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Length- and Cost-Dependent Local Minima 
of Unconstrained Blind Channel Equalizers 

Ye Li, K. J. Ray 

Abstract-Baud-rate linear blind equalizers may converge to 
undesirable stable equilibria due to different mechanisms. One 
such mechanism is the use of linear FIR filters as equalizers. 
In this paper, it is shown that this type of local minima ex- 
ist for all unconstrained blind equalizers whose cost functions 
satisfy two general conditions. The local minima generated by 
this mechanism are thus called length-dependent local minima. 
Another mechanism is generated by the cost function adopted by 
the blind algorithm itself. This type of local minima are called 
cost-dependent local minima. It shall be shown that several well- 
designed algorithms do not have cost-dependent local minimum, 
whereas other algorithms, such as the decision-directed equalizer 
and the stop-and-go algorithm (SGA), do. Unlike many existing 
convergence analysis, the convergence of the Godard algorithms 
(GA’s) and standard cumulant algorithms @CA’s) under Gauss- 
ian noise is also presented here. Computer simulations are used 
to verify the analytical results. 

I .  INTRODUCTION 

LIND channel equalization is a useful tool for the re- B moval of intersymbol interference (ISI) in digital com- 
munication systems when training sequences are costly or 
impractical. Blind (adaptive) channel equalization algorithms 
are usually designed to minimize cost functions based on 
statistics of channel output signals. If the underlying cost 
function of an algorithm has local minima in addition to the 
global one(s), undesirable local convergence becomes possible. 

As discovered in [4], local convergence of baud-rate blind 
equalization algorithms may be the result of two different 
causes. One cause is the standard use of finite length equalizer 
filter. As will be shown in this paper, this kind of local 
minima exist for all finite length baud-rate blind equalizers 
without filter parameter constraint. They are thus called length- 
dependent local minima. Another kind of local minima result 
from poor selections of cost functions. They can exist even 
under the ideal “doubly infinite” [4] equalizer filters. Local 
minima generated by this mechanism are called cost-dependent 
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local minima. The latter kind of local minima do not exist for 
well-designed cost functions. 

Due to the recent upsurge of interest in blind equalization, 
many different adaptive algorithms have been proposed. The 
Sato algorithm (SA) [18] was the first known blind equaliza- 
tion algorithm. It was later generalized by Benvenite, Goursat, 
and Ruget [ l]  into a set of what we call “BGR algorithms” 
(BGRA). It has been proved in [SI that both length and cost- 
dependent local minima exist for SA and the BCRA [SI. The 
local convergence of the decision directed equalizer (DDE) 
and the stop-and-go algorithm (SGA) [17] has been analyzed 
in [11], [14], and [IS]. Since the DDE and SGA are identical 
to the SA for channels with binary inputs, their cost-dependent 
local convergence is also given by [ 5 ] .  

On the other hand, the Godard algorithms (GA’s) are a 
different generalization of the SA by Godard [lo]. The Godard 
algorithm was later extended into a set of Shalvi-Weinstein 
algorithms (SWA’s) [25], [26]. Both the CA and SWA are 
well-known and effective algorithms. The analysis of GA is 
given in [ 3 ] ,  [4], and [7]. It is shown in [3] that Godard cost 
function also has length-dependent local minima (LDLM), but 
it has no cost-dependent local minima (CDLM) [7]. Based on 
results in [ 121 that a one-to-one correspondence exists between 
the minima of the GA and SWA, the SWA has the same 
convergence performance as the GA. 

Although some convex cost functions can be designed 
for adaptive blind equalizers under specific parameter con- 
straints [23], [24], [27] to avoid local convergence, these 
algorithms tend to be rather slow due to their I ,  nature of 
the cost functions. For equalizer filters without constraints, 
convergence analyzes of [3]-[5], [12], [14], and [I51 have 
shown LDLM to exist for many known algorithms such 
as BGRA, SA, GA, SWA, SGA, and DDE. Therefore, a 
natural question is whether or not it is possible to design 
good cost functions so that LDLM do not exist even for 
the common unconstrained FIR equalizer filters. Moreover, all 
the above convergence analyzes of blind algorithms are based 
on the noiseless channel assumption for analytical simplicity. 
There are no analytical results under noise yet. In fact, there 
have been some conjecture that channel noises may help 
equalizer parameters to escape some shallow local minima. 
Since channel noise is present in all practical communica- 
tion systems even it is often small, convergence analysis 
of blind equalization algorithms must be carried out under 
channel noise. In this paper, we address these two important 
questions. We will study whether LDLM can be eliminated 
by general blind equalizers under no parameter constraints. 
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Fig. 1. Baseband representation of PAM communication system. 

