
ar
X

iv
:1

80
3.

03
99

5v
1 

 [
st

at
.M

E
] 

 1
1 

M
ar

 2
01

8

Adaptive Smoothing of the Log-Spectrum

with Multiple Tapering ∗

K.S. Riedel and A. Sidorenko

New York University

Courant Institute of Mathematical Sciences

New York, NY 10012-1185

March 13, 2018

Abstract

A hybrid estimator of the log-spectral density of a stationary time series is pro-

posed. First, a multiple taper estimate is performed, followed by kernel smoothing

the log-multiple taper estimate. This procedure reduces the expected mean square er-

ror by (π
2

4
)4/5 over simply smoothing the log tapered periodogram. A data adaptive

implementation of a variable bandwidth kernel smoother is given.

1 INTRODUCTION

We consider a discrete, stationary, Gaussian time series {xj , j = 1, . . . N} with a smooth

spectral density, S(f), which is bounded away from zero. The autocovariance is the Fourier

transform of the spectral density: Cov [xj , xk] =
∫ 1

2

− 1
2

S(f)e2πi(j−k)fdf . When the logarithm

of the spectral density, θ(f) ≡ ln[S(f)], is desired, two common approaches are: 1) to

estimate the spectral density and then transform to the logarithm; and 2) to smooth the

logarithm of the tapered periodogram. The first approach can be sensitive to broad-band

bias when the spectral range is large, while the second approach inflates the variance of the

estimate [7, Ch. 6.15], [14]. We propose a combined estimator of the log-spectral density

with the robustness properties of the second estimator without its variance inflation.

In Section 2, we consider quadratic estimates of the spectral density. In Section 3, we

consider kernel smoothing the multi-taper spectral estimate. In Section 4, the logarithm of
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the multi-taper spectral estimate is kernel smoothed to estimate the log-spectral density. In

Section 5, we consider a data adaptive variable bandwidth implementation of this method.

In Section 6, we present our simulation results. Sections 7 and 8 discuss and summarize

our results. In the appendix, we describe a new method for selecting the initial halfwidth.

2 STATISTICS OF MULTI-TAPER SPECTRAL ESTIMA-

TORS

Every quadratic, modulation-invariant spectral estimator has the form

Ŝmt(f) =
N∑

m,n=1

qmnxmxne
2πi(m−n)f , (1)

where Q = [qmn] is a self-adjoint matrix [2, 5]. Decomposing Q into its eigenvector repre-

sentation, Q =
∑K

k=1 µk ν
(k)

ν
(k)†, (1) can be recast as

Ŝmt(f) =
K∑

k=1

µk

∣∣∣∣∣
N∑

n=1

ν(k)n xne
−2πinf

∣∣∣∣∣

2

, (2)

where the ν
(k) are the orthonormal eigenvectors of Q and the µk are the eigenvalues. We

call (2) the multiple taper representation of the spectral estimate [7, 10, 13]. (This name

is often shortened to multi-taper and sometimes referred to as a multiple spectral window

estimate.) In practice, quadratic spectral estimators are constructed by specifying the

eigenvectors/tapers and the weights. For concreteness, we will usually use the sinusoidal

tapers ν
(k)
m =

√
2

N+1 sin
(
πkm
N+1

)
[12]. For these tapers, the spectral estimate (2) can be

recast as

Ŝmt(f) = ∆
K∑

k=1

µk|ζ(f + k∆)− ζ(f − k∆)|2 , (3)

where ∆ = 1
2N+2 and ζ(f) is the discrete Fourier transform of {x}: ζ(f) =

∑N
n=1 xme

−2πimf .

The corresponding smoothed periodogram estimate, Ŝsp(f) =
∑K

k=−K |ζ(f+k∆)|2 /(2KN+

N), has an appreciably larger bias. The sinusoidal multi-taper estimate reduces the bias

since the sidelobes of ζ(f + k∆) are partially cancelled by those of ζ(f − k∆).

