposed algorithm is based on (9) with practical
considerations of noise at the receivers and the unknown
channel order L. When the channels are corrupted by noise, we
can estimate h by solving the following least squares problem:

min || X (LB o)
h

where h is subject to certain nontrivial constraints, e.g., |lh|| =
1 or ¢*h = 1 for a constant vector c. Although the treatment
of the noise is in (20) may not be statistically optimal, it is

perhaps a natural and simple way of formulating this problem.
Further investigations may lead to an optimal approach to
solving this problem.

Numerical algorithms such as singular value decomposition
(SVD) [10] or the more computationally efficient fast subspace
decomposition (FSD) [30] can be used to solve this problem.
Note that the blind identification problem formulated above
is linear, whereas most statistical approaches are nonlinear.
Although the size of the matrix X(L) may be large for large
M and L, the computational cost may be reduced by exploiting
the sparsity and the block Hankel structure of this matrix. For
more details about fast computation, refer to [29] and [31].

It is worth pointing out that the proposed algorithm, along
with many other parametric estimation algorithms, is generally
sensitive to the data model selection. This makes the detection
of the channel order L a crucial issue. In this paper, we assume
that L is known a priori. Interested readers are referred to [6]
and [28] for objective criteria such as MDL and AIC. '

A. Basic Algorithmic Procedure

1) Overestimate the order as L. and form X(L.) as in (8).

2) Perform an SVD or FSD on X(L.) to estimate how
many smaller singular values are the noise singular
values and detect the maximum channel order L.

3) Use the estimated L to form X(L) as in (8) and find

~

h subject to some nontrivial constraint to minimize

|IX(L)h]|.
4) From h, we can have the channel responses for all the
channels, i.e., hy,--- ,hys.

VII. NUMERICAL RESULTS

A, Computer Simulations

Computer simulations were conducted to evaluate the per-
formance of the proposed algorithm in comparison with that
of the existing stochastic algorithm [25]. In all the simulations,
two antennas were used, and the received data were sampled
at twice the symbol rate. The input signal type is QPSK. For
simplicity of comparison, we assumed that the channel order
L is known, and the basic algorithm in Section VI-A was
used to identify the channels. The key parameters are also
summarized in Table L

We construct the channels to simulate a wireless environ-
ment with a long delay multipath. The first set of channels
considers a two-ray multipath model with delay at 0 and 1.1
baud periods. The second set is a three-ray multipath channels
with delays at 0, 0.5, and 3 baud periods. The channel response
values are given in Tables II and IIL

The zero distribution of these two sets of channels is
plotted in Fig. 3(a) and (b) with different symbols representing
zeros of different channels. Although some zeros are clustered
together, the channels are clearly identifiable. Root-mean-
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TABLE I
CHANNEL RESPONSES #1 .
i ~ hi(0) hi(1) hi(2) hi(3)
1 0 —1.280 — 0.301i 1.617 + 2.3851 0.178 + 0.2631
2 . ~1.023 — 0.501i 0.106 + 1.164i 1.477 + 1.850i —0.482 — 0.5231
3 0 —0.282 + 0.562i 0.371 — 1.001i 0.041 — 0.1101
4 —0.227 + 0.487i 0.031 — 0.211i 0.336 — 0.866i —0.110 + 0.271i
TABLE W
CHANNEL RESPONSES #2
i hi(0) hi(1) hi(2) hi(3) hi(4) hi(5)
1 0.0222 — 0.0031i 0.5236 — 1.9483i —0.0683 + 0.0095i 0.0222 — 0.0031i —0.0812 — 0.0977i 0.0085 — 0.0012i
2 —0.1065 + 0.06511  —0.9114 — 0.9867i 0.3268 — 0.1998i —0.1065 + 0.0651i 0.1887 — 0.1856i —0.0406 + 0.0249i
3 0.3757 — 1.2429i 0.2682 — 1.2279i —0.1083 + 0.4256i 0.0267 — 0.2953i —0.0902 + 0.0914i 0.0472 — 0.0887i
4  —0.7860 — 0.49961 —0.2713 — 0.8143i 0.2297 + 0.1934i —0.0658 — 0.1874i 0.1788 — 0.0320i . —0.0955 — 0.0133i

square-error (RMSE) is employed as a performance measure
of the channel estimates :

RMSE = 1

] @D

1N

N ; gy — hi|?
where N, is the number of Monte Carlo trials (500 in our
cases), and ﬁ(i) is the estimate of the channels from the sth
trial.