We will also study the equalizer convergence under channel 
noise. 

This paper is presented as following. In Section 11, we 
briefly introduce the pulse amplitude modulation (PAM) blind 
equalization system. In Section 111, we show that LDLM 
will be present for blind equalization algorithms whose cost 
functions satisfy two general conditions without equalizer 
parameter constraints. In Section IV, we show that the standard 
cumulant algorithm (SCA) has no CDLM. We then study the 
global convergence of GA and SCA under white Gaussian 
noise and derive the mean square error (MSE) for the system 
output at the desired global convergence. Next, we demonstrate 
the existence of CDLM for DDE and SGA under nonbinary 
channel input signals in Section V. Our analysis results are 
confirmed by computer simulations in Section VI. 

11. ]BLIND EQUALIZATION 

A. Equalization in Digital Communication Systems 

Without loss of generality, we consider a baud-rate sampled 
baseband representation of the pulse-amplitude-modulation 
(PAM) communication system as shown in Fig. 1. A sequence 
of independent, identically distributed (i.i.d.) digital signal 
{a, E R} is sent through a channel h,, exhibiting linear 
distortion. The resulting output signal x, can be expressed as 

where wn is additive channel noise. We will assume that the 
channel 

H ( w )  2 h,e-jnw 

is bounded-input-bounded-output (BIBO) stable, which im- 
plies that E, Jh,l < (m. 

11 

A linear channel equalizer 

n 

is applied to the channel output {x,} in order to eliminate 
the ISI. For the equalizer to be BIBO and practically im- 
plementable, it is necessary that E,, / O n /  < W .  The equalizer 
parameters { 0,) are subject to adaptation via some algorithm 
to be determined. If we let 

(2.2) 
a S(w) = H ( w ) O ( w )  = s,e-JnL 

11 

Decision 

Algorithm 

Fig. 2. Diagram of typical blind equalization system 

then 

k. 

The overall channel-equalizer system is obviously also BIBO 
E,, Ism1 < 00. 

From Fig. 2, the equalizer output can be written as 

(2.4) 

In the above expression, we have ignored the channel noise. 
Our analysis on noise effect will be presented in Section IV-B. 

In blind equalization, the original sequence is unknown to 
the receiver except for its probabilistic or statistical properties 
over the known alphabet A, .which is real for PAM and com- 
plex for quadrature amplitude modulation (QAM). Usually, 
this signal constellation A is symmetric, resulting in symmetric 
statistics for the i.i.d. input data. Thus, the recovered data 
from blind equalization will be similarly subjected to a sign 
ambiguity, and the best possible result is 

H ( w ) O ( w )  = + P - J T L d w ,  (2.5) 

for some integer n d .  

B. Adaptive Blind Equalization Algorithms 

Adaptive blind equalization algorithms are typically 
designed to minimize well-defined statistical cost functions 
through unconstrained optimization of equalizer parameters 
8,. Cost functions are based on statistics of equalizer 
output yn,  which can also be viewed as functions of 
{. . . ,  s-1. .so, sir.. .}. As stated in (2.5), the cost functions 
should be designed to have global minimum points at 

{s,} = * { S [ n  - n,l]} foir all n d  = 0, &I, f-2, .  . . (2.6) 

to attain perfect equalization. 
The GA [lo], which is also known as the constant modulus 

algorithm (CMA), is one such widely used algorithm. The 
algorithm adjusts the equalizer parameter {e,} by minimizing 
the Godard cost function defined as 

Let C& be the pth-order cumulant of y, defined as 
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The SCA's [6] are defined by minimizing the cost function 

a P s c . ~ ( ~ )  = - IC;: I subject to I = I where m > 1. 

(2.9) 

As shown in [26], the SWA [25] is a special case (vi = 2) 
of the SCA. 