To analyze the multi-taper estimate, we use the local white noise approximation [3],

which corresponds to assuming that the combined estimator of θ(f) has its domain of de-

pendence concentrated near frequency f . When µk = 1/K , Ŝmt(f)/S(f) has a χ2
2K/(2K)

distribution to leading order in K/N [14]. Note E
[
ln
(
χ2
2K/(2K)

)]
= ψ(K) − ln(K),

Var
[
ln
(
χ2
2K/(2K)

)]
= ψ′(K), where ψ is the digamma function and ψ′ is the trigamma

function. The multi-taper estimate of the logarithm of the spectral density is

θ̂mt(f) ≡ ln[Ŝmt(f)]− [ψ(K)− ln(K)] . (4)
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An alternative estimate of ln[S(f)] is to average the logarithms of the individual multi-

taper estimates:

ln[Ŝst(f)] ≡
1

K

K∑

k=1

ln(
|ζ(f + k∆)− ζ(f − k∆)|2

2(N + 1)
) , (5)

where the subscript “st” denotes single taper. Since the χ2
2 distribution has its most probable

value at zero, the distribution of its logarithm has a very long lower tail. This lower

tail induces bias and increases the variance in the estimate: Bias[ln(Ŝst)] ≃ −0.577, and

Var[ln(Ŝst)] = ψ′(1)/K = π2/(6K). By averaging the K estimates prior to taking the

logarithm, we reduce both the bias and the variance. The variance reduction factor if one

averages and then takes logarithms, ln[
¯̂
S(f)], is Kψ′(K)/ψ′(1). For large K, Kψ′(K) ≃

1 + 1
2K , so the variance reduction factor (of reversing the order of the operations in (5) ) is

asymptotically 6/π2.

The local bias of the multi-taper estimate is

E[Ŝmt(f)− S(f)] ≃
S′′(f)

2

K∑

k=1

µk

∫ 1
2

− 1
2

|f ′|2|V (k)(f ′)|2df ′ , (6)

where the k-th spectral window, V (k), is the Fourier transform of the k-th taper, ν
(k):

V (k)(f) =
∑N

n=1 ν
(k)
n e−2πinf . Equation (6) neglects the nonlocal bias and assumes

∑K
k=1 µk =

1. For the sinusoidal tapers with uniform weighting (µk = 1/K), (6) reduces to

Bias[Ŝmt(f)] ∼
S′′(f)

8

K∑

k=1

µk
k2

N2
= S′′(f)

K2

24N2
, (7)

where the intermediate equality is derived in [12]. Noting that S′′(f)/S(f) = [θ′′(f) +

|θ′(f)|2], the local bias of the estimate (4) for the uniformly weighted sinusoidal tapers is

E [θ̂mt(f)− θ(f)] ∼ [θ′′(f) + |θ′(f)|2]
K2

24N2
. (8)

3 SMOOTHED MULTI-TAPER ESTIMATE

We now consider kernel estimators of ∂qfS(f) which smooth the multi-taper estimate:

∂̂qfSκ(f) ≡
1

hq+1

∫ 1
2

− 1
2

κ

(
f ′ − f

h

)
Ŝmt(f

′)df ′ , (9)

where thêover ∂qfSκ denotes the estimate of the qth derivative. The subscript on Ŝκ denotes

the two-stage estimator constructed by first multi-tapering and then kernel smoothing.

Here κ(f) is a kernel with Lipshitz smoothness of degree 2 with support in [−1, 1], and

κ(±1) = 0. The bandwidth parameter is h. We say a kernel is of order (q, p) if
∫
fmκ(f)df =

3



m! δm,q , m = 0, . . . , p − 1. We denote the pth moment of a kernel of order (q, p) by

Bp ≡
∫
fpκ(f)df/p!. For function estimation (q = 0), we use p = 2 and p = 4. To estimate

the second derivative, we use a kernel of order (2,4).

Smoothing the multi-taper estimate replaces the original quadratic estimator in (1) by

another quadratic estimator, Q̃ with Q̃mn = κ̂m−n
∑K

k=1 µkν
(k)
m ν

(k)
n , where κ̂m is the Fourier

transform of the kernel smoother: κ̂m ≡ h−(q+1)
∫
κ(f

′

h )e
imf ′

df ′. By Theorem 5.2 of Riedel

& Sidorenko [12], this smoothed multi-taper estimator cannot outperform the pure multi-

taper method with minimum bias tapers.

