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BOT’s Based on Nonuniform Filter Banks 
Anamitra Makur 

Abstruct- Parallels between orthogonal transforms and filter 
banks have been drawn before. Block orthogonal transform 
(BOT) is a special case of orthogonal transform where a nonover- 
lapping window is used. In this paper we relate BOT’s to filter 
banks. Specifically, we show that any BOT can be shown as a 
perfect reconstruction filter bank, and any tree-structured perfect 
reconstruction filter bank or any orthonormal filter bank for 
which no filter length exceeds its decimation factor can be shown 
as a BOT. We then show that all conventional BOT’S map to 
uniform filter banks. A construction method to design a BOT 
from any nonuniform filter bank is presented, and finding an 
optimal tree structure (in the sense of transform coding gain) 
for a given source has also been discussed. Results show that the 
optimal nonuniform BOT outperforms uniform BOT’s having 
either the same number of bands or the same size in most cases. 

I. INTRODUCTION 

LOCK orthogonal transform (BOT) is a well-established B field for decomposition and compression of signals, and 
a large number of transforms have been proposed and used 
[I], [ 2 ] .  For a given size, Karhunen-Loeve transform (KLT) is 
optimal in the sense that it decomposes a signal into maximally 
uncorrelated components, consequently producing maximum 
coding gain. However, KLT is a signal-dependent transform 
and is seldom used for real-life signals (which are without 
exception nonstationary) due to operational difficulties. Signal- 
independent suboptimal transforms, on the other hand, have 
gained popularity. 

BOT is recognized to be a special case of subband coding, 
another approach used for decomposition and compression 
of signals [2, p. 2461. A subband coder consists of a set of 
analysis filter banks (encoder) and a set of synthesis filter 
banks (decoder). Such filter banks have also been extensively 
studied [3]. Various construction methodologies for designing 
filter banks satisfying desirable properties such as perfect 
reconstruction are known, and a lot of flexibility exists in 
such designs. Transforms have been designed based on filter 
banks, for example, the discrete-time wavelet transform [4]. 
Block transforms have also been recently designed from 
filter banks [5]. In this paper we extend such methods to 
designing arbitrary BOT’s from filter banks. One freedom one 
has in choosing a filter bank is that the filter bank may be 
nonuniform (unequal decimation factors and unequal passband 
widths). It tums out that all known BOT’s are derived from 
uniform filter banks. If a BOT is to be designed based on 
any nonuniform filter bank, it is possible to design it in 
a signal-dependent manner. Such a BOT is suboptimal, but 
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being signal-dependent, may perform better than conventional 
signal-independent suboptimal BOT’s of equal size. This fact 
has been verified later in the paper. Further, the signal- 
dependence of BOT’s designed from nonuniform filter banks 
makes it possible to use them in an adaptive manner for 
nonstationary signals. It turns out that such adaptation requires 
much less overhead than adaptation of KLT. 

Another expected advantage of nonuniform BOT’s is that, 
unequal frequency resolution implies unequal time resolution 
(for a nonredundant system such as BOT). Therefore, for a 
given transform size N ,  a nonuniform BOT will have time res- 
olution less than N for at least some frequency bands, whereas 
a uniform BOT has equal time resolution of N samples in 
every band. When the transform coefficients are quantized for 
compression, a band with finer time resolution would have 
localized reconstruction error as opposed to distributed error 
over the entire block. Distributed error is known to be a 
problem in transform coding. For example, N = 32 to 512 is 
used in speech compression. If a silence period is followed by 
a sharp sound, a transform block spanning across both results 
in an audible preecho. Taking another example, even though 
small N is used for image compression, a block containing 
a sharp edge may result in some blurring of the edge. Since 
both speech and image are low-pass signals, a nonuniform 
BOT tuned to such signals has finer time resolution at higher 
frequencies (see Example 2), which is likely to produce 
subjectively better results than uniform BOT’s. 

We start with drawing the parallels between BOT and filter 
bank. Conventional BOT’s will be shown to be uniform. 
We shall then present a construction procedure to find the 
optimal nonuniform tree structure for a given signal. Finally, 
design examples and coding performance comparisons with 
the known BOT’s have been presented. 

11. BOT’S AS FILTER BANKS 

A BOT of size N is specified by N basis vectors 
bo, b l ,  + . b N - 1 ,  each being a column vector of size N .  
For an input vector xt = [zOZ~ ... z N - 1 1 ,  transform means 
decomposing z into N basis vectors, 

N - 1  

z = Bjbj = BO 
j=O 

where 6’j are scalars known as transform coefficients, 0 is 
a column vector, and B = [bob1 . . . b N - l ]  is the inverse 
transform matrix of size N x N.  The forward transform matrix 
is, therefore, A = B - l .  There are two requirements on A. 
In order to get back z from 0 (perfect reconstruction), the 
basis vectors have to be linearly independent. For efficient 

1053-587X/96$05.00 0 1996 IEEE 



1972 

Y(") 

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 44, NO 8, AUGUST 1996 

f "-1 F~-i(z) c 

Fig. 2. Conventional BOT. 

decomposition into as much uncorrelated components as possi- 
ble (which eventually results in better compression), the basis 
vectors would better be orthogonal. Note that orthogonality 
here implies linear independence. 