Adaptive algorithms are typically obtained as stochastic 
gradient descent method to minimize the cost function. Given 
a cost function that can be written as 

an on-line adaptive equalization algorithm adjusts the param- 
eters of the equalizer via 

Fig. 3. Geometric structure of unique global minimum cones. ep+" = d i n )  - p,q+Jrl):~,-k, k = 0, *l, f2,. ' ' . 
(2.1 1) 

A. Useful Definitions 

We first introduce several useful notations and definitions. 
Let !l(R) denote the set of all real sequences U = 
{.  . . ,71,-1. U()+ ~ 1 . .  .} with finite B1-norm, i.e., 

Here, p is a small adaptation step size, and $(.) is sometimes 
referred to as the error function. 

Some blind equalization algorithms are directly defined 
from (2.1 1). Let 

The BIB0 assumption implies that 
If w(yT1) = 1 for all yrl in (2.12), then (2.1 I )  is the DDE [15]. a If 7 1 ~ ( y , ~ )  is defined as h = ( . . .  . h _ l , h o . h l . " . )  E P 1 ( R ) ,  

the algorithm defined by (2.11)-(2.13) is the SGA [17]. 
In addition to the above algorithms based on nonconvex 

cost functions, some convex cost functions have also been 
presented for blind equalization that necessarily require pa- 
rameter constraint(s) to avoid trivial solutions [23],  [24], [27]. 
Although constrained convex cost minimization avoid the 
problem of local minima, they are far from ideal in terms of 
bias and the speed of convergence. Because their convergence 
behaviors are well regulated due to convexity, we only deal 
with the unconstrained blind equalization algorithms in this 
paper. 

111. LENGTH-DEPENDENT LOCAL 
MINIMA IN BLIND EQUALIZATION 

The cost function can be expressed in terms of s or 0 as a 
functional on P (R). 

The hyperball @(o ,  p )  with center o and radius p is defined 

(3.5) 

as 

@(o,p )  = {s E t l (R):  11s - 011 I p } .  

The unique global minimum cones are defined as 

S: 2 {s  E B1(R): s, > 0 and s, > I s k /  for all k # n,) 

(3.6) 
a s,; 1 {s: -s  € s:}. 

The geometric structure of unique global minimum cones is 
shown in Fig. 3. 

Their boundaries are, respectively, given by 

B: e {s E !l(R): sn > 0 and sn  2 l sk l  

Since finite parameterization is a practical necessity for 

terization may have undesirable minima. Undesirable local 
convergence behavior has been shown for the GA (CMA case) 
[3], [4], the BGRA [5], and the SWA [12]. In this section, we 
shall show that all unconstrained blind equalization algorithms 

and the equality holds for some k # n }  

(3.7) 
equalizers, the resulting cost function under finite parame- a UT; = {s: -s E B:}. 

In each cone S i  (or S i ) ,  the cost function f ( s )  has only one 
global minimum point e: (or e; = -e;), where 

e: 2 ( . . . . o ,  I . o , . . . ) .  (3.8) will have local minima if the equalizer is implemented as an v 
FIR filter. (n-th) 
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I wn @E(W) 
...........____._ I _........-....-..- 

(b) 

Fig. 4. (a) Systcm with colored channel noise and (b) its equivalent white noise model. 

B. Local Convergence Characterization 

With the above definitions, we now proceed to characterize 
the local convergence of blind equalization algorithms without 
parameter constraint. For reasonably designed cost functions, 
we will require that they satisfy the following two conditions: 

Cl:  e$ and e; for n = . . . . -1,0, 1, .  . . are the only global 
minimum points of the cost function f ( s ) .  

C2: The cost function f ( s )  is continuous on l l (R) .  
First, we denote the minimum on the boundary 

(3.9) 
A 

j m b  = min f ( s ) .  

