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Efficient Signal Processing Techniques for Exploiting
Transmit Antenna Diversity on Fading Channels
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Abstract—A class of powerful and computationally efficient
strategies for exploiting transmit antenna diversity on fading
channels is developed. These strategies, which require simple
linear processing at the transmitter and receiver, have attractive
asymptotic characteristics. In particular, given a sufficient num-
ber of transmit antennas, these techniques effectively transform
a nonselective Rayleigh fading channel into a nonfading, simple
white marginally Gaussian noise channel with no intersymbol
interference. These strategies, which we refer to as linear antenna
precoding, can be efficiently combined with trellis coding and
other popular error-correcting codes for bandwidth-constrained
Gaussian channels. Linear antenna precoding requires no addi-
tional power or bandwidth and is attractive in terms of robustness
and delay considerations. The resulting schemes have powerful
and convenient interpretations in terms of transforming nonse-
lective fading channels into frequency- and time-selective ones.

I. INTRODUCTION

SIGNAL processing has an increasingly important role to
play in wireless communications systems for a host of

applications. Examples include digital cellular networks and
mobile radio, wireless LAN’s and wireless local loops, digital
audio and television broadcasting systems, and indoor wireless
and personal communication systems. Indeed, accommodating
the dramatic growth in demand for such services and meet-
ing increasingly challenging performance specifications, will
require that sophisticated signal processing algorithms be an
integral part of next-generation systems.

In wireless applications, fading due to multipath propagation
severely impacts system performance. However, the effects
of fading can be substantially mitigated through the use
of diversity techniques in such systems via appropriately
designed signal processing algorithms at both the transmitters
and receivers. Practical, high-performance systems require that
such diversity techniques be efficient in their use of resources
such as power, bandwidth, and hardware cost and that they
meet often stringent computational and delay constraints.

Three main forms of diversity are traditionally exploited
in communication systems for fading channels: temporal,
spectral, and spatial diversity.

Temporal diversity is effective when the fading is time-
selective, i.e., fluctuates with time. The degree to which
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this form of diversity can be exploited depends on delay
constraints in the system relative to the coherence time of the
fading process, which, in turn, is a function of, e.g., vehicle
speeds in mobile applications. These constraints are often
quite stringent for two-way voice communication but can, in
principle, be significantly milder for broadcast applications.
Error-correction coding [1] combined with interleaving, or
precoding techniques of the type described in [2] [3], are ex-
amples of ways in which temporal diversity can be efficiently
exploited.

Spectral diversity is effective when the fading is frequency-
selective, i.e., varies as a function of frequency. This form of
diversity can be exploited when the available bandwidth for
transmission is large enough that individual multipath com-
ponents can begin to be resolved. Examples of systems that
take advantage of frequency diversity are direct-sequence or
frequency-hopped spread-spectrum communication systems,
which are designed to use wideband transmission formats.

Even in situations where the fading channel is nonselec-
tive, i.e., neither time selective nor frequency selective, or
when system constraints preclude the use of these forms of
temporal or spectral diversity, spatial diversity can be used
to provide substantial improvement in system performance.
Spatial diversity involves the use of multiple antennas suf-
ficiently well-separated at the receiver and/or the transmitter
that the individual transmission paths experience effectively
independent fading. The extent to which this form of diversity
can be exploited depends on issues such as cost and physical
size constraints.

The use of multiple antennas at the receiver, which is
referred to as receive diversity, is fairly easily exploited.
In essence, multiple copies of the transmitted stream are
received, which can be efficiently combined using the appro-
priate matched filter, i.e., maximal-ratio combining [4]. As
the number of antennas increases, the outage probability is
driven to zero, and the effective channel approaches an addi-
tive Gaussian noise channel, which simplifies communication.
However, receive diversity can be impractical in a number
of applications such as broadcasting or forward-link (base-to-
mobile) transmission in cellular systems. In such scenarios, the
use of multiple antennas at the transmitter, which is referred
to as transmit diversity, is significantly more attractive.

Transmit diversity is, in general, less straightforward to
exploit, particularly when bandwidth expansion is not feasible
and when there is no feedback path to provide the transmitter
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Fig. 1. Multiple-antenna nonselective Rayleigh fading channel.

with knowledge of the channel parameters.1 Nevertheless, we
show in this paper that practical bandwidth-efficient techniques
for exploiting transmit diversity can be developed and that they
dramatically improve system performance. In particular, we
develop a class of highly efficient linear signal processing algo-
rithms for exploiting transmit diversity on nonselective fading
channels without incurring bandwidth expansion. Moreover,
these algorithms can be efficiently combined with other forms
of diversity and error-correction coding to further improve
system performance.

Our framework is also a natural and convenient one for
analyzing and relating a variety of novel, bandwidth-efficient
linear transmit diversity strategies that have been proposed in
the literature. These include the work of Wittneben [6] and
Winters [7] and that of Hiroikeet al. [8] and Weerackody
[9]. Finally, other aspects of the framework and the asso-
ciated strategies, including information-theoretic issues, are
developed in the companion work [10], [11].

An outline of the paper is as follows. In Section II, we
describe the class of channels of interest, and in Section III,
we describe the basic linear transmit diversity structure that
is developed for such channels. In Section IV, we explore the
characteristics and design of such transmit diversity schemes
based on specifically linear time-invariant antenna processing.
In Section V, we show that generalizing the strategy to allow
linear periodically time-varying processing leads to important
advantages both in terms of performance and implementation.
Section VI contains some concluding remarks.