A subband coder with N bands has the form as shown in 
Fig. 1. Here the input sequence x ( n )  is decomposed through 
a set of filters Ho(x), H I ( Z )  . .-. H N - ~ ( z ) .  The nth band is 
subsampled by a factor m, before leaving the encoder. In 
the decoder each band is interpolated by the correspondmg 
factor, and passed through the synthesis filter I?, ( 2 )  before 
recombining to output sequence y(n). Again, there are two 
requirements on a subband system. For efficient decomposi- 
tiodcompression, the number of samples after encoding should 
not be more than the number of input samples. A nonredundant 
(also known as critically sampled) system would keep the 
number unchanged after encoding, that is, 

For perfect reconstruction (y(n) is a delayed version of ~ ( n ) ) ,  
the aliasing terms have to be zero. The alias-component matrix 
N ( z )  of size N x N is defined such that its mnth element is 
H , ( z ~ - J ~ ~ ~ / ~ ) .  Then this matrix should satisfy 

(3) 

where T denotes conjugate transpose and * denotes conjugate, 
and I is the identity matrix. Satisfying this condition means 
that the analysis filter bank H, ( 2 )  is paraunitary. The synthesis 
filters, in turn, should satisfy 

(4) F,(x) = z- '+'~,(z- l )  foro 5 n 5 N - 1 

where L is the length of the analysis filters [3]. Note that 
the perfect reconseruction requirements are for a nonredundant 
subband system. 

Now consider representing a conventional BOT A by a 
subband system. The forward transform is denoted by 

which can be written as convolution sums 
N-1 

where b,, is the ith component of the j th basis vector. This, 
therefore, can be interpreted as a filtering of ~ ( n )  advanced 
by N - 1 samples 

N-1 

q n )  = .(n + N - 1 - i)h,(z) (7) 
z=O 

where 

are the impulse response coefficients of the filter H,(z).  
Further, the sequences 8; (n)  are subsampled by a factor of N 
to get the sequences Q, (n) which are the aansform coefficients. 
In a similar fashion, the inverse transform can be thought of 
as interpolation of Q,(n) by a factor N to dy(n) followed by 
filtering through F3 ( 2 )  having impulse response coefficients 

.fi (i) = b,j .  (9) 

Fig. 2 shows the process of block orthogonal transform real- 
ized as a filter bank. Since BOT is a nonredundant perfect 
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Fig. 3. Magnitude response of BOT's. 

reconstruction system, (2)-(4) should be satisfied. Since f n  ( i )  
are of length N and orthonormal, they satisfy 

which is the orthonormality condition for the basis sequences 
of an uniform filter bank. Orthonormal filters are shown to 
be paraunitary in [6, Th. 41. We present a simpler proof here 
for BOT's. Since mn equals N for all n, (2) is satisfied, and 
any BOT is a critically sampled system. Now, (3) may be 
expressed as N 2  equations: 

N - l  

i=O 

N ,  if m = n  
= { 0, else 

For a BOT, length of each filter is N ,  and the left-hand side 
of (1 1) consists of terms of the following form: 

N-1 

i=O 

Therefore, the left-hand side of (1 1) simplifies to 

Since the decimation factor m j  of a conventional BOT 
is always N ,  it is expected that the equivalent filters would 
constitute a uniform filter bank. This can be verified for the 
popular transform. The discrete Fourier transform (DIT) is 
given by 

. (14) 

Note that ho(i) is a (real) constant for all i ,  hence, Ho(.z) is a 
(symmetric) low-pass filter. From (14), H n ( z )  for n # 0 is 

1 hn(i) = bN-l-i,n = -e-j2Tn(N--l--i)/N 

JN 

. N-1  

which turns out to be 

H n ( z )  = e j2Tn /NHo(xe -32Tn /N  1 (16) 

or a modulated version of Ho(z) ,  shifted on the frequency 
scale by (27rnlN). For n # 0 the response is not symmetric, 
hence the coefficients are complex. 