Then, based on C l ,  il is necessary that 

S € B , f  

(3.10) 

In adldition, from C2, 

(3.1 1) 

is an open set in P1(R) containing e: since f ( s )  is continuous. 
Hence, there exists a p > 0 such that 

(3.12) 

It is apparent from the definition that the maximum cost in the 
hypeirball @(e:,  p )  is lower than the cost on the cone boundary 

(3.13) 

In most linear equalization systems, a finite-length equalizer 
filter 

N.i 

e n X - n  

,=NI 

with coefficients 8, is normally used as an equalizer in 
practical communication systems, which means only these 
N.2 -- NI + 1 coefficients can be adjusted, and the rest of 

them are fixed to be zero. H[ence, not all s E !'(R) can be 
attained by the equalizer, and the attainable set A is 

N 2  
A A = {S E P'(R): s,, = 'E 8 k h n - k , 8 k  E R}. (3.14) 

k = N ,  

Since FIR equalizer restricts the algorithm minimization of of 
f ( s )  to A, local minimum points can be thus generated even 
if f ( s )  only has desired global minima without restriction. We 
now give a proof here for cost functions satisfying the two 
conditions. 

Consider a PAM channel impulse response 

p > O  (3.15) P h, = onu[n], where N = ___ 
l + P  

where u[n] is the unit step function. It is a stable first-order 
autoregressive system that would only require a first-order 
moving-average system to perfectly equalize the channel. If 
an N-tap filter with coefficients 80,  81, . . . , Q1\i-l is used as 
equalizer, the attainable set can be expressed as 

I1 

It is easy to check that e$ E A for r i  = 0 , .  . . , N - 2 and 
e$-l $ A. However, A n 4)(e&-l,p) is not empty since if 
80 = 81 = . . .  = Q N - ~  = O , 8 ~ - 1  = 1, then {s,} E A and 
11s - e iT - l l l  = p. Therefore, if 80 = 81 = . . .  = Q.N-z = 
0, O N - ~  = 1 is used as the initial setting of the equalizer, the 
steepest descent line (s.d.1) will never across the boundary 
of the cone S$-l because of (3.13). Hence, the equalizer 
with this initial setting and small stepsize will converge to 
some minimum in SS-,, which is obviously not the global 
minimum ehpl in this cone because it is not in A n SZ-'. 
Hence, we have proved the following theorem. 

Theorem 3.1: If the cost function of a blind equalizer 
satisfies conditions C1 and C2, the undesirable stable minima 
exist for the finite length equalizer. 
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Remarks: 

1) In the proof of the theorem, we did not restrict the 
distribution of the channel input set. Hence, the theorem 
can be used for any finite length equalizer with input 
symbols of any non-Gaussian distribution as long as the 
cost function satisfies conditions C l  and C2. Clearly, 
condition CI is not satisfied for Gaussian input for which 
baud-rate blind equalization is impossible. 

2) The above theorem is only concerned with the existence 
of local minima. If the equalizer is initialized to have 
Ho = 1,Hl = 0, then the equalizer will converge to some 
minimum point inside @ ( e t  ~ p ) .  However, the analysis 
does not specify whether e: is a unique minimum inside 
@ ( e t .  p )  for the cost function. 

3) Since conditions C1 and C2 must be satisfied by all 
reasonably designed cost functions without constraints, 
Theorem 3.1 shows that these unconstrained blind equal- 
ization algorithms must possess local minima caused 
by the finite filter length. Such local minima are thus 
called length-dependent local minima. When the equal- 
izer parameters are constrained, however, condition C l  
is usually not satisfied. Hence, Theorem 3.1 is no longer 
applicable to such algorithms as developed in [23], [24], 
~ 7 1 .  

Iv. CONVERGENCE ANALYSIS OF THE SCA AND THE GA 

The convergence analysis of the GA and SWA has been 
presented in [3], [4], and [12] for noiseless channels. In this 
section, these analytical results are first extended to the SCA. 
Moreover, the global convergence of SCA and the GA under 
white Gaussian channel noise will also be studied (see Fig. 4). 

A. Convergence of SCA without Channel Noise 

2) If e," is near but not in A n S,' (not attainable), then 
there must exist only one minimum point in A n 5': 
near e: while all other possible minima are near the 
boundary A n I?:. 

The proofs of the above two theorems are similar to the proofs 
of Theorem 5.1 and Theorem 5.2 in [12], respectively, and are 
thus omitted here. The special case of Theorem 4.2 (SCA with 
r n  = 2) is analyzed in [25]. The similar analysis for BGRA 
under a sub-Gaussian input signal has been given in [l]. 