II. CHANNEL MODEL

In our development, we focus on equivalent discrete-time
baseband models of the passband channels both because they
are conceptually and analytically convenient and because they
lead naturally to transmitter and receiver algorithms having
efficient implementations on digital signal processor (DSP)
based architectures.

In particular, we consider a system with transmit anten-
nas depicted in Fig. 1, where the (generally complex-valued)
transmission from the th antenna we denote using for

1Classical techniques that can be used when significant bandwidth expan-
sion is acceptable are described in, e.g., [4]. Likewise, see, e.g., [5] for
examples of transmit diversity techniques that exploit the availability of a
feedback path. However, note that feedback cannot generally be exploited in
applications such as broadcasting.

. At the receiver, we obtain

(1)

where denotes the receiver noise, which is complex-
valued, zero-mean, white circular Gaussian noise with variance

. Given sufficient physical separation among the constituent
antennas, the fading coefficients can be
modeled as mutually independent, complex-valued, zero-mean
circular Gaussian random variables with variance.

This nonselective fading model is generally applicable to
systems in which any time variations in the channel are very
slow relative to the symbol duration, and frequency variations
are on scales much larger than the system bandwidth. As such
this model is applicable to narrowband channels where the
delay spread is smaller than the symbol duration.2 Although it
is not developed in this paper, the generalization of our results
to frequency selective channels is straightforward and yields
the additional spectral diversity benefit one would anticipate.

In addition, we assume that the fading coefficients,
which are independent of the noise , are not known at
the transmitter butare known at the receiver. Of course,
perfect channel knowledge at the receiver is impossible, and
in general, channel identification must be addressed in con-
junction with diversity exploitation. However, the two sets of
issues are largely separable, at least for the moderately slowly
varying channels that arise in land-mobile radio and related
applications. In practice, the receiver can obtain estimates of
the channel coefficients via a trained or blind algorithm. While
a detailed investigation of channel measurement algorithms
and of the impact of imperfect channel identification is beyond
the scope of this paper, we emphasize at the outset that we will
restrict our attention to diversity techniques that do not display
the sensitivity to small inaccuracies in channel measurement
exhibited by, e.g., many coherent combining (beamforming)
strategies.

III. L INEAR ANTENNA PRECODING

The information-theoretic capacity of the spatially selective
fading channel in Section II can, in principle, be approached
arbitrarily closely through the use of a suitably designed cod-
ing scheme [10]. In particular, a set of nonlinear systems, one
for each antenna, would be designed for mapping the bit stream
to the set of coded symbol streams
at the transmitter. At the receiver, an associated nonlinear
system would decode the bit stream from the received signal.

In practice, the computational complexity required to
achieve rates near this capacity is prohibitive; therefore,
the complexity of the transmitter and receiver are generally
constrained. In this paper, we constrain complexity by
considering a transmitter structure in which the bit stream is
first processed by a single, suitably-designed error-correcting
coder. The resulting coded symbol stream is then processed
by a linear processor at each of the constituent antennas of

2Such is the case in indoor applications when the bandwidth is less than
about 200kHz and outdoor applications when the bandwidth is less than about
20kHz.
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Fig. 2. Linear time-invariant antenna precoding.

the transmitter; we refer to this second stage of processing as
“linear antenna precoding.” This transmitter constraint leads
to a dramatic reduction in system complexity while incurring
a modest cost in terms of system capacity [10].

We also impose additional complexity constraints on the
receiver. In particular, we consider a structure whereby the
received signal is first processed by a linear equalizer, after
which it is processed by a decoder appropriately matched to
the coder used at the transmitter. As we will see, this additional
constraint makes for further attractive complexity-capacity
tradeoffs, particularly when large numbers of antennas are
involved.

In the sequel, we use to denote the coded symbol stream
that is supplied to the linear antenna precoder at the transmitter.
In turn, at the receiver, the linear equalizer processes to
obtain —in effect, estimates of the coded symbols—which
are subsequently decoded.

IV. L INEAR TIME-INVARIANT ANTENNA PRECODING

When the linear antenna precoding takes the form of specif-
ically linear time-invariant (LTI) filtering, as will be our focus
in this section, the resulting precoder takes the form depicted
in Fig. 2. We use to denote the (generally complex-
valued) unit-sample response of the filter associated with the

th antenna and refer to this as a “signature” of the precoder.
In turn, the collection of signatures is referred to as the
signature set. With this notation, we have, via (1),

(2)

The associated Fourier transform of each signature will be
denoted by

(3)

Of interest will be the behavior of such transmit diversity
schemes for different antenna array sizes. Accordingly,
for future convenience, we refer to a collection of signature
sets indexed by as a family of signature
sets. Although our signature notation does not indicate the
associated value of parameter, this will generally be clear
from context.

In anticipation of our subsequent development, we restrict
our attention to families of signature sets with some convenient
characteristics. We term such signature setsadmissible.

Definition 1: A family of signature sets is termedadmissi-
ble if the following conditions are satisfied:

all (4a)

as when (4b)

where it is sufficient for the convergence in (4b) to be
pointwise.

Condition (4a) is a natural one; it ensures that the total
average transmitted power is independent of. In particular,
the transmitted power at the th antenna is

where is the power spectrum of the symbol stream
. Hence, the total transmitted power is

where the second equality follows from (4a). Condition (4b)
is less transparent at this stage; it will ensure that certain
attractive asymptotic characteristics can be achieved.