Theorem 3.1 Let S(f) be twice continuously differentiable with 0 < Smin ≤ S(f) ≤

Smax <∞. Consider the kernel smoothed multi-tapered spectral estimate (9) with K tapers.

Let the kernel, κ(f), be of order (q, p) and have Lipshitz smoothness of degree 2. Let the

envelope of the spectral windows, V (k)(f), decay as (Nf)−1 or faster for f > K/N and as-

sume that ν
(k)
n+m≃ ν

(k)
n [1 + O(Km

N )]. Consider the limit that N → ∞, h → 0 and K → ∞,

such that K/(Nh) → 0. The kernel smoothed multi-tapered estimate (9) has asymptotic

variance:

Var
[
∂̂qfSκ(f)

]
≃

‖κ‖2S(f)2

h2q+1

K∑

k,k′=1

µkµk′

(
N∑

n=1

|ν(k)n |2|ν(k
′)

n |2
)

+ OR

(
(
K

Nh
)4/5 + (

h

K
)2
)
,

(10)

where ‖κ‖2 ≡
∫ 1
−1 κ(f)

2df .

We use the notation OR(·) to denote a size of O(·) relative to the main term. The

condition, K
N /h→ 0, implies that the smoothing from multi-tapering is much less than the

smoothing from kernel averaging. The condition that ν
(k)
n+m≃ ν

(k)
n [1 + O(Km

N )] is fulfilled

when the k-th taper has a scale length of variation of N/k. The sinusoidal tapers satisfy

this condition as do the Slepian tapers when their bandwidth parameter, W , is chosen as

K/N .

Proof: We separate the variance into a broad-banded contribution ≈ 1/(N |f − f ′|)2 for

|f − f ′| >> K/Nh and a local contribution ≈ |f − f ′|2. The broad-band contribution is

OR((
hN
KN )2). The local contribution differs from a locally white process byOR(S

′′(f)2( K
2Nh)

2).

We now consider the local contribution in the locally white noise approximation [3]. Using

the Gaussian fourth moment identity and resumming yields

Var
[
∂̂qfSκ(f)

]
≃ S(f)2tr[Q̃Q̃] = S(f)2

K∑

k,k′=1

µkµk′
N∑

n=1

N−n∑

m=1−n

κ̂2mν
(k)
n+mν

(k)
n ν

(k′)
n+mν

(k′)
n .

(11)

Our kernel, κ(·) is Lipshitz of degree 2, and therefore κ̂m ∼ O(‖κ̂‖/(mh)2) for mh ≫ 1.

Expanding ν
(k)
n+m in mK/N and truncating in m yields

Var
[
∂̂qfSκ(f)

]
∼ S(f)2

K∑

k,k′=1

µkµk′

(
N∑

n=1

|ν(k)n |2|ν(k
′)

n |2
)(

N∑

m=1

κ̂2m

)
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= S(f)2
‖κ‖2

h2q+1

K∑

k,k′=1

µkµk′

(
N∑

n=1

|ν(k)n |2|ν(k
′)

n |2
)
. (12)

The first line is valid to O(1/(mh)4) + O(Km/N), so we Taylor expand ν
(k)
n+m for |mh| <

O((Nh/K)1/5) and drop all terms with |mh| > O((Nh/K)1/4). The resulting expression is

accurate to OR((K/Nh)
4/5). The final line follows from Parseval’s identity. ✷

For K = 1, Eq. (12) reduces to the well known result [15] for the variance of smoothed

tapered periodogram:

Var

[
1

hq+1

∫
κ(
f − f ′

h
)|ζν(f

′)|2df ′
]
∼
S(f)2‖κ‖2

h2q+1

N∑

n=1

ν4n , (13)

where ζν(f) is the tapered Fourier transform. In (13),
∑N

n=1 ν
4
n isO(1/N). For the sinusoidal

tapers, (12) can be explicitly evaluated:

Var
[
∂̂qfSκ

(f)
]
∼

‖κ‖2S(f)2

Nh(q+1)

(
1 +

1

2K

)
+OR

(
(
h

K
)2
)
+ OR

(
(
K

Nh
)4/5

)
, (14)

where we have used

1

K2

K∑

k,k′=1

N∑

n=1

|ν(k)n |2|ν(k
′)

n |2 =
4

K2(N + 1)2

K∑

k,k′=1

N∑

n=1

sin(
πkn

N + 1
)2 sin(

πk′n

N + 1
)2 =

2K + 1

2K(N + 1)
.