Based on the above theorems, SCA also has length- 
dependent local minima resulting from the finite FIR equalizer 
length. With these theorems, the initialization strategy for GA 
and SWA discussed in 1121 can also be used for SCA. If the 
length of an SCA equalizer is double-infinite (an impractical 
abstraction), then e: for all n are in the attainable set A. From 
Theorem 4.2, the SCA equalizer will converge to some e: or 
e;. Hence, SCA has no cost-dependent local minima. 

B. Global Minima of the CA and SCA 
under Gaussian Channel Noise 

In this part of the paper, we study the biasing effect 
of Gaussian channel noise on the global minima of the 
GA and SCA. We will first study the convergence of the 
Godard algorithm under white Gaussian noise. To facilitate 
the analysis, we will assume that the signal-to-noise ratio is 
very high. 

When there is channel noise, the equalizer output can be 
expressed as 

Hence, from the definition of (2.7), the Godard cost function 
can be written as 

First, we define the normalized kurtosis of a random process 
,rn as .do) = f (SI 

r r 2 m  = $q(l?h l 2  - r)21 
(4.1) 

c/ 1' ,j 2 m  - 
K,?, - n' ' (G?, 

Similar to the Godard equalizer and the Shalvi-Weinstein 
equalizer [ 121, the finite-length equalizer using the SCA have 
the following convergence properties. n r L  I 1  

Theorem 4.1; For (finite-length or infinite-length) standard- 
ized cumulant equalizers, suppose the initial equalizer parame- 
ter setting causes the initial overall parameter vector to satisfy 
sin E A n S:. If the initial equalizer output y7% satisfies 

- 2r s i  + r2 + 6q 1 .s i  Q: 

where 

then under very small minimization step size, the equalizer 
Will cause s to converge to a m i n k "  point inside A n Ls:. 

Theorem 4.2: Let A be the attainable set of a finite-length 
standardized cumulant equalizer. Then, we have the followin&: 

1) If e; E A n S:, then there is only one minimum point 
e,' in A n Sz, and there is no minimum point on the 
boundary A n B:. 

It can be verified from the derivative of the above equation 
that the global minima of the Godard equalizer will no longer 
be e,'. On the other hand, if the signal-to-noise ratio is 
high (small q ) ,  then the global minima will only be slightly 
perturbed away from e;.  

We denote the perturbed global minima as e," + As. The 
perturbed minima in terms of equalizer parameters can be 
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denoted as h + AO, where {in} = Z - ' { H - ' ( z ) } ,  and 
AsTL = C k  h k A O , - k .  Using Taylor expansion, we have 

and 

(4.17) 2 (MSE)V1;in M d27 - d47 r 
respectively. From (4.13, the MSE of SCA will be between 
the MSE of (optimum) Wienler filter and channel inverse, i.e., 

(MSE)inv > (MSE1sc.4 > (MSE)rVin. (4.18) 

In addition, , if the channel input PAM signal has over two 
tnAerl + 3d2 E h-nAHn) levels, then 1.68 5 T 5 1.8. Consequently, 

dw , 

9('2 - r ) 2  
0 < d q  - -~ d i  < d 4  

4r2 
(4.19) (4.6) 

and 

(4.7) 

Ignoring the O( 1 1  Asll')] and qO( 1 1  AOll)] terms in the above 
expression, a direct calculation yields that the minimum of the 
cost function will satisfy 

c. Convergence Under Gaussian Noise 

When the channel noise w,, is a regular, colored Gaussian 
process with power spectrum W ( w ) ,  there exists a minimum- 
phase function C ( w )  such that ( 3  - T ) A S ( W ) H * ( W )  + 3 ( ~  - l ) A S o H * ( w )  

+ ( 3  - r )qH- ' (w)  + 37 d2H*(w)  M 0 (4.8) W(w) = C ( w ) C * ( w ) .  (4.21) 

Therefore, the colored Gaussian noise wcTL is equivalent to the 
output of a system with transfer function C ( w )  driven by white 
Gaussian input w,. The system with regular colored channel 
noise can be demonstrated by Fig. 7(a), which is equivalent 
to Fig. 7(b). In Fig. 7(b), 

wher'e As(w) is the Fourier transform Of { A S r ~ > 7  and * 
denotes complex conjugate. Hence, 