In the first simulation study, we fixed the SNR to 20 dB and
varied the number of symbols from 50-300. Fig. 4 shows the
RMSE of the channel estimates from both the original (with
L =4, m =16, and d = 7 as the operating parameters)
and proposed methods. From this figure, we can see that the
new method always performs better than the original method,
especially when the number of symbols is small. The main
reason is that the original method, which is ultimately based on
the particular structure of a pencil of two exact (i.e., ensemble
averaged) autocovariance matrixes but not checked by their
finite-sample estimate (even in absence of noise), is not a
data-efficient algorithm. On the other hand, the new method
exploits the data structure of the system output and is thus not
as sensitive to the number of symbols.

In the second simulation study, we fixed the number of
symbols to be 50 and varied the SNR from 10-40 dB. Fig.
5 gives the RMSE’s of the channel estimates from these
two methods. Despite the fact that the new method always
surpasses its counterpart, it is interesting to note that the
performance curve of the original method flattens out after the
SNR reaches 20 dB, whereas that of the proposed method still
declines. This is due to the same finite data effect that cannot
be cured by increasing SNR. However, since the additive noise
is the only cause of the estimation error in the new proposed
method, an increase of SNR certainly leads to its performance
improvement. )

We repeat the above simulation using the second set of
channels, with L = 6, m = 16, and d = 9 as the operating
parameters for the original approach. It is seen from Fig. 6 that
both curves shift to the right yet follow the pattern similar to
that of the second simulation. This is intuitively understandable
since for the same amount of data samples, longer channels
have more parameters, which could lead to degradation of the
performance. '

9048

®)

Fig. 3. Zero distribution of the channels: (a) First channel set; (b) second
channel set. .

B. RF Field Experiments

Finally, we show some implementation results on real
data collected from our recent RF experiments. We used an
eight-element uniform linear array to spatially oversample RF
signals at about 900 MHz. The message signal is QPSK with
a raised-cosine pulse. The baud rate is 50 KHz.
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Fig. 6. - Comparison of the least-squares and original methods for SNR =
10-60 dB. .

To create a reliable long-delay fading environment, we arti-
ficially created some long-delay multipaths by transmitting the
delayed version of the same signal from different transmitters.
The phase pattern of the receiver outputs is plotted in Fig. 7(a).

2989

1.5

(a)
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Delays =0, 0.5, 1.2, 1.6 symbol periods
®)

Fig. 7. Comparison of phase patterns: (a) Before equalization; (b) after
equalization.

The proposed algorithm was used on 50 snapshots of data for
channel identification. The estimated channels were then used
for equalization, and the equalized signal phase pattern is given
in Fig. 7(b). In comparison with Fig. 7(a), the constellation is
clearly much improved.

VII. CONCLUSION

In this paper, we present a blind algorithm for identify-
ing multichannel FIR systems with unknown deterministic
input. With proper channel order selection, the algorithm
can accomplish blind identification based solely on the sys-
tem outputs without any statistical information on the input
process. Several useful results that characterize the finite
deterministic input are given. Necessary and sufficient identi-
fiability conditions regarding the input signal and channels are
derived, which are useful in further algorithm development
of deterministic blind identification. Computer simulations
and RF experimental results demonstrate the potential of the
proposed algorithm.
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APPENDIX A
RANK CONDITION OF A HANKEL MATRIX

We only need to consider the case for » < N + 1/2, where
the matrix S(r) is a skinny matrix because the rest can be
proved by the symmetry property, i.e., S(r)T = S(N —r+1).
_ The rank increase from S(1) to S(p) was obvious. The only
thing we need to prove is that once S(r) becomes rank
deficient, S(r + 1) will also be rank deficient, and its rank will
stay the same until-the number of its rows is smaller than p.