(15)

4 SMOOTHED LOG MULTI-TAPER ESTIMATE

We now show that combining kernel smoothing with multi-tapering does improve the esti-

mation of the logarithm of the spectral density, θ(f) = ln[S(f)]. Let

∂̂qfθκ(f) ≡
1

hq+1

∫ 1
2

− 1
2

κ

(
f ′ − f

h

)
θ̂mt(f

′)df ′ . (16)

For h≪ 1, and Nh≫ 1, we expand (16) in the bandwidth

Bias[∂̂qfθκ(f)] ≃ Bp∂
p
fθ(f)h

p−q + ∂qf [θ
′′(f) + |θ′(f)|2]

K2

24N2
. (17)

The first term is the bias from kernel smoothing and the second term is from the sinu-

soidal multi-taper estimate (8). Traditionally, the “delta approximation”, Var[f(X)] =

f ′(E[X])2Var[X], is used to evaluate the variance of the smoothed log-periodogram. For

the delta approximation to be valid, the characteristic scale of variation of f(·) must be

large relative to
√
Var[X], where f is continuously differentiable. This requirement is

not fulfilled for the log-periodogram, and the resulting analysis makes an order one er-

ror in single taper estimation. For the multi-taper estimation, the expansion parameter

5



for the delta approximation is 1/K. To leading order in the 1/K expansion, the vari-

ance inflation factor from the long tail of the ln[χ2
2K ] distribution is not visible. Recall

that Var[θ̂mt(f
′)] ≈ [Kψ′(K)] × Var[Ŝmt(f

′)]/S(f)2 for |f − f ′| << 1. We believe that

adding a Kψ′(K) correction improves the accuracy of the delta approximation for f ′′ 6= f ′.

Therefore, we evaluate the variance of the smoothed log multi-taper estimate by using the

approximate identity:

Cov[θ̂mt(f
′), θ̂mt(f

′′)] ≈
[Kψ′(K)]

S(f)2
×Cov[Ŝmt(f

′), Ŝmt(f
′′)] , (18)

for |f ′ − f | << 1 and |f ′′ − f | << 1. Using (18), the variance of θ̂(f) is

Var[∂̂qfθκ(f)]∼
Kψ′(K)

S(f)2h2(q+1)

∫ 1
2

− 1
2

∫ 1
2

− 1
2

κ

(
f − f ′

h

)
κ

(
f − f ′′

h

)
Cov[Ŝmt(f

′), Ŝmt(f
′′)]df ′df ′′ .

(19)

Thus, the variance of ∂̂qfθ(f) reduces to the same calculation as the variance of ∂̂qfS(f):

Var
[
∂̂qfθκ(f)

]
∼

(K + 1
2)ψ

′(K)‖κ2‖

Nh2q+1
+OR

(
1

K

)
+ OR

(
(
K

Nh
)4/5

)
, (20)

for the uniformly weighted sinusoidal tapers. (See the calculation in Theorem 3.1.) Com-

bining (17) with (19) yields the expected asymptotic square error (EASE) in ∂̂qfθκ
:

Theorem 4.1 Let S(f) have p continuous derivatives. Consider the two-stage estimate

(16) using the uniformly weighted sinusoidal tapers in the first-stage. Under the hypotheses

of Theorem 3.1 and the formal approximation (18), the expected asymptotic square error of

∂̂qfθκ
is

E

[∣∣∣∂̂qfθκ(f)− ∂qfθ(f)
∣∣∣
2
]

≈

[
Bp∂

p
fθ(f)h

p−q + ∂qf [θ
′′(f) + |θ′(f)|2]

K2

24N2

]2

+
(K + 1

2)ψ
′(K)‖κ‖2

Nh2q+1
+ OR

(
h2(p−q)+1

)
+OR

(
1

K

)
+ OR

(
(
K

Nh
)4/5

)
. (21)

The benefit of multi-tapering (in terms of the variance reduction) is significant for using a 2

to 20 tapers. However, the marginal benefit of each additional taper tends rapidly to zero.