" 2  7.  (4.9) 

The lransfer functions of the equalized system and the equal- 
izer are 

1 3(2  - r )  
A S ( w )  M - -------+- 

(lH('-,l2 2r 

H ( w )  (4.22) H E ( W )  = ~ 

1 3(2  - r )  C ( W )  

and 2r 

and 
O E ( W )  = O ( w ) C ( w ) .  (4.23) 

Hence, the results for white Gaussian noise can be directly 
(4.1 1) 

The MSE after equalization will be applied. 

dz] v2. (4.12) 
9(2 - T ) ~  

(MSE)GA M d27 - [d4 - 4r2 

Similar derivation for SCA yields the transfer functions of 
the overall system and the equalizer as 

and 

(4.14) 

respectively. The resulting MSE for SCA is 

(4.15) 

As a comparison, we also determine the system MSE when 
the channel inverse and the Wiener filter are used as equalizers. 
The resulting MSE's are 

1 2 2  (MSE)SCA d 2 7  - (d4 - 4 4217 . 

V. COST-DEPENDENT LOCAL MINIMA OF DDE AND SGA 

For blind equalization algorithms involving nondifferen- 
tiable cost functions, the convergence analysis becomes more 
difficult since a general analytical expression of the cost 
function cannot be obtained. The local convergence of the 
DDE implemented with an FIR filter is demonstrated in 
[ l l ] ,  [14], and [15], which reveals the length-dependent local 
convergence of DDE. In this section, we will illustrate the 
cost-dependent local converg,ence of the DDE and the SGA 
by specifying their cost functions in some operating regions. 

For cost-dependent local convergence, consider a noiseless 
PAM communication systern with a double-infinite-length 
equalizer for which the entire s space is the attainable set [SI 
A = l '(R). Consider an i.i.tl. PAM channel input uniformly 
distributed over the set { -3 ,  -1, 1,3}. If a doubly infinite 
length SGA equalizer with [ j  = 2 is used in the system, we 
will show that { s n }  = { g(S[n - 11 + S[n] + S[n + l ] ) }  is one 

(MSE)inv ~ Z V ,  (4.16) of the local minimum of the  SGA. 
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Fig. 5.  MSE of the equalizer output when the channel input is binary 

To show this, we first find the cost near {s7,} = { g(S[n  - 

From (2.10), (2.12), and (2.13), we can find that 
11 + S[n] + 6[” + I])}. 

+ ( I Y l  - lYl  < 1 
1 I lY I  I3 (5.1) b z ( l Y l  - 312 IYI > 3.  

P ( Y )  = 

Based on (2.5), for any s near so, we have 

I gn. I < 1 if ( ~ , T l + l +  an, G - 1 )  

&(-1; -1,s); 
f (1 , l ;  -1); *(l, -1, l),  &(-l; 1 , l ) ;  

= f ( 3 ;  -1; -1), *(-l, 3 ,  -l), 

1Yn.I > 3 if (GL+l;%;%l) = f (3;3,3)  
1 < lyTLl < 3 otherwise. 

(5.2) 

Direct calculation based on (5.2) can determine the cost 
function near so to be 

n#-l,O,l 

+ $-j 1 (31s: - 26s, + 7 ) .  (5.3) 
n=-l ,0 ,1  

From (5.3), it is clear that so is local minimum of the 
SGA. Since the equalizer has no length restriction, it is a 
cost-dependent local minimum. Because of the symmetry of 
channel input and shift invariant nature of the cost function, 
( f g ( b [ n - n l ]  & b [ [ n - n ~ ] h S [ n - n ~ ] ) }  are all cost-dependent 
local minima of the SGA for all nl # nz # n ~ .  

Based on similar derivations, it can be shown that 
{ * % ( S [ n  - 7111 & S [ n  - n2] i S[n - 7231)) are cost-dependent 

20 

15 

3 
v) 

5 10 
M 
3 
2 

5 

0 

- simulation result 
theoretical result 

0 5 10 15 20 
S N R  (dB) 

Fig. 6. MSE of the equalizer output when the channel input is of four-level. 

local minima of DDE for all n1 # n z  # n3 since both the 
SGA and the decision feedback equalizers may have local 
minima even when the equalizers are double infinite. Hence, 
the center-tap initialization strategy [7],  [ 121 cannot avoid 
the local convergence. This behavior will be demonstrated by 
computer simulations in the next section. 