Taking another case, the discrete cosine transform (DCT) 
is given by 

(ai + l)n7r 
bin = g a ( n )  cos 2N 

where a(0) = 1 / 4  and a(.) = 1 for n # 0. Thus Ho(z) 
in this case is identical to the discrete Fourier case. Further, 
from (8) and (17), H n ( z )  for n # 0 is 

~ N-1  

+ ,-ja(2N-2i-l)n/2N),-i 

N-1  

i=O 
N-1 1 

Neglecting the phase terms, the filter is the sum of two 
symmetrically modulated versions of the lowpass filter, shifted 
on either side of the frequency scale by ( x n / N ) .  Since the 
response is symmetric, the coefficients are real. Note that well- 
known modulated filter bank or pseudo-QMF filter bank has 
a similar form [7], 

from the orthonormality condition, and hence, the filters Hj ( 2 )  

are paraunitary. From (8) and (9) it is clear that the synthesis 
filters also satisfy (4). 
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Fig. 4. (a) A tree-structured filter bank. (b) Equivalent nonuniform filterbank. (c) Equivalent BOT system. 

where h(i)  is a low-pass prototype, and L = 2mN is the 
length of the filters. It is known that choosing h(i)  to be 
a constant and 8, to be 7r/2 not only satisfies the perfect 
reconstruction condition but also is a good choice for small m 
[7, Eqs. (30), (34), (35)]. Thus the discrete cosine transform 
turns out to be an extension of cosine-modulated perfect 
reconstruction filter bank for L = N .  

Discrete Hadamard transform (DHT) is another known BOT 
existing only for integer powers of 2, using the following 
recursion formula: 

for nonnegative integer n, where AI = 1. This turns out to be 
a binary tree structured filter bank with A2 decomposing each 
node, where the basic filters are Go(.) = 0.707 + 0 . 7 0 7 ~ ~  
(low pass) and G l ( z )  = ~-~Go(-x-l) (highpass) [5].  The 
recursion of (20) produces the kth filter 

where { i ~ i l  . . . &I} is the binary representation of IC. Since 
this is repeated splitting of each band into two halves, the 
resulting bands are uniform. 

The KLT is signal-dependent, hence cannot be considered in 
general. However, for an AR( 1) process with autoregressive 
coefficient bl + 1 the eigenfrequencies are asymptotically 
uniformly distributed from 0 to n, and the eigenfrequencies 
somewhat denote the center frequencies of the filters. Fig. 3 
shows the magnitude responses of the filter banks obtained for 
various BOT'S for N = 8. The KLT is for an AR(1) process 
with coefficient b l  = -0.95 (example 3). 

111. NONUNIFORM BOT 
On the other hand, it is not always possible to represent any 

critically sampled perfect reconstruction subband system by 
an equivalent BOT. In [5 ] ,  any perfect reconstruction uniform 
filter bank is folded to generate a BOT, which turns out to be 
same or very similar to DHT. In Appendix I, we show that 
the folding works only for equal decimation ratios and not for 
unequal cases. 

However, with one restriction, we can achieve the equiv- 
alence. The length of each filter H 3 ( z )  may at most be 
the decimation factor m3. If the length exceeds m3, then 
subsequent samples of the encoded sequence 8, (n) would not 
be independent even if input sequence z(n)  were memory- 
less, and we cannot express them as results of memoryless 
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be fi since m,'s satisfy (2). Also, length of each filter is 
fi or less. All filters derived from a single F,(x) are clearly 
orthonormal. Now consider two filters k,(.) and k k ( z )  such 
that n < (k /mo) and k = (&/mo) + 1 where 1 < ( f i / m ~ ) .  
It follows that 

- 1  I 

Fig. 5. Equivalent filter bank of Fig. 1. 

forward transform of (5). However, we may keep our attention 
only to the case where the length is equal to m3 since a 
length smaller than m3 is possible only in cases separable 
to smaller transform sizes. For example, consider the tree- 
structured filter bank shown in Fig. 4(a). This would be a 
perfect reconstruction system if each component system is a 
perfect reconstruction system. Assume the length of the filters 
Ho,(z) to be p and that of Hl, (z )  to be q. This system has 
p + q - 1 nonuniform bands, which may be shown as an 
equivalent nonuniform filter bank of Fig. 4(b). Here, H,(z) = 
Hoo(z)H1,(zp) for i = 0 to q - 1, and H,(z)  = H O , , - ~ + ~ ( X )  
fori  = q top+q-2. Note that lengthof Hl,(zp) is (q-l)p+l; 
therefore, the length of H,(x) would be p q  for i = 0 to q - 1 
and p for the rest. Fig. 4(c) shows another equivalent form of 
the same filter bank where all decimation factors have been 
made equal. Here, G,(z) = H,(z) for i = 0 to q - 1, and for 
i > q - 1, the filters are given by 

M M 

Zml) = 0 (25) 

from (23), hence they are orthonormal. Therefore, the system 
can be expressed as a BOT of size fi. Since a tree-structured 
perfect reconstruction filter bank forms an orthonormal basis 
[6, Th. 31, it follows that any such filter bank with proper 
lengths is equivalent to a BOT. The class of wavelet packets 
with orthonormal basis, however, is more general than tree- 
structured filter banks, as shown in the following example. 