Minimizing (21) with respect to h and K yields the following result:

Corollary 4.2 Under the hypotheses of Theorem 4.1, the expected asymptotic square error

(EASE) of ∂̂qfθκ is minimized by

ho(f) =

[
2q + 1

2(p − q)

(K + 1
2)ψ

′(K)‖κ‖2

B2
pN |∂pfθ(f)|

2

] 1
2p+1

, (22)

and

Bp[∂
p
fθ(f)]{∂

q
f [θ

′′(f) + |θ′(f)|2]} K3
opt ≃ 6‖κ‖2Nh−(p+q+1)

o . (23)
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Thus hopt ∼ N−1/(2p+1) and Kopt ∼ N (3p+q+2)/(6p+3). For kernels of order (0, 2), this

reduces to hopt ∼ N−1/5 and Kopt ∼ N8/15. Thus the ordering 1 ≪ K ≪ Nh is justified.

The EASE (21) depends only weakly on K for 1 ≪ K ≪ Nh while the dependence on the

choice of bandwidth is strong. When the bandwidth, ho, satisfies (22), the leading order

EASE reduces to

E

[∣∣∣∂̂qfθ(fj)− ∂qfθ(fj)
∣∣∣
2
]

≃ Mq,p|Bp∂
p
fθ(fj)|

2(2q+1)
(2p+1)

(
(K + 1

2)ψ
′(K)‖κ‖2

N

) 2(p−q)
(2p+1)

, (24)

where Mq,p ≡ ( 2q+1
2(p−q))

2(p−q)
(2p+1) + (2(p−q)

2q+1 )
(2q+1)
(2p+1) . Thus the EASE in estimating ∂qfθ is propor-

tional to N
−2(p−q)
(2p+1) . We note that if K = 1 (a single taper), the variance term in (21) is

inflated by a factor of π2

6

∑N
n=1 ν

4
n. Thus using a moderate level of multi-tapering prior to

smoothing the logarithm reduces the EASE by a factor of [π
2

6

∑N
n=1 ν

4
n]

4/5 = [π
2

4 ]4/5, where

we substitute
∑N

n=1 ν
4
n = 1.5 for the sinusoidal tapers.

From (24), using the best fixed halfwidth kernel smoother degrades performance by a

factor of

EASE(hglobal)

EASE(hvariable)
=

[∫ 1
2

− 1
2

|θ′′(f)|2df

]1/5/∫ 1
2

− 1
2

|θ′′(f)|2/5df (25)

over using an optimal variable halfwidth smoother [4]. In many cases, the spectral range is

large, and thus it is often essential to allow the bandwidth to vary locally as a function of

frequency.

Equation (22) gives an explicit solution for the bandwidth which minimizes the local

bias versus variance trade-off. It shows that when θ(f) is rapidly varying (|θ′′(f)| is large),

then the kernel bandwidth should be decreased. However, (22) has two major difficulties.

First, (21)-(24) are based on a Taylor series expansion and the expansion parameter is

ho ∼ 1/N1/(2p+1). Even when 1/N is small, (1/N)1/(2p+1) may be not so small. Second,

θ′′(f) and ho(f) are unknown and need to be estimated.

5 DATA-ADAPTIVE ESTIMATE

In practice, θ′′(f) is unknown and we use a data-adaptive multiple stage kernel estima-

tor where a pilot estimate of the optimal bandwidth is made prior to estimating θ(f).

To simplify the implementation, we choose K independent of frequency, and usually set

K ≈ cN8/15, where c is a constant. For nonparametric function estimation, data adaptive

multiple stage schemes are given in [1, 4, 11]. A straightforward application of these schemes

to multi-taper spectral estimation has the following steps:

0) Evaluate the multi-taper estimate of (3) on a grid of size 2N+2. If the computational

effort is not important, set K = N8/15; otherwise choose K according to your computational

budget.