It is straightforward to construct examples of systems that
possess these properties. For instance, a natural approach to
obtaining transmit antenna diversity is to assign each antenna
a distinct portion of the available bandwidth. In terms of our
framework, this corresponds to the use of antenna signatures
with ideal bandpass characteristics, i.e.,

elsewhere in .

That the condition (4a) is met with these signatures is imme-
diately apparent. To verify (4b), it suffices to note that for any
distinct and for all .

The ideal bandpass signatures are infinite length and, fur-
thermore, unrealizable. However, families of practical finite-
length signatures with the desired characteristics can be readily
constructed. To develop this result, first note that for signatures

of length , we can construct the matrix representation

...
...

...
...

(5)

For such signatures, we have the following theorem, whose
straightforward proof is contained in Appendix A.
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Theorem 1: For a family of signature sets whose constituent
signatures have length to be admissible in the sense of
Definition 1, it is sufficient that in (5) be a unitary matrix,
i.e., that each signature set consist of orthogonal signatures.

From Theorem 1, we see that we can conveniently choose
an arbitrary unitary matrix to construct our signature set.
For example, when we choose , where is the
identity matrix so that , we obtain a scheme
explored both by Wittneben [6] for the case and,
more generally, by Winters [7]. In these schemes, each antenna
transmits a delayed copy of the sequence . We can also
choose or , which are the discrete Fourier
transform (DFT) and Hadamard matrices, respectively.3 The
former corresponds to a generally complex-valued signature
set and can be viewed as a finite length variant of the
frequency band allocation example described earlier. However,
for , the DFT- and Hadamard-based schemes specialize
to a common scheme that is also explored by Wittneben [6].

Note too that for the choice , the transmitted signals
have the same amplitude characteristic (i.e., marginal

probability density function) as regardless of . By
contrast, for , the amplitude distribution for each
approaches a Gaussian for . Hence, for large ,
the peak-to-average power requirements can be demanding.
Moreover, all transmit diversity schemes of the type we have
described have the property that the signal component of
the received waveform has an amplitude distribution that
is asymptotically Gaussian due to the superposition of the
multiple transmissions. This property may be attractive from
certain transmission security perspectives.

A. System Characteristics and Receiver Design

Linear antenna precoding has a powerful interpretation as a
channel transformation strategy. To see this, observe that by
specializing (1), the received signal can be expressed in the
form

(6)

where

(7)

is the unit-sample response of the “effective” channel gen-
erated by the antenna precoder. This channel has frequency
response

(8)

3 The DFT matrix of dimensionM is defined via

[F]k;l = e�j2�kl=M

whereas�M , which is the Hadamard matrix of dimensionM , is defined
recursively whenM is a power of two: ForM = 2; 4; . . . ,

�M =
1
p
2

�M=2 �M=2

�M=2 ��M=2

where�1 = 1.

which is a zero-mean, -periodic, Gaussian random process
in frequency , with variance . Hence, we see that the
antenna precoding effectively transforms the original nonselec-
tive fading channel into a frequency-selective fading channel.

This key observation has important implications for receiver
design. In particular, it implies that any of a variety of tradi-
tional approaches to decoding in the presence of intersymbol
interference can be exploited. Examples include maximum
likelihood sequence detection, decision feedback equalization,
or linear equalization [12]. When suitably designed, such
receivers can exploit this inherent frequency diversity to
substantially improve system performance.

It is also important to note that the frequency selective
channel synthesized via antenna precoding has some properties
that naturally occurring frequency selective channels typically
do not. For example, choosing precoding signatures to
meet the conditions of Definition 1 ensures that the resulting
frequency diversity has strong asymptotic mixing character-
istics, which allow a more substantial diversity benefit to be
realized. In addition, the channel identification problem that
must be addressed in practice is substantially easier in our
case than for naturally occurring frequency-selective channels
due to the way in which this channel is parameterized.

In this section, we restrict our attention to linear equalizers,
which remain practical even when the number of antennas is
large, and follow the equalizer with a decoder. Specifically,
we consider an LTI equalizer with unit-sample response
so that the equalized signal is

(9)

In general, since the receiver knows the fading coefficients,
the equalizer will depend on the channel response .
For example, one possible choice for the equalizer is the
matched filter, for which . This is equivalent to
a traditional RAKE receiver, which is often used to exploit
frequency diversity [13]. However, we will see that other
equalizers have significant advantages in our application.

In the sequel, we will develop some important system prop-
erties that result when any of a broad range of linear equalizers
is used. To allow for precise results, we impose some relatively
mild restrictions on the class of equalizers under consideration.
Specifically, we have the following definition.

Definition 2: Let be the unit-sample response of an
LTI equalizer with frequency response . Then, is an
admissibleequalizer if can be written in the form

(10)

where is as defined in (8), and where is a complex-
valued function that satisfies the admissibility conditions:

1) is bounded within any finite region of the complex
plane, i.e., for every , there exists a positive real
constant such that

for all
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2) grows more slowly than a quadratic exponential,
i.e.,4

for every .

For any LTI equalizer , we have that

(11)

so that

is the effective frequency response after equalization. Note that
if is an admissible equalizer, then both and
have means and variances that are not only finite but, via (10),
are also functions only of and not of . Accordingly, we
denote these quantities using

In turn, we obtain the following conceptually appealing
theorem that characterizes the composite system consisting
of the antenna precoder, channel, and equalizer. A proof is
provided in Appendix B.