Example I :  Consider a depth-2 binary tree-structured sys- 
tem with 

1 1  1 1  
Ho(z) = - + -2-l and H l ( z )  = - - -zP1. J z f i  f i f i  

This is a filter bank with four uniform bands, as shown in 
Fig. 6(a). Suppose we wish to have three bands as shown 
in Fig. 6(b). Noting that H l ( z 2 )  has the desirable shape of 
the middle band, we may use it. Since H1(z2) has length 3, 
z-'H1 (z') cannot be used; instead, z-'Hl (z ')  has to be used. 
Therefore, the equivalent filters are 

Go(.) = HO(.)HO(.') 
G1(.) = HI (2') 

G ~ ( z )  =z-lH1(z2)  G,(z) = Z-(zmodq)PH n-l+Lz/qJ ( 2 ) .  (22) 
G3(Z) = H1(.)H*(Z2). (26) 

Note that each filter is of length pq  or smaller, and there are 
p q  bands with a decimation factor of pq. This being a perfect 
reconstruction system, the filters G, ( z )  must satisfy equation 
(13). Hence, their impulse response vectors are orthonormal, 
and can be expressed as a BOT of size pq. In a similar fashion, 
any general tree-structured perfect reconstruction filter bank 
may be expressed as a BOT, so long as it satisfies the constrain 
on filter length. GI(.) = 

It turns out that a wider class of filter banks may be 

G2(z) = expressed as BOT. If the basis functions of a filter bank 
as shown in Fig. 1 are orthonormal and of length equal to 

This is a perfect reconstruction system with three bands, but 
cannot be expressed as a tree structure. The reason it is perfect 
reconstruction is as follows. The second and third bands in 
Fig. 6(a) are H0(z)H1(z2) and Hl(z)Hl(z2). For our choice 
of initial filters, note that 

Ho(z)&(z2) + & ( Z ) f w )  

Jz 
Jz 

respective decimation factor, then it is equivalent to a BOT. 

context of wavelet packets is given by a modified form of (10) 

Since the filters of Fig. 6(a) are perfect reconstruction, from 

struction. 

Orthonormality Of basis (Of length) in the (27) it follows that the filters of (26) are also perfect recon- 

1, i f n = k , p = q  The above example was motivated from [6, fig. 131, where 
another example of a perfect reconstruction filter bank that 
cannot be expressed as a tree structure has been provided. 
Appendix I1 shows the transform matrix obtained for that 

(23) { 
00 

fn(i-Pmn).G(i-qmk) = 0 ,  else. 
2 = - m  

Taking fi = lcm{mo, ml , .  . . 
thesis filters example. 

define a set of syn- 

Pn(z> = Z - ~ ~ O F O ( Z ) ,  

P(&/mo)+,(z) = X - ~ ~ ' F I ( . Z ) ,  
for o 5 n < ($/mo) 
for 0 5 n < (&T/ml) (24) 

Iv .  OPTIMUM TREE STRUCTURE FOR A SOURCE 
Since a nonuniform BOT matrix can be constructed from 

and so on. Each filter is associated with an interpolation factor 
of N .  Note that this system, shown in Fig. 5, is equivalent 
to the system of Fig. 1. Clearly, number of such filters would 

any tree-structured filter bank with restricted length, a large 
number of choices exist for designing a BOT of a given size. 
In this section we discuss how one may go about choosing 
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Fig. 6. (a) Full tree-structured system. (b) Desired response of Example 1. 

the BOT which is expected to produce maximum transform 
coding gain. 

In the context of signal compression, maximum coding gain 
(in dB) for an orthogonal transform A of size N x N is given 
by U1 

~ N-1 
1 

= log o; - - log 0; 
k=O 

N 

where C T ~  is the variance of 01, (n)  of Fig. 2, and 0; is the input 
signal variance, which is independent of A. Therefore, in order 
to maximize GA, one needs to minimize C F i i  log 0;. The 
design procedure, therefore, involves estimating D:, and find- 
ing the tree structure that minimizes the above cost function. 

Note that each level of a tree-structured filter bank consists 
of an uniform filter bank. Assuming brickwall filters, the 
passband for some resulting filter & ( x )  (say, of Fig. 4(b), 
N = p q )  spans from s r / N  to t x /N  for some integers 
0 5 s < t 5 N .  Consider an uniform filter bank of N bands. 
We can estimate o; for this case as 

where Szz(e jw)  is the power spectral density of ~ ( n ) .  Then, 
o$ for Hn(x) is given by 

t-1 . -  

0: =E*; 
From equation (22), o: for the filter G,(z) of Fig. 4(c), 
which is derived from H, ( x ) ,  would then be 

1 t--l 
a? 02 = - ‘‘2 om = 

2 = s  
t - s  t - s  

This is the key equation to be used for estimating the trans- 
formed coefficient variances. 