Suppose that S(r) is rank deficient and its rank is p(<r).
By (10), we can see that-S(r 4 1) is constructed by removing
the last row of S(r) and adding a column on the right of S(r).
Since S(r) is of rank p, then there are r—p independent vectors
{a;}.Z% such that S(r)a; = 0. Since the first » columns of
S(r + 1) are part of S(r), it is not hard to see that

S(r+1) ["’5] =[s'(r) i ¢ [ao]
i =5'(r)a;
=0
where S'(r) is S(r) without the last row, and c is the new
column of S(r + 1). By similar reasoning, we can also show
that {[,Qi]};;f are also possible null vectors of S(r+1). Now,

we want to prove that there are at least r — p + 1 independent
vectors among these 2(r — p) vectors, i.e., the rank of

r{ |a; a_p, : 0 .- 0 11
o -« 0 i oa

(A.1)
ar_p | Ir

is no smaller than r — p 4 1. First of all, it is easy to see
that the last 7 — p columns in (A.1) are independent since
{a;};_7 are independent. Let us assume that the jth row
of [ay, -+, a,_,] is the first nonzero row, and at least one
element, say a,,(j), 1 < m < r — p, is nonzero. Due to the
down shift and zero padding, the jth row of the last r — p
columns of (A.1) is ‘actually the (5 — 1)th row of the first
7 — p columns, which is a zero row. Therefore, it is obvious
that [aZ , 0]7 cannot be expressed as a linear combination of
[0, af]T, .-, [0, al_ ]T. In other words, there are at least
7 — p + 1 independent vectors in the matrix of (A.1). Let the
column null space dimension be n. Then, n > r —p + 1, and
rank {S(r+1)} ép’:r+l—n§r+l—(r—p+1) =p.
Since S(r + 1) is rank deficient and its rank is p’, then
there are (N — r) — p’ independent row vectors {b;}2\ ;"7 '
such that b;S(r + 1) = 0. S(r) is constructed by removing
the last column of S(r 4+ 1) and adding a new row to the
last of S(r 4+ 1). By similar reasoning, we can show that
there are at least N — r — p’ + 1 independent vectors among
b, O1}"7P and {[0,b;]}N77"7. Therefore, the rank
{8(r)} =p < N—r—(N-r—9p) =yp. According to
another inequality shown above, p’ < p, and hence, p’ = p.
Now, we want to show that if S(p + 1) is the first matrix
becoming rank deficient, it must be of rank p. If rank {S(p +
1)} < p, then rank {S(p)} < rank{S(p + 1)} < p, which
contradicts the fact that rank {S(p)} is of full rank; ie., of
rank p. O
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APPENDIX B
NULL SPACE OF S(L)

From (1), S(p+1) is of rank p. There is a unique nontrivial
null vector of S(p + 1) (up to a scalar multiple), which can
be expressed as

a=1[a(0) a(1) --- a(p)]”.

Because of the Hankel structure of S(r), as shown above
o.---0 aT o ... 0T, i=1,---,r—p
S N

i—1 r—p—1

must be in the null space of S(r),r > p. In addition, by
Lemma 1, S(r) is of rank p. Following the arguments of the
proof of Lemma 1, it is easily seen that the r — p vectors.in
the matrix '

ra(0) 1
a(1) a(0)
()
a(p) a(0) (B.2)
a(p) a(l)
L ~a(p) ]
r<p .
are independent. Therefore, the columns of the matrix in (B.2)
form the null space of S(r). O
APPENDIX C ‘

PROOF OF THEOREM 3

First of all, we want to clarify that condition 2 implies
condition 1, i.e., if condition 2 is satisfied, condition 1 naturally
holds. Since the matrix in (18) is of M(L + 1) - p, condition
2 implies that the rank of such a matrix is M(L+1) +p— 1.
Therefore, we must guarantee that the number of its rows must
be larger than its rank, ie, Mp > M(L+1)+p—1 or
p> L+1+4+L/(M —1). In the following, we shall only prove
that condition 2 is the necessary and sufficient condition.