Theorem 2: Let be a sequence of zero-mean uncorre-
lated symbols, each with energy. Furthermore, for every ,
let for be a collection of independent
zero-mean complex-valued Gaussian random variables with
variance . Finally, suppose is the unit-sample response
of an admissible equalizer in the sense of Definition 2 and that
the antenna precoder signature sequences satisfy the
conditions (4). Then, as , we have that defined
via (11) with (7) satisfies, for each,5

(12)

where is a complex-valued, marginally Gaussian, zero-
mean white noise sequence, uncorrelated with the input symbol
stream , and having variance

(13)

Theorem 2 asserts that given transmit antenna diversity of
this form, the channel “seen” by the coded symbol stream is
transformed from a fading channel into a marginally Gauss-
ian white noise channel. From (13), we see there are two
components in this equivalent noise: One component is due
to the original receiver noise, whereas the second is due
to intersymbol interference (ISI) generated by the transmit
diversity and, hence, has a variance that scales with the symbol
energy. In effect, we see that this ISI is transformed into
a comparatively more benign form of uncorrelated, additive
noise. Furthermore, while Theorem 2 establishes only an

4The order notationo(�) is to be interpreted in the usual sense. Ifp(z) �
o(q(z)), then

lim
jzj!1

p(z)

q(z)
= 0:

5We use the notation
m:s:

�! to denote convergence in the mean-square sense.

asymptotic result, we will see that the equivalent quasi-
Gaussian channel is a useful model even when the number
of antennas used is finite.

In effect, Theorem 2 implies that using an increasingly
large number of transmit antennas reducesvariancein system
performance. To appreciate what this means in practice, it is
useful to consider a scenario in which there are a collection of
suitably spaced receivers all at roughly the same radius from
the transmitter. With a single transmit antenna, the signal-to-
noise ratio (SNR) of the transmitted data as measured at a
receiver will vary from receiver to receiver. However, when
transmit diversity via a multiple antenna cluster is exploited,
this variation from receiver to receiver is reduced. Moreover,
our asymptotic result establishes that using a large number
of such transmit antennas, variation from receiver to receiver
is effectively eliminated. In other words, all receivers “see”
the data at effectively the same SNR. This property can also
be interpreted as meaning that the outage probability as it is
usually defined (i.e., the probability that the SNR drops below
some prescribed threshold at a receiver) is driven to zero as
the number of antennas is increased.

As another interpretation, this theorem can also be viewed
as the transmit diversity counterpart of an analogous result
established for a class of bandwidth-efficient temporal di-
versity schemes in [2] and [3]. As a result, many of the
comments that apply in the temporal diversity scenario have
counterparts in this transmit diversity case. For example, we
stress that Theorem 2 focuses primarily on the second-moment
characteristics of the equivalent model. In particular, the noise

is not, in general, a Gaussian process—only marginally
so. Hence, that the samples are uncorrelated does not
imply they are independent. Likewise, while and
are uncorrelated, there are invariably higher order statistical
dependencies between these sequences.

The utility of the equivalent model lies in the fact that it
suggests some powerful and computationally highly efficient
receiver structures. In particular, in the absence of additional
coding, good performance can be maintained if computation-
ally expensive, Viterbi-algorithm-based maximum likelihood
sequence detection of the type described by Winters [7] is
replaced with simple symbol-by-symbol detection, as would
be used on a true additive white Gaussian noise channel.
Even more significantly, such simplifications mean that it is
practical to combine this antenna diversity with additional
error-correction coding for the Gaussian channel, as suggested
earlier. For example, if trellis coding is used, the usual Viterbi
decoding can be applied after equalization as if the channel
were Gaussian.6

In general, system performance will depend substantially on
the particular equalizer chosen for the system. Indeed, the SNR
associated with the equivalent channel of Theorem 2 depends
strongly on the choice of equalizer. Consequently, a useful
criterion for equalizer design is to select among admissible
equalizers that yielding the largest SNR in the equivalent

6The price we pay for such substantial computational advantages of this
strategy can be measured in terms of the usual performance limitations
inherent in the use of linear equalizers; for a discussion of such losses, see,
e.g., [12].
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channel. Conveniently, when is admissible, the SNR in the
equivalent channel follows immediately from Theorem 2 as

(14)

where

(15)

The resulting optimization problem is then directly analogous
to one that arose in [2] and [3], and the solution, which
follows from a relatively straightforward application of the
Cauchy–Schwarz inequality, is given by

(16)

where the constant of proportionality is arbitrary.
The optimum equalizer has some useful interpretations.

First, this equalizer not only maximizes the equivalent chan-
nel SNR but also, when suitably normalized, makes a
minimum mean-square error linear estimate of . This is
appealing from the point of view of implementation since it
suggests that adaptive equalizers based on least-mean-square
(LMS) or recursive least-squares (RLS) algorithms can be
used in practice. As a second interpretation, we note that
the numerator of (16) is a conventional matched filter (i.e.,
RAKE receiver); therefore, the denominator can be viewed as
an additional compensation stage that takes into account the
special characteristics of the equivalent noise in this context,
as discussed earlier.

As a final comment, we emphasize that, in effect, this
section has identified a broad class of transmit diversity strate-
gies having the characteristic that the variance in performance
from receiver to receiver is driven to zero as the number of
antennas is increased. Within this class, through optimization
of the equalizer, we have identified those strategies having,
asymptotically and simultaneously, the best possibleaverage
performance. Moreover, as we will see in the next section, the
use of such transmit diversity leads, in fact, to a substantial
increase in average performance over that in single antenna
systems.