Any tree-structured filter bank may be considered as a 
pruned subtree of a full tree (uniform filter bank). For example, 
the full tree corresponding to the filter bank in Fig. 4(a) would 
be a depth-2 tree, with first level splitting to p nodes and 

second level splitting to q leaves each. Note that each leaf 
of the full tree should have equal decimation factor, but it 
is not necessary that they be at equal depth. The number 
of leaves in a pruned subtree refers to the number of bands 
(channels) in the subband system. Thus the problem becomes 
of finding the pruned subtree with a given number of leaves 
that minimizes the cost function mentioned above. The pruning 
process involves replacing all the children of a node by the 
node itself, when all children were leaves. This is equivalent 
to eliminating a “level” of filter banks from a branch. The 
minimization can be achieved using the generalized version 
of Breiman, Friedman, Olshen, and Stone (BFOS) algorithm, 
which is a greedy (hence, simple) but optimal algorithm to 
optimize any monotonic lineadaffine tree functional. Using 
the notation of [2, p. 640 ff.], denote by T the full tree, and 
by the set of leaves of T.  Let S be a pruned subtree with S 
its set of leaves. Define two tree functionals (cost functions) 
associated with a leaf t as ul(t)  = 1 and uz(t)  = logo:, 
where 0,” is the estimated coefficient variance for the band 
corresponding to t. The cost of a tree or subtree is the sum of 
the costs of its leaves, for example, 

% ( T )  = C u i @ )  (32) 
E T  

for i = 1,2.  Note that for this choice, u l ( T )  is the number 
of bands and u2(T)  is the coding gain or the desired cost 
function. Pruning involves removing all children t l ,  . . . , t ,  
of some internal node t’ when each child t ,  was a leaf, and 
changing t’ to a leaf. Using (30) and (31), the tree functionals 
for such an internal node t’ may be defined as 

Thus, u1() and u2() maintains their respective interpretation 
even for a pruned subtree. To see that u2 (t‘) is the contribution 
of t’ to coding gain, observe that C o;% denotes that t’ has 
a passband width equal to the sum of passband widths of 
tzs, the scaling 1/n comes because there will be n times 
more coefficients from t’ than from t,, and the outer factor 
of n denotes that length of the filter for t’ is n times smaller 
than that for t,s (hence, the number of basis vectors t’ will 
contribute is n times more than each t, contributes). Note that 
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Fig. 7. A pruned subtree. 

if S2 is a subtree of ,571, then IS21 < 131 1, hence u1() is a 
monotonically increasing functional. In addition, since 

u2() is a monotonically decreasing functional (coding gain 
falls with less number of bands). Now, for a prunable node 
t’, the slope 

X(t’) = -A~z( t ’ ) /Aul ( t ’ )  (35) 

(where A denotes change due to pruning at t‘) denotes the 
increase in the coding gain per reduced band. The generalized 
BFOS algorithm may now be applied which, at every step, 
prunes at the node t that has the smallest X(t). There is a slight 
addition required if we desire to find the best pruned subtree 
with an arbitrary N leaves. At each step, some pruning may 
not be allowed if that results in a number of leaves from which 
N cannot be achieved. For example, consider the subtree in the 
nth iteration to be the tree in Fig. 7, having number of leaves 
N ,  = 15 while the desired number of leaves is, say, N = 11. 
Therefore, we cannot prune at either tl of t 2 ,  since that would 
result in NnS1 = 12 from which N = 11 is unachievable by 
any pruning. While resolving whether to allow pruning or not 
is nontrivial in general, for most cases of interest it is likely 
to become trivial, or can be found out by a systematic search. 

For the sake of completeness, we are reproducing the 
algorithm that finds the best pruned subtree with a desirable 
number of leaves for a given full tree with estimated coefficient 
variances. 