By (13), X(L)fx = 0 can be rewritten as

j=i+1, .-, M. (C3)
It is clear that H;h; — H;h; must be in the null space of

S(2L+1). When S(2L+1) is of rank p < 2L4-1, by Lemma
3, a polynomial with any null vector as coefficients has roots

Z1,° -+, Zp. Therefore, (C.3) implies that the polynomials
hi(2)hi(2) = hi(Dhi(2), i=1,---, M,
j=i+l, -, M, (C.4)
have roots 21, -+, zp, Or
hi(zi)hi(zr) — hj(z)hi(2e) =0, i=1, -, M,
j=i4+1,-, M,
k=1,---,p. (C5)

Necessary Part: We prove the necessary part by showing
that if condition 2 does not hold, the channels are not identifi-
able. Clearly, [1, ---, 1, —hT]7 is a solution to (18). If there
is another independent solution, say [g1, - - , gp, —h7]7, then
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by plugging this solution into (18), we obtain ﬁ(zk) =
grh(z), k = 1, -+, p or hi(zx) = grhi(zx), for i
, M. Clearly, for any pair of (%, j)
hi(zi)hi(zk) = hi(zk)gehi(2e)
= h;j(zx) grhi(2k)
—
hi(2k)
= hj(zk)h,-(zk).
Therefore, h is another solution.

Now, we want to make sure that the new channel estimate h
is independent of the true channel h. If not, h = oh for some
constant «, and then, (o — gz )h(z;) = 0, which means either
gk = a or h(z;) = 0. If g5 = « for all k’s, then it is easy to
see that the new solution is dependent on [1, --- , 1, —=hT]7,
which is not possible. Therefore, there is at least an I, such
that g; # « and h(z;) = 0, which means that all the channels
{hi(2)} share the common zeros z;. In this case, by Theorem
2, the channel is not uniquely identifiable.

Sufficient Part: If condition 2 holds, we shall first prove
that {h;(2)} do not share any common zeros. If they do,
ie, hi(2) = (# — 20)hi(z), then we can find another set of
hi = h’(z)(z — z}), where 2y # zpand i = 1,.--, M. In
this case,?

hi(2k) =h§(zxg)(zk )

2K — 24
= hi(ze) (2 — %) =2
N s’ 2o = R
hi(zk)
= Gk
= h;(2r) 9%

Thus, it is easily seen that [g, - - - , gp, —hT]T will be another
independent null vector of the matrix in (18).

Now, we are in a position to show that the channel is
identifiable if condition 2 is satisfied. We shall show this by
contradiction by first assuming that the system is not identi-
fiable, i.e., there is another independent SOlllthIl h satisfying
(C.3) or (C4).

Let us first write (C.4) into a matrix form

H,; 0 1 [Z(21)

: |h=0. (C6)

0 H, | LZ(z)

Consider all possible pairs for each root z, and write down
the equations in a matrix form

h1—1. (2k)
—hipa(2)  hulzk)

—hi(zk)

N J

4Here, we assume that zo # zp, k = 1, --- , p. Otherwise, it is obvious
that one column of the matrix in (18) will be zero, and condition 2 does not
hold.
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Z(z)h=0, [=1,..-, M. (o))
N’
h(z)

Among {h;(2)}},, we claim that there exists at least one
channel, say, the /th channel, such that h;(z) # 0. Otherwise,
2, will be the common root among all the channels. Therefore,
just observing the portion of Hj, displayed in (C.7), we can
easily see that H,, is of rank M — 1 with a single null vector
h(zx) = h(zx) (up to a scalar multiple). Therefore, the null
space of [H,, -+, ﬁz]T is spanned by the columns of the
following matrix:
h(z)
(C.8)
h(zp)

By (C.6), [Z7(21), --- , ZT(2,)]Th should be in the null
space, or it should be a linear combination of the columns
of the matrix in (C.8). Therefore

h(z1) Z(1)] |
: “ | =0 (C.9)
8%
h(zp) Z(zp) _i,il
P

Since [I 1 --- 1 —hT]T is another independent solution
to (C.9), the matrix in (C.9) or (18) has at least a 2-D null
space, which contradicts condition 2. O