7



1a) Kernel smooth θ̂mt(f) with a kernel of order (0,4) for a number of different band-

widths, hℓ, and evaluate the average square residual (ASR) as a function of hℓ:

ASR(hℓ) =
N∑

n=1

|θ̂st(fn)− θ̂κ(fn|hℓ)|
2 , (26)

where θ̂κ(fn|hℓ) is the kernel estimate of θ(f) using bandwidth hℓ applied to θ̂mt(f), while

θ̂st(fn) is the single taper estimate: θ̂st(f) = ln[|ζ(f +∆)− ζ(f −∆)|2/2(N + 1)] + .577.

1b) Estimate the optimal (0,4) global halfwidth using a goodness of fit method. Relate

this to the optimal (2,4) using the halfwidth quotient relation. (See below.)

2) Estimate θ′′(f) by smoothing the multi-taper estimate with global halfwidth h2,4.

3) Estimate θ(f) by substituting θ̂′′(f) into the optimal halfwidth expression corre-

sponding to the minimum of (14).

For Step 1b), Müller and Stadtmüller propose to determine the starting halfwidth by

minimizing the Rice criterion. In [11], we describe a different method for selecting the initial

bandwidth in step 1b). Our method is based on fitting the average square residual of (26)

to a parametric expression based on (21). This parametric fit usually outperforms the Rice

criterion because it uses an asymptotically valid expression.

In (26), the ASR is computed relative to the single taper estimate, θ̂st(fn), instead of

the multi-taper estimate, θ̂mt(fn). We do this because the multi-taper estimate is strongly

autocorrelated for frequencies, f and f ′ with |f − f ′| ≤ K/2N . To correct for using θ̂st(f)

in step 1 and θ̂mt(f) in steps 2 and 3 , we inflate the variance in the (0,4) kernel estimate.

The halfwidth quotient relation relates the optimal halfwidth for derivative estimates, ĥ2,4

to the optimal halfwidth for a (0, 4) kernel using (22):

ĥ2,4 = H(κ2,4, κ0,4)ĥ0,4, where H(κ2,4, κ0,4) ≡

(
10B2

0,4‖κ2,4‖
2

B2
2,4‖κ0,4‖

2

) 1
9
(
π2N

∑
n |ν

(1)
n |4

6

) 1
9

.

(27)

The last term in parentheses is the variance inflation factor from using a single taper.

To minimize the effects of tapering-induced autocorrelation, we recommend using a Tukey

taper for θ̂st.

When θ̂′′(f) is vanishingly small, the optimal halfwidth becomes large. Thus, ĥ0,2 needs

to be regularized. Following [11], we determine the size of the regularization from ĥ0,4 in

the previous stage.

We say a “plug-in” scheme has a relative convergence rate of N−α if

E
[
|θ̂(f |ĥ0,2)− θ(f)|2

]
≃
(
1 +O(C2

rN
−2α)

)
E
[
|θ̂(f |h0,2)− θ(f)|2

]
,

where h0,2 is the optimal halfwidth and ĥ0,2 is the estimated halfwidth. In [1], a detailed

analysis of the convergence properties of their similar scheme is given. Their scheme has an

optimal convergence rate of N−4/5 and a relative convergence rate of N−1/4. Our simpler

8



method has the same convergence rate of N−4/5 and a slightly slower relative convergence

rate: N−2/9.

6 COMPARISON OF KERNEL SMOOTHER ESTIMATES

We now compare three different kernel smoother estimates of the log-spectrum: 1) Kernel

smoothing the log-multitaper estimate, θ̂mt as in (16); 2) Kernel smoothing the log-single

taper estimate, ln[Ŝst]; 3) The logarithm of the kernel smoothed multi-taper spectral esti-

mate, ln[Ŝκ] as in (21). In all cases, we use a variable halfwidth kernel smoother with the

initial h0,4 halfwidth estimated by the fitted square residual method as described in Sec. 5

and the appendix.