Input Full tree T 
Variance (T: for each leaf t E T 
Desired number of leaves N 

Initialization Iteration index n = 0 
Tree SO = T ,  number of leaves NO = IT1 
Set of all prunable nodes P = {parent of t E f’} 
Array of number of leaves reduced by pruning at 
p ,  D = { S ( p ) :  p E P }  where S ( p )  = n - 1 if p has 
n children 
Array of variances V = {oi: p E P }  using the 
relation: 

where tl to t ,  are the children of p 
Iteration-n If pruning at some p E P makes it 

impossible to subsequently reach N leaves, remove p 
from P, S ( p )  from D ,  and gp” from V 
If P is empty, terminate 
Find the node with minimum cost p* E P such that, 
from (35), 

(37) 

is minimized by p* 
Prune at p* to get S,+l from S,, N,+l = N, - S(p*) 
Remove p* ,  S ( p * )  and 0:- from P, D and V 
Say t is the parent node of p* .  Check if all children of 
t are leaves in s,+~ or not. If yes, compute gz using 
(36) and add t ,  S ( t )  and g; to P, D and V 

V. SIMULATION RESULTS 

In this section we present design examples for a few sources 
for some given full tree and the desired number of bands, 
and compare the performance of the nonuniform BOT’s with 
the conventional uniform BOT’s. We shall use the following 
notations. A nonuniform BOT denoted by [ j 1 j 2  . . . j ~ ]  has N 
passbands ideally extending {O-jlr/No}, { j lr /No-( j~ + 
j2)r/No},  etc., with the full tree having No leaves. For 
a uniform BOT, its subscript denotes the size. Thus, while 
DCTc is the DCT of size 6, DCT2.3 is a full tree of depth-2 
with first level splitting to 2 nodes using DCT2 and second 
level splitting to 3 leaves each using DCT3. For each BOT, 
we show the block size (No x No) in the second columns, and 
the computation required in terms of the average number of 
taps (multiplications) per sample in the third columns (which is 
more than or equal to 1/Noth the number of nonzero elements 
in the transform matrix). The special structure of transforms 
like DCT or DFT is not considered for either case (nonuniform 
and uniform). 

The theoretical coding gain for each BOT, obtained using 
(28) but in absolute unit (without the logarithm), is shown 
in the fourth and fifth columns. For the fourth column, the 
variances are estimated using (29) which assumes brickwall 
filtering. For the fifth column, the actual variances are com- 
puted by simulating the source and using the BOT. Actual 
coding gain is shown in the last column. The simulated 
source is transformed and quantized. Optimal bit allocation, 
approximated to nonnegative integer, is done using the esti- 
mated variances for quantizers of various bands. All quantizers 
are pdf-optimized to Gaussian pdf (since all our sources are 
Gauss-Markov sources), and scaled by the square-root of the 
estimated variance of the band. The coding gain denotes the 
ratio of the reconstruction error variance in transform coding, 
to that in scalar quantizing, the same sequence using the same 
rate (in this case 3 b/sample). For KLT, uniform bands have 
been assumed. 
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Fig 8 Full tree alternatives for Example 2. 

Fig. 10. Magnitude response of the nonunlform BOT of (38). 

TABLE I 
PERFORMANCE COMPARISON FOR EXAMPLE 2 

Si7e Taps per Theoretical Gain Sample Gain Transform 

(estimated) (computed) 
Nonuniform 
[3 1 1 11 6 x 6  4 4.56 3.24 3.42 
[l 1 131 6 x 6  4 10 44 6 28 5.66 

[2 1 1 21 6 x 6  3 7.23 4.80 4.60 
1 1 1 2 2 1  6 x 6  3 10 39 6.34 5.25 

bl = 0495 and a Gaussian pdf for the input noise. Consider ~ T s  6 x 6  6 10.54 7.10 6.55 
a full tree of depth-2 having six leaves, and the desired DCT6 6 x 6  6 10.54 706  651 

6 x 6  6 10 54 6 28 5.51 
6 x 6  6 10.54 6.34 5.21 number of bands is N = 4. Note that there can be DCT2X3 

two alternate structures for T ,  shown in Fig. 8. The first DFTS 6 x 6  6 10.05 5.68 490 
alternative has two possible pruned subtrees with four leaves, KLT~ 4 x 4  4 9 62 5.83 5.81 
13 1 1 11 and 11 1 1 31. The second alternative 

W 

Fig. 9. Normalized power spectral density for Example 2. [2 2 1 I] 6 x 6  3 7 14 4.79 4 I 1  

Example 2: Consider an AR( 1) process with coefficient Uniform 

DCT3 x 2 

Example 3: Consider another AR(1) process with 
coefficient b l  = -0.95 with Gaussian input noise. T is 
the full binary tree of depth-3 (NO = 8) and N is four. 
There are 5 possible pruned subtrees-[l 1 2 41, 
[2  1 1 41, [4 1 1 21, [4 2 1 11 and 
[2  2 2 21. The generalized BFOS algorithm chooses 
[4 2 1 11 as the best subtree. Here the full tree is 
DHTa, and we have also included KLT4. Table I1 shows 
the performance comparison for each subtree as well as 
for uniform BOT’s. Note that here the 4-band nonunifom 
transform optimized to the source ([4 2 1 11) performs 
better than the 4-band optimal transform (KLT4) for 
that source. This is not a contradiction since for N-band 
nonuniform transform, the filter lengths are generally longer 
than N.  Further, the best nonuniform BOT outperforms all 
but the optimal of the known uniform BOT’s of equal size 
DCTa, DFTa and DHTg-using only half the number 
of taps on an average. This is because, DCT is known to 
perform poorly when bl is negative. DFT, actually has only 
n/2 + 1 bands. While DHT should have performed as good 
as the nonuniform BOT, approximations in bit allocation has 
marginally lowered its performance. Nonuniform transforms 
have same or lower number of taps per sample than uniform 
transforms. The BOT matrix for the best nonuniform case, 
[4 2 1 11, is given in (39) at the bottom of the next page, 
whose magnitude response is shown in Fig. 11. Note that this 
is an example of block wavelet transform with dyadic tree. 