B. Performance

In this section, we develop useful closed-form bounds
on the performance of our transmit diversity system with
finitely many antennas by examining asymptotic behavior.
Furthermore, the bounds we obtain are asymptotically tight
and allow us to quantify the performance that is achievable in
practice using massive (i.e., very large) transmit antenna
clusters. Additional aspects of the performance of the schemes
for finite are developed later in Section V-D.

The asymptotic ( ) performance characteristics of
the optimized transmit diversity system can be conveniently
developed by further exploiting the common form of the
equivalent quasi-Gaussian channel generated by our transmit

diversity scheme and that generated by temporal diversity via
spread-response precoding in [2] and [3].

Specifically, while the SNR in the original channel, i.e.,

(17)

is both random and varies as a function of frequency, with
the optimum equalizer, i.e., (16), we immediately obtain that
the SNR in the asymptotic equivalent channel is a deterministic
constant of the form

(18)

where

(19)

is the average SNR in the original channel, and where
denotes the exponential integral [14] defined via

(20)

A potentially useful estimate of capacity for our transmit
diversity scheme results when we ignore the higher order
statistical dependencies in the equivalent channel of Theorem
2 and view the channel as strictly Gaussian channel. In this
case, the mutual information between and when
is Gaussian is

(21)

which suggests bit rates that may be achievable when suffi-
ciently extensive additional coding is applied to the bit stream
before precoding at the antennas.

As is developed in [10], this effective capacity can be
compared with that of related transmit diversity systems with-
out such stringent computational constraints. For example,
removing the constraint that the front end of our receiver be a
linear equalizer and allowing an arbitrarily complex decoder
leads to an increase in capacity. Specifically, with no receiver
constraint, the capacity of the asymptotic ( ) transmit-
antenna diversity channel using linear antenna precoding with
signatures takes the form [10]

(22)

If, in addition, we remove the constraint that the antenna
precoding be linear and allow an arbitrarily complex encoder
at each antenna, then still higher capacities are achievable. In
particular, the corresponding asymptotic ( ) transmit-
diversity channel has capacity [10]

which is equivalent to the capacity of an additive white
Gaussian noise channel, and can be compared with the capacity
associated with unconstrained receive diversity [11]. These
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Fig. 3. Rayleigh fading channel capacities with infinite transmit diversity.
The solid curve is the capacity estimateC corresponding to the use of linear
antenna precoding at the transmitter and linear equalization at the receiver.
The dashed curve indicates the capacityCL when linear antenna precoding
is used but there are no receiver constraints. Finally, the dash-dotted curve is
the transmit diversity capacityCT when there are no transmitter or receiver
constraints.

capacities are depicted in Fig. 3 as a function of average SNR
in bit per sample.

When augmenting linear antenna precoding with coding
to approach capacity, the quasi-Gaussian equivalent channel
model suggests that any of the traditional forms of coding for
the bandlimited additive white Gaussian noise channel would
be appropriate. In particular, as we suggested earlier, conven-
tional implementations of trellis-coded modulation appear to
be well suited to this application. Although achievement of
rates near capacity requires codes with very high constraint
lengths, short codes can be used in practice to achieve more
modest performance enhancements. In fact, even with no
additional coding, the use of antenna precoding leads to
substantially reduced bit-error rates over systems without such
transmit diversity.

As an illustration, consider the case in which is
an uncoded quadrature phase-shift keying (QPSK) symbol
stream. With infinite transmit diversity in the form of antenna
precoding, the average bit error probability is

(23)

where

and where is as defined in (18) with (19).
For comparison, without transmit diversity, the average

QPSK bit error probability is [13]

(24)

while with infinite (normalized) receive diversity and maximal
ratio combining, it is

(25)

Fig. 4. Linear periodically time-varying antenna precoding structure.

At high SNR (i.e., small ), the bit error rate with infinite
transmit diversity via antenna precoding is given by

(26)

whereas that with infinite receive diversity is given by

(27)

Comparing (26) with (27), we see that both fall off faster than
any power of SNR and that the difference amounts to a-
type penalty in the transmit case. In principle, these results can
also be compared with the achievable uncoded bit error rate

when the optimum unconstrained receiver is employed.
This bit error rate was explored by Winters [7] for the choice
of signature set corresponding to . In this
case, the optimum nonlinear receiver implementing maximum
likelihood sequence detection has a complexity that grows
exponentially with the number of antennas, in contrast to the
linear growth in complexity when our receivers based on linear
equalizers are used.

As we indicated at the outset, the asymptotic bit error rate
results we have described provide useful bounds on what can
be obtained in practice using these methods with finite transmit
diversity ( ). However, the LTI antenna precoding we
have developed thus far is somewhat impractical to implement.
The problem arises because even with a finite number of
antennas, the optimum equalizer has, in general, an infinite
length, unrealizable unit-sample response. In addition, while
finite-length approximations can give reasonable performance
in practice, they do so at a cost of excessive delay. Fortunately,
these problems can be conveniently circumvented through a
generalization of the basic linear antenna precoding strategy,
which we develop next.