Remark 1: We derive the above results by assuming that
the modes are distinct. If, however, there is a set of repeated
roots, some of the above expressions need some modifications.
Consider the root z, of multiplicity k(>1). The equations
corresponding to this root are

(hi(2)hy(2) — hyi(2)ha(2)EL,,
1=0,---, k-1

=0,
(C.10)

where (-)() denotes the [th order derivative with respect to z.
Following the same derivation from (C.7)-(C.9), we can obtain
the same expression as (C.9), except that the corresponding
block of vectors h(z,) and matrices Z(z,) must be replaced
by the following:

hk(zq)
duh(zq)
_ aglh(l)(zq) Otzzh(zq)
Lok h®D(2,)  aeah®=2)(2,) arch(zg)
Zk(zq)
Z(z,)
260 (z) |

where a;; = (9).

Remark 2: If oo is one of the input modes, the correspond-
ing h(co) and Z(co) should be evaluated by 27 h(2) =00
and 2~ FZ(2),=c0, respectively. O
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APPENDIX D
PROOF OF THEOREM 4

The proof of condition 1 has been done previously. Here,
we only need to prove that condition 2 of Theorem 4 is the
equivalent to its counterpart of Theorem 3.

Sufficient Part: We. prove the sufficient part by showing
that if condition 2 of Theorem 3 does not hold, neither does
its counterpart of Theorem 4.

Suppose that (18) has an independent null vector,

[gla )gp)_h ] then
h(z1) 0 g1 h(z)
Cl=] ®.11)
0 h(z) 1 Lgp h(z,)
or
i:1,~~,M. (D.12)

Let us define a polynomial g(z) with an order <p—1 such that
g(21) = gr. This can always be done by solving the following
equation:

L 0 T

1 29 -+ 207 g(l g2 |
L Wl : (D.13)
1 2z 21 Lg(p—1) 9p

where g(I) is the [th-order coefficient of g(z). For distinct®
{2}, the Vandermonde matrix in (D.13) is of full rank, and
the solution of (D.13) is unique. Then, let us define

hi(2)g(2).

By (D.12), Pi(z) = hi(zx) — hi(2)g(z) = 0, and P;(z) has
at least p roots, i.e., z1, - - - , 2p. In other words, we can always
factorize P;(z) into the product of a(z) = (z—z1) - (2—2p)
and another polynomial f;(2); i.e., P;(2) = a(2)fi(z). Hence,
by (D.14)

Py(z) £ hy(z) — (D.14)

hi(2) = hi(2) g(2)+a(2) fi(2) - (D.15)
e A R N
L L <p p <L

Now, we only need to show that g(z) has order larger than
0. If g(2) is of zero order, then g(z) = g and g = g for
all k’s and some constant g. By (D.12), h; (zx) = ghi(zk)
since hi(z) — ghi(2) is of order L and has p(> > L)
roots. Hence, hi(z) = ghi(z) or [g1, -, gp, —AT]T =
g[l, -+, 1, =hT]T, which means,these two solutions are
dependent. This clearly contradicts the assumption that both
vectors are ‘independent.

STf there are repeated modes, we need to slightly modify the Vandermonde
matrix in (D.13) in the same fashion as in Remark 1 after Theorem 3. However,
the same conclusion still holds.
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Necessary Pari: 'We prove the necessary part by showing
that if condition 2 of Theorem 4 does not hold, neither does
its counterpart of Theorem 3. '

Suppose there exists a g(z) with order between 1 and p—1
such that (D.15) holds. Then, by reversing the order of the
derivation of the sufficient part, we can easily show that

lg(z1), -+, g(zp), ~hT]T is another solution to (18). Now,
we need to show that it is independent of [1, , —hT]T.
If rhey are dependent, then [g(z1), ---, g(2), —hT]T =
afl,---,1, =hT|T or g(z) = « and h = ah for a

DONZEro constant . Since g(z) is a polynomial with order
<p, g{(z) = a for p distinct values means that g(z) =
a or g(z) is an zero-order polynomial that contradicts the
assumption that g(z) has an order between 1 and p—1. Hence,

[9(21), -+, 9(%), ~hT]T is another independent solution,
and condition 2 of Theorem 3 does not hold. ‘ O
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