Example 4: Now we take an AR(2) process with coef- 
ficients bl = O.1,bz  = 0.56 (poles at -0.7, 0.8). Take 
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Fig. 11. Magnitude response of the nonuniform BOT of (39) 

TABLE I1 
PERFORMANCE COMPARISON FOR EXAMPLE 3 

~~ 

Simulated Size Taps per Theoretical Gain Gain Sample Transform 

(estimated) (computed) 
Nonuniform 
[ I  1 2 4 1  8 x 8  4 3.48 3.32 3.68 
[2 1 1 41 8 x 8  4 3.49 3.31 3.67 
[4 1 1 21 6 x 8  4 5.98 5.54 6.57 
[4 2 1 I ]  8 x 6  4 7.21 6.67 7.96 
[2 2 2 21 8 x 8  4 5.96 5.54 6.56 
Uniform 
KLTX 8 x 8  8 7.35 8.31 9.20 
DCTx 8 x 6  8 7.3s 3.37 1.06 
DFTH 8 x 8  8 7.09 6.32 6.49 
DHTx 8 x 8  8 7.35 6.67 7.80 
KLT4 4 x 4  4 4.75 6.10 6.71 

No = 4 and desired bands N = 3. Possible systems are 
[2 1 11, [l 2 11 and [l 1 21, of which the second one 
may not be generated using a tree structure, but the transform 
matrix of Example 1 may be used. Table I11 compares the 
performances of each subtree as well as of uniform BOT’s. 
Here the best nonuniform BOT, [I 2 11, performs equal to 
the best uniform BOT, DFT4. In fact, they happen to be the 
same since (40) is DF’T4 of [l ,  Eq. (12.150)]. KLT4 fails to 
perform as well due possibly to integer bit allocation. Thus in 
this case the nonuniform BOT equals or betters any other BOT 
performance. The resulting transform matrix for [I 2 11 is 
given in (40), whose magnitude response is shown in Fig. 12. 

0.5 0.5 0.5 
0.707 0 -0.707 ] (40) 

A =  [ 0 0.707 0 -0.707 
0.5 -0.5 0.5 -0.5 

W 

Fig. 12. Magnitude response of the nonuniform BOT of (40) 

TABLE I11 
PERFORMANCE COMPARISON FOR EXAMPLE 4 

~ ~ 

Simulated 
Gain Size Taps per Theoretical Gain Sample Transform 

(estimated) (computed) 
Nonuniform 

1.27 1.35 [I  2 11 4 x 4  3 1.42 
[1 1 21 4 x 4  3 1.29 1.19 1.26 
Uniform 
U T 4  4 x 4  4 1.42 1.27 1.29 
DCT4 4 x 4  4 1.42 1.23 1.27 

1.27 1.35 D m 4  4 x 4  4 1.42 
DHT4 4 x 4  4 1.42 1.27 1.29 
U T 3  3 x 3  3 1.31 1.19 1.22 

[2 1 11 4 x 4  3 1.16 1.10 1.00 

VI. CONCLUSION 

It has been shown that any BOT can be expressed as a 
perfect reconstruction filter bank. The reverse, however, is 
not true. When the length of each filter does not exceed its 
decimation factor, then it has been shown that any orthonormal 
(or tree-structured perfect reconstruction) filter bank can be 
expressed as a BOT. A method to arrive at an equivalent 
BOT from any such filter bank has been presented. Popular 
BOT’s such as DIT, DCT, and DHT have been shown to 
consist of uniform filter banks. The extra freedom in choosing 
a nonuniform filter bank can be exploited to design a BOT 
appropriate for a given source. For this purpose, a simple way 
to estimate the coding gain has been suggested, and a known 
algorithm has been used to find the optimal tree structure. 