V. LINEAR PERIODICALLY

TIME-VARYING ANTENNA PRECODING

In this section, we consider a case in which the processing at
each antenna takes the form of more general linear periodically
time-variant (LPTV) filtering. We restrict our attention to a
particular class of such systems that admit the factorization
depicted in Fig. 4. In particular, the coded symbol stream
is first processed by a common LPTV prefilter that is time
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varying with some period7 and has length , and
whose kernel we denote by . The result

(28)

is then subsequently processed at each of the antennas. Specif-
ically, this prefiltered stream is modulated at each antenna by
a different -periodic sequence, i.e.,

(29)

where is the generally complex-valued periodic se-
quence associated with theth antenna. We use to
denote a single period of this modulating sequence, i.e.,

otherwise

and refer to this as the “signature” of the associated antenna.8

We first consider the design of the signatures and then
turn our attention to the design of the prefilter kernel .

A. Signature Design

To design suitable signature sequences, we begin by consid-
ering the response of channel to the prefiltered symbol stream

. For this subsystem, we have, using (29) in (1), that

(30)

where

(31)

is an -periodic fading sequence. For future convenience, we
denote one period of this sequence using , specifically,

(32)

From (30), we make the important observation that the
signature modulation subsystem effectively transforms the
original nonselective fading channel into a time-selective one.
As such, this transformation is the dual of the nonselective
to frequency-selective transformation we explored in Section
IV as an interpretation of LTI antenna precoding. From this
perspective, we see that our prefilter should be designed to
allow the inherent time diversity introduced by the modulation
process to be efficiently exploited at the receiver.

The maximum time diversity benefit is obtained when the
fading is independent among time samples within a period,
and thus, we design our signature sequences to ensure that
this condition is met. To proceed, it is convenient to again
collect our signatures into a matrix of the form of (5).

From (32), we see that the coefficients
are zero-mean and jointly Gaussian. Moreover, the cor-

relation between an arbitrary pair of these coefficients is
7We remark in advance that the parameterK plays a relatively minor role

in the development, and in fact, as will become apparent, fixingK = 2
suffices in practice.

8Again, although the signaturehm[n] is a function of the parameterM ,
for notational convenience, we suppress this dependence.

proportional to the inner product between the corresponding
columns of in (5), i.e.,

(33)

Hence, the coefficients will be statis-
tically independent when the columns of are orthogonal.

To determine the appropriate normalization of the signa-
tures, we impose the constraint the total transmit power be
conserved. Provided the prefilter is an orthonormal transfor-
mation, as we will impose in Section V-B, we obtain, via
(28), that

(34)

Using, in order, (29) and (34), we obtain that the total
transmitted power is

(35)

Since this total transmitted power must equal , we
obtain the condition that the columns of must have unit
norm.

Hence, we see that to achieve the maximum diversity benefit
and simultaneously meet our power constraint, it is necessary
and sufficient that must be a unitary matrix. Equivalently,
it is necessary and sufficient that the signatures (i.e., rows of

) be an orthonormal set.
Evidently, there are infinitely many signature sets that

ensure the independent fading condition. For example, the
choice corresponds to a strategy in which prefiltered
symbols are dealt among the antennas and transmitted in order.
A disadvantage of this particular choice, however, is the high
peak-power requirement. As an alternative, we could choose

, where is again the suitably sized DFT matrix. In
this case, the result can be interpreted as an efficient discrete-
time variant of the phase-sweeping transmit diversity system
explored by Hiroikeet al. [8] and Weerackody [9]. As a
final example, the choice , where is again the
Hadamard matrix, has some particularly attractive characteris-
tics. First, like the DFT-based signatures, the Hadamard-based
signatures have minimal peak power requirements. Second,
since Hadamard-based signatures are binary valued, they can
be implemented with very low computational complexity,
requiring additions and sign changes but no multiplies.

B. Prefilter Design

We next turn our attention to the design of a LPTV prefilter
that can exploit the time diversity generated by the signature
modulation process. It is important to recognize at the outset
that prefiltering can be avoided (i.e., we can set ),
provided coding is used prior to the antenna precoding stage of
the transmitter. In particular, suitably designed error correction
coding can be used to achieve a substantial diversity benefit on
time-selective fading channels like those we have synthesized
through our antenna precoding. However, this coding, as
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Fig. 5. Canonical realization of a linear periodically time-varying system.

well as the associated decoding that would be required at
the receiver, can be computationally prohibitive in practice,
particularly when the number of antennas is large.

When computation is constrained, [2] suggests that the best
diversity benefit is often achieved by combining (or sometimes
even replacing) coding with suitably designed prefiltering. In
particular, the bandwidth-preserving LPTV spread-response
precoders developed in [3] (after [2]) are naturally suited as
prefilters for our application, as will become apparent. Indeed,
for Rayleigh-distributed time-selective fading channels, these
orthogonal systems provide, in an appropriate sense, the op-
timum linear diversity benefit with very low computational
complexity [3].

The prefilters of interest are, specifically, themaximally-
spreadLPTV precoders developed in [3]. In the remainder of
this section, we briefly summarize their salient characteristics
for the purposes of this paper. A canonical description for a
general period- LPTV system is given by the input-output
relationship

(36)

which is specified in terms of a vector of unit-sample
responses9

(37)

The effective length orspreadof the prefilter is defined to
be the length of this vector sequence . The associated
implementation for these systems is shown in Fig. 5.