VI. COMPUTER SIMULATION RESULTS 

In this section, computer simulation examples will be pre- 
sented to demonstrate the global convergence of the GA under 
Gaussian noise and the local convergence of the SGA. 

A. Global Convergence of the Godard Equalizer Under Noise 
The noisy channel considered in this example is given by 

which is an allpass channel with zero and pole at 1.25 and 
0.8 respectively. The channel noise is white Gaussian. A 100- 
tap Godard equalizer with center-tap initialization is used in 
the system. To reduce the effect of gradient noise, step-size 
( k  = 0.000002) is set very small. The number of symbols 
used in the simulation is N = 100000. 

When the channel input is binary, from (4.12), the MSE of 
the equalized system will be (1 + 1 . 2 5 ~ ) ~ .  The simulated MSE 
and the comparative theoretical MSE are shown in Fig. 5.  
When the channel input is four-level, the MSE of the equalized 
system will be (1 ~ 0 . 9 1 8 4 ~ ) ~ .  Comparative results are shown 
in Fig. 6. It can be clearly seen that our analytical results are 
well supported by simulation examples. 
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Fig. 7. (a) Channel impulse response and (b) the channel inverse. 

B. Local Convergence of the Stop-and-Go Equalizer 

is 
Consider a noiseless channel in PAM communication system 

h(n)  = $(6[n] + S[n - 11 + S [ T L  - 31). (6.2) 

The channel impulse response and the channel inverse are 
shown in Fig. 7. From .Fig. 7(b), the channel inverse has about 
20 significant coefficients. The channel input o,, is i.i.d., and 
uniform over the set { - 3 ,  -l,l ,  3 ) .  A 100-tap stop-and-go 
equalizer with /? = 2 and small step size p, 1 0.0002 is 
used. [SI is used to measure the performance of the equalized 
system, which is defined as 

IS1 
max s& 

n 

(6.3) 

Fig. 8. 
initial values of go is unit, and the rest of g, are zero. 

(a) IS1 and (b) impulse response of the equalized system when the 

If the central-tap initial value:, i.e., 00 = 1 and en. = 0 for 
all n # 0, is used, the IS1 and the impulse response of the 
equalized system are shown in Fig. 8. 

From the simulation results, it can be seen that the equalizer 
is unable to remove the IS1 and is, in fact, trapped in a cost- 
dependent local minimum. However, if the initial value is set 
such that go = g1 = 1 and the rest of the coefficients are zero, 
the equalizer is able to remove the ISI, as shown by Fig. 9. 

VII. CO~NCLUSION 

In this paper, we present analytical results on the conver- 
gence of blind equalization algorithms. We have shown that 
every unconstrained blind equalization algorithm implemented 
with FIR filters possesses bength-dependent local minima. 
Since cost-dependent local minima are common to all uncon- 
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Fig. 9. 
initial values of 90 and gl are unit, and the rest of gn are zero. 

(a) IS1 and (b) impulse response of the equalized system when the 

strained blind adaptive equalizers, their regions of attraction 
should be used to determine the convergence performance 
of an algorithm. The local convergence property of blind 
equalization algorithms under the doubly infinite equalizer 
abstraction is cost dependent and is inherent to the cost 
function selection. 

From the previous work in [3]-[5],  [7], [12] and the dis- 
cussion of this paper, it is known that the BGR algorithm [l] ,  
the Sato algorithm (SA) [ 181, the decision-directed equalizer 
(DDE) [SI, and the stop-and-go algorithm (SGA) [17] all 
have cost-dependent local minima. On the other hand, the 
Godard algorithm (GA) [lo], the Shalvi-Weinstein algorithm 
(SWA) [25],  and standard cumulant algorithms (SCA’s) [6] do 
not have cost-dependent local minimum. We also show that 
under high SNR, the Godard algorithm, the Shalvi-Weinstein 

algorithm, and standard cumulant algorithms on global con- 
vergence do not amplify white channel noise since their ideal 
performance will be between the optimum Wiener equalizer 
and the channel inverse equalizer. Our analysis results are 
confirmed by computer simulations. 
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