The results from a few case studies allow us to draw the fol- 
lowing conclusions. The estimates for relative coding gain of 
nonuniform BOT’s match with simulation results. Nonuniform 
transform performs same or better than the popular uniform 

A =  

0.707 0.707 0 0 0 0 0 0 
0 0 0.707 0.707 0 0 0 0 
0 0 0 0 0.707 0.707 0 0 
0 0 0 0 0 0 0.707 0.707 

0.5 -0.5 -0.5 0.5 0 0 0 0 
0 0 0 0 0.5 -0.5 -0.5 0.5 

0.354 -0.354 0.354 -0.354 -0.354 0.354 -0.354 0.354 
.0.354 -0.354 0.354 -0.354 0.354 -0.354 0.354 -0.354 

(39) 
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-a a a a a a 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 a a a a a a 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 a a a a a a  
e - h  e - f - g - f  0 0 0 0 0 0 0 0 0 0 0 0 
0 0  0 0 0 0 e - h e - f - g - f O  0 0 0 0 0 
0 0  0 0 0 0 0 0 0 0 0 0 e - h e - f - g - f  
a 0 - a a  0 - a a 0 - a 0  0 0 0 0 0 0 0 0 
0 0  0 0 0 0 0 0 0 a 0 - a a  0 - a a  0 - a  
b o - b 0  0 0 - b 0  b 0 0 0 0 0 0 0 0 0 
0 0  0 0 0 0 0 0 0 b 0 - b 0  0 0 - b 0  b 
c O - C - ~ O  d c 0 - C O  0 0 0 0 0 0 0 0 
0 0  0 0 0 0 0 0 0 c 0 - C - d 0  d c 0 - c  
f g f - e h - e O O O O O O 0 O 0 0 0 0  
0 0 0 0 0 0 f g f - e h - e 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 f g f - e h - e  
~ - d ~ - ~ d - ~ 0 0 0 0 0 0 0 0 0 0 0 0  
0 0  0 0 0 0 c - d c - c d - c o  0 0 0 0 0 

- 0 0  0 0 0 0 0 0 0 0 0 0 c - d c - c d - c  

transforms having same size (more bands) in most cases, while 
requiring same or lower number of taps per sample than the 
latter. Nonuniform BOT performs better than the optimum 
uniform BOT having equal number of bands (smaller size) 
in most cases, too. Therefore, nonuniform BOT’S are seen 
to be very promising for compression of signals. It would 
be of interest to explore such nonuniform transforms for 
compression of real signals in fixed or adaptive manner. 

APPENDIX I 

In [ 5 ] ,  a set of filter banks as in Fig. 1 with equal decimation 
ratios m; = N is considered. The filters H,(z) are of length 
K. Since K may be larger than N ,  the filters are folded to 
length N in order to generate a BOT. If f i , (z)  denotes the 
folded filter, then 

L,(i) = h,(i + j N )  
j 

for i = 0 to N - 1. Without loss of generality, assume 
K = MN. Define 

for m = 0 to A4 - 1. Since H,(z) are perfect reconstruction 
bank, they satisfy relation (10). To show that I?,(.) are also 
perfect reconstruction bank, note that 

/M-1 \ /M-1 \ t  

m = O  m=O 

M-1 M-1 
= 

m=O p=O 

M-1 M-1 

m=O p=o 

M-i r 

p=o L a 
1 

a 

= 1. 

Similarly, when n # I C ,  we get 

(43) 

1 

i 
= 0. 

For a nonuniform filter bank, the decimation ratios 
are not equal. Hence, folding does not preserve 
the perfect reconstruction property. For example, 
filters H l ( z )  = [0.1294 0.2241 -0.8365 0.48301 
with decimation ratio 2, and Ho(z)H1(z2) = 
[0.0625 0.1082 0.1372 0.1707 -0.3538 -0.7287 0.0458 
0.5123 0.1082 0.06251 with decimation ratio 4 
(obtained from Daubechies basis N = 2 [8]) ,  are 
orthonormal. But fil(z) = [-0.7071 0.70711 and 
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Ho(z;T?il(x2) = [-0.1831 -0.6830 0.1831 0.68301 are 
clearly not orthonormal. The reason is, folding does not 
preserve the shape (passband) of a filter. Since folding of 
an uniform filter bank preserves orthonormality, the result is 
another uniform filter bank (even though some filters switch 
bands). For a nonuniform filter bank, switching of bands 
results in nonorthogonality after folding. 

APPENDIX I1 
For the following choice of initial filters 

1 1 -1 C&) =Do(x)  = 

1 1  
CI(Z) =Dl(.) = - - -z-2 

6 J z  

the filter bank of [6, Fig. 131 is equivalent to the following 
BOT of size 18x 18 following relation (24), as shown in (46) 
at the top of the previous page. Here 

1 1 1 1 
a=-  b y -  e = -  d = -  &’ 2’  a’ &> 

d - a  
and h = ___ 

a - c  d + a  g = -  
6‘ Jz’ f = -  

fi’ Jz’ 
a f c  e=---- 
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