The LPTV system effects an orthonormal transformation of
its input samples when the vector sequence or, equiva-
lently, its Fourier transform vector

(38)

meets certain conditions. In particular, when we express the
set of Fourier transforms (38) in the polyphase form

(39)

9It is straightforward to relate this kernel notation to that in (28). The
response of the system at timen to a unit-sample at timen� k is

g[n; k] = gi[n� lK]

wherel and0 � i � K�1 are uniquely defined via the relationk = lK� i.

TABLE I
NONZERO TAPS OF THE PERIOD-2 MAXIMALLY

SPREAD LPTV PREFILTER WITH SPREAD M = 8

where is the Fourier transform of the delay chain of
order , i.e.,

(40)

the orthogonality conditions are equivalent to the con-
dition that the polyphase matrix be paraunitary:10

.
The maximally spread prefilters are those orthogonal LPTV

systems for which the unit-sample responses are binary
valued. A convenient construction for the associated polyphase
matrix is recursive. Specifically, we let our zeroth-order
polyphase matrix be11

(41)

Then, to obtain systems for which the spreadexceeds ,
we exploit the recursion [3]

(42)

where is the diagonal delay matrix whose diagonal
is constructed from the elements of , i.e.,

with as defined in (40). It is straightfor-
ward to verify that the recursion (42) leads to a set of
binary sequences; indeed, one can interpret (42) and (41)
as implementing a particular succession of simple sequence
concatenations initiated with Hadamard sequences.

Using (39), we can also express the recursion (42) directly in
terms of the Fourier transform of the signature set; specifically,
we have, for ,

(43)

From (43), we can verify that the length of grows by a
factor of with each application of the recursion so that, in
particular, has spread for .

Several sets of signature sequences obtained by the recur-
sion (42) with (41), and corresponding to different values of

and , are tabulated in [3]. As one example, for
and , the nonzero taps of and are given
in Table I.

C. System Characteristics and Receiver Design

As in the case of LTI antenna precoding, it is natural
to consider using a linear equalizer at the front end of our
receiver, as depicted in Fig. 6. Specifically,

(44)

10The superscripty denotes the conjugate-transpose operation.
11For convenience, we restrict our attention to ordersK for which

Hadamard matrices exist. These include, for example, all integersK that
are powers of two.
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Fig. 6. Receiver structure for linear periodically time-varying antenna pre-
coding.

where

(45)

and where is a suitable equalizer for the time-selective
fading. Note that since the prefilter (with kernel ) is an
orthogonal system, is the kernel of its inverse. This
postfilter is conveniently implemented via the transposition of
the flow graph of Fig. 5.

In developing some general system characteristics analo-
gous to those developed in Section IV, we impose similarly
mild constraints on the class of equalizers under consideration.
In particular, admissible equalizers in this case take the form

(46)

where is a complex-valued function that also meets the
admissibility conditions of Definition 2.

With equalizers of this type, we have that

(47a)

where

(47b)

When orthogonal signatures are used as developed in Sec-
tion IV-A, then

Hence, it follows in turn that if is an admissible equalizer,
then both and have means and variances that are not
only finite but are also functions only of and not of .
Accordingly, we denote these quantities using

The counterpart of Theorem 3 for the case of LPTV
precoding then follows immediately from the results of [2]
[3].

Theorem 3: Let be a sequence of zero-mean uncorre-
lated symbols, each with energy. Furthermore, for every ,
let for be a collection of independent
zero-mean complex-valued Gaussian random variables with
variance . Finally, suppose is an admissible equalizer,
that the length- antenna precoder signature sequences form
an orthonormal set, and that maximally spread prefilters of
spread are used. Then, as , we have that
defined via (44) with (47), (28), and (32) satisfies, for each,

(48)

where is a complex-valued, marginally Gaussian, zero-
mean white noise sequence, uncorrelated with the input symbol
stream , and having variance

(49)

The SNR in the equivalent channel of Theorem 3 then
follows analogously as

(50)

where, again,

(51)

and is maximum when [2]

(52)

Theorem 3 establishes that the generalized transmit diversity
schemes we have developed in this section have the same
attractive asymptotic characteristics as those considered in
Section IV. However, for finite transmit antenna arrays, these
generalized schemes have some important advantages. In
particular, unlike the optimized transmit diversity schemes
based on LTI precoders, those we have optimized from an
LPTV framework have the characteristic that the system delay
is finite. Indeed, the fading equalizer (52) introduces no delay,
whereas the pre- and post-filtering each introduce delay;
therefore, the overall delay is proportional to the number of
antennas.

D. Performance

The infinite-diversity results described in Section IV-B
provide useful bounds on what can be achieved using finite
transmit antenna diversity. In this section, we present empirical
results on the finite-diversity performance when the optimized
LPTV antenna precoders are used. In particular, using max-
imally spread prefilters (with ) and the optimum
equalizers, the performance of LPTV antenna precoding is
depicted in Fig. 7 for several different antenna array sizes. In
addition, the performance without antenna diversity ( )
and the performance with infinite transmit diversity ( )
is superimposed. Note that while additional antennas invari-
ably give better performance, Fig. 7 indicates that there are
diminishing returns beyond a moderate value of. Moreover,
hardware costs and system delay constraints typically limit
values of that can be used in practice.