We use the moving average time series model which was considered in [6]: xt = et −

0.3et−1 − 0.6et−2 + 0.3et−3, where et is a zero mean, unit variance, uncorrelated Gaussian

process. We compute the integrated square error (ISE):
∫
|θ̂(f) − θ(f)|2df , averaged over

500 realizations for time series lengths of 128 and 1024. We use the sinusoidal tapers and

choose K = (N/2)8/15, which is K = 9 for N = 128 and K = 28 for N = 1024. Table 1

summarizes our simulation:

Error Criterion MISE MaxISE MISE MaxISE

Method N = 128 N = 128 N = 1024 N = 1024

Smoothed log-multi-taper (16) .453 .694 .186 .515

Log of smoothed multi-taper (9) .483 .743 .195 .515

Smoothed log-single taper .622 1.009 .209 .842

Table 1: Integrated square error averaged over 500 realizations where MaxISE is the

integrated square error for the worst of the 500 realizations.

The simulation shows that smoothing before taking the logarithm of the multitaper esti-

mate performs somewhat more poorly than smoothing the log multi-tapered estimate. The

performance degradation is 6.6 % for N = 128 and 4.8 % for N = 1024. The performance

differential is due to the presence of broad-band bias error. As N increases, the smoothing

halfwidth decreases and the effects of broad-band bias will shrink. For more peaked spectral

densities, N may have to be quite large before the two estimates perform similarly.

In comparing the first and third estimates, we expect to see an improvement factor of

[π
2

4 ].8 for multi-tapering. Multi-tapering prior to smoothing the logarithm reduces the ISE

by more than expected. We attribute this additional reduction to the poor performance

of automatic halfwidth selection criteria in the presence of strong noise. Note that using a

single taper is very nonrobust in the sense that the worst realizations have much larger ISEs

than do either of the other two methods. Our simulations also indicate that the optimal

number of tapers grows at faster than N8/15 for our particular spectrum and 100 < N <

1000.
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7 REMARKS

1) P. Bloomfeld (private correspondence) points out that a similar variance reduction can be

achieved by pre-smoothing the periodogram before transforming to the logarithmic scale and

smoothing again. Our analysis in Sec. III shows the optimal amount of pre-smoothing. Note

multi-tapering offers broad-band bias protection with asymptotically no variance inflation.

In contrast, pre-smoothing the tapered periodogram inflates the variance by
∑

n |νn|
4. For

the pre-smoothing algorithm to be as efficient as multi-tapering, the amount of tapering

needs to go to zero as N → ∞.

2) Pawitan and O’Sullivan [6] advocate a penalized Whittle likelihood estimate with

generalized cross-validation. Clearly, it should be advantageous to use an approximation

of the likelihood. Unfortunately, the penalized likelihood approach corresponds to a fixed

halfwidth kernel and does not reduce the strength of the smoothing near the points of

rapid spectral variation. We expect a variable halfwidth kernel smoother to outperform

a penalized likelihood method by the factor given in (25). Also note that the Whittle

likelihood is asymptotic and provides with no information on the amount of tapering which

should be done in a finite sample size.

3) An early adaptive multi-taper scheme was proposed in [13]. This scheme makes

the unrealistic assumption that the spectral density is S(f) in the region [f −W,f +W ]

and is (σ2 − 2WS(f))/(1 − 2W ) elsewhere, where W is a bandwidth parameter and σ2

is the variance. Furthermore, the adaptive weighting of [13] is usually computed with

the Slepian tapers, which have a fixed bandwidth, W . The goal of adaptive methods, to

reduce the bandwidth of the estimate when the spectrum is rapidly varying, is defeated by

the inflexibility of the Slepian tapers. In our previous simulations [10, 12], the adaptive

weighting of [13] has performed so poorly that we no longer consider it a viable alternative.

4) The evolutionary spectrum of Priestley [8] can be estimated by applying a two dimen-

sional kernel smoother (in the time-frequency plane) to the log-multi-tapered spectrogram

(Riedel [9]).

8 SUMMARY

We have analyzed the expected asymptotic square error of the smoothed log multi-tapered

periodogram and shown that multi-tapering reduces the error by a factor of [π
2

4 ]
4
5 for the si-

nusoidal tapers. The optimal rate of pre-smoothing prior to taking logarithms is K ∼ N8/15,

but the expected loss depends only weakly on K when 1 ≪ K ≪ Nh. A similar en-

hancement in performance has been reported by Walden [16] for estimating the innovations

variance: exp [
∫
ln[S(f)]df ].

We have proposed a data-adaptive multiple stage variable halfwidth kernel smoother. It

has a relative convergence of N−2/9, which can be improved to N−1/4 if desired by using the
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iteration method of [2]. Our multiple stage estimate has the following steps: 1) Estimate

the optimal kernel halfwidth for a kernel of (0,4) for the log-single tapered periodogram. 2)

Estimate θ̂mt(f) ≡ ln[Ŝmt(f)]−BK as described in Sec. 2. 3) Estimate θ′′(f) using a kernel

smoother of order (2,4). 4) Estimate θ(f) using a kernel smoother of order (0,2) with the

halfwidth h0(f) ≈ c|∂̂2fθ|
−2/5N−1/5.

APPENDIX: FITTED SQUARE RESIDUAL INITIALIZATION

The factor method (27) relates the optimal halfwidth for a (2,4) kernel to that of a (0,4)

kernel. To begin the kernel estimation, a halfwidth for the (0,4) kernel needs to be specified.

In [4], Müller and Stadtmüller propose to select h0,4 using a penalized goodness of fit (GoF)

method such as generalized cross-validation or the Rice criterion. In penalized goodness of

fit methods, the (0,4) halfwidth is chosen by minimizing a functional of Nh and ASR(h)

(26).

Unfortunately, these GoF functionals are often flat near their minimum and the actual

minimum can be very sensitive to noise. As a result, the halfwidth given by the GoF

methods tends to vary appreciably even when the noise is weak. Furthermore, when tapering

or multitapering is used, the residual errors are correlated and GoF methods have great

difficulty estimating the optimal halfwidth. To remedy this sensitivity problem, we fit

ASR(h) to a two parameter model prior to estimating the optimal bandwidth [11].

The fitted residual error method [11] begins by evaluating the average square residual

(ASR) (26) as a function of the kernel halfwidth. (GoF methods also evaluate ASR(h).)

For the (0, 4) kernel, the bias error is proportional to h4 our parametric model is

ASR(h) ∼ aV (h) + bh8 , (A1)

where V (h) =
∑N

j=1(µj(h)− δ0,j)
2 with µj(h) = κ(j/Nh)/h. In the large Nh limit, V (h) ≈

1 + [‖κ‖2 − 2κ(0)]/Nh. Equation (A1) represents the integral of (21) over frequency. The

first term corresponds to the bias,
∫
|Bp∂

p
fθ|

2df , and the second term corresponds to the

variance. The model has two parameters, a and b. (Note that for smoothing the log-tapered

periodogram of a Gaussian time series, a = 1.)

By parameterizing ASR(h) with (A1), we are assured of an unique minimum. The

variance of ASR(h) is of order 1
N and is practically independent of h. We determine a, b by

minimizing the weighted least squares problem:

{a, b} = argmin{a,b}
∑

hj

[
ASR(hj)−

(
aV (hj) + bh8j

)]2
, (A2)

where we use an equi-spaced grid in h. The upper and lower limiting bandwidths, hU and

hL, for the grid in h is chosen such that ASR(hU ) ≈ 2ASR(hmin) ≈ ASR(hL). The least

squares fit in (A2) is heuristic because the residual error are correlated for different values

of h.
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The ASR measures the difference between the measured values and the prediction based

on the same measured values. We wish to minimize the difference between the predicted val-

ues and new measurements. The expected value of the ASR differs from the EASE (21) by

a function of Nh. We then choose the halfwidth which minimizes our parameterized model

of the EASE: hopt =
(
a‖κ‖2/8b

)1/9
. We caution that the theoretical convergence properties

of this estimator are unknown. Nevertheless, our simulations show that this fitting proce-

dure gives more stable halfwidth estimates than penalized goodness of fit methods do. The

advantage of the fitted residual error method appears even larger when the residuals are

correlated from tapering.
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