For comparison, Fig. 8 shows the corresponding (normal-
ized) performance of systems employing traditional receive
antenna diversity with maximal ratio combining for various
antenna array sizes. Comparisons of Figs. 7 and 8, particularly
when power asymmetries are taken into account, suggest
that, when available, receive diversity is more effectively
exploited via linear processing. However, as our results also
demonstrate, in many applications such as broadcasting where
receive diversity is less practical, exploiting transmit diversity
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Fig. 7. Bit error probabilities using uncoded QPSK on the Rayleigh fading
channel with transmit diversity in the form of linear antenna precoding
with linear equalization. The top curve corresponds to the performance
without antenna diversity (M = 1), while the bottom curve indicates the
performance bound corresponding to an infinite transmit diversity (M !1).
The successively lower curves between these two extremes represent the
performance obtained usingM = 2, 4, 8, 16, 32, 64, and 128, transmit
antennas, respectively. From left to right, the dashed vertical lines denote the
capacitiesCT, CL, andC, respectively.

using even only a few antennas can provide a dramatic
reduction in transmit power requirements for a given bit
error rate and at a very modest cost in terms of additional
system hardware. More generally, our results suggest that for
a number of applications, the best cost-performance tradeoff
may be achieved by simultaneously exploiting both forms of
spatial diversity.

VI. CONCLUDING REMARKS

This paper has developed computationally efficient transmit
diversity strategies that can be used to substantially mitigate
the effects of fading in wireless communications applications.
Moreover, these techniques naturally lend themselves to prac-
tical and efficient DSP-based implementations.

Several issues remain to be investigated and represent im-
portant directions for further research. One important example
is the issue of channel measurement and tracking. In practice,
the channel fading coefficients required by the receiver must
be estimated from the received data, either using training data
or blind. Future work must explore suitable adaptive equalizer
structures based on, for example, LMS or RLS algorithms
and assess the impact of these structures on overall system
performance and the associated sensitivity issues described
earlier.

In addition, the work here has focussed on nonselective fad-
ing channels, which is appropriate in low-bandwidth wireless
applications, where the transmitter and receiver are stationary.
In wideband scenarios, the channel becomes frequency selec-
tive, whereas in mobile applications, the channel becomes time
selective. In principle, the techniques developed in this paper
can be extended to accommodate this broader class of chan-

Fig. 8. Bit error probabilities using uncoded QPSK on the Rayleigh fading
channel with (normalized) receive diversity using maximal ratio combining.
The top curve corresponds to the performance without antenna diversity
(M = 1), while the bottom curve indicates the performance bound corre-
sponding to an infinite receive diversity (M ! 1). The successively lower
curves between these two extremes represent the performance obtained using
M = 2, 4, 8, 16, 32, 64, and 128, receive antennas, respectively.

nels. Developing and evaluating these extensions represents
another rich direction for further research.

As a final example, the transmit diversity schemes in this
work introduce a delay proportional to the number of antennas
but do not expand bandwidth. In principle, it is possible to
trade off delay for bandwidth expansion when desirable. As
an example, a transmit diversity scheme described by Jakes
[4], whereby the symbol stream is transmitted in distinct
frequency bands at the different antennas, incurs no additional
delay but requires a bandwidth expansion proportional to the
number of antennas. However, schemes of this type are rather
inefficient in their use of the additional bandwidth and are
therefore inherently suboptimum. Exploring how the transmit
diversity schemes developed in this paper can be generalized
to allow for efficient delay-bandwidth tradeoffs, and more
than compensate for the increase receiver noise power due
to bandwidth expansion, is another promising direction for
further research.

APPENDIX A
PROOF OF THEOREM 1

We verify that the conditions (4) are satisfied when the
signature sequences are orthogonal to one another (and nor-
malized), i.e.,

In this case, the rows of are orthogonal; therefore, is an
unitary matrix. Then, using (3), we obtain

(53)
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where

(54)

However, since is a unitary matrix, its columns are also
orthogonal, and hence, . Thus, (53)
simplifies to

(55)

which, as is readily verified, satisfies (4).

APPENDIX B
PROOF OF THEOREM 2

We begin with a pair of lemmas that will be useful in the
sequel.

Lemma 1: Let be a complex-valued -periodic zero-
mean Gaussian random process with varianceand normal-
ized correlation function denoted by

(56)

Furthermore, let a new random process be defined via

for some function such that

(57)

(58)

(59)

Then, if12 , we have that

(60)

Proof: First, we note that

(61)

where the last inequality follows from (59). In turn, using (61)
with the bounded convergence theorem [15], we obtain

provided

(62)

Hence, it suffices to show that implies
(62). Letting and , where , we see
that it is sufficient to show that

(63)
12We use

p:w:a:e:

�! to denote pointwise convergence almost everywhere.

satisfies .
Now, we exploit the inequality

(64)

which is verified as follows:

where . Using, in order, the triangle inequality
and (64), we obtain

(65)

where

(66)

However, is a continuous function of on ,
and

(67)

where the right inequality in (67) follows from (58). Hence,
we conclude that is upper bounded in a neighborhood of

. This result allows us to conclude from the dominated
convergence theorem [15] that we can evaluate as
by bringing the limit inside the integral in (63), yielding

where the last equality follows from (57).
Lemma 2: If is an admissible equalizer in the sense

of Definition 2, then the admissibility conditions on imply
that the zero-mean random processes and

(68a)

(68b)

with

(69)

satisfy

(70)

(71)

(72)
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Proof: The proof is straightforward and follows from
observing that

(73a)

(73b)

(73c)

where

(74a)

(74b)

(74c)

and where the are finite constants. From (74), we see that
the satisfy the admissibility conditions of Definition 2
whenever does. Using these conditions in the expressions

and

for , we obtain our desired results.
We now proceed to a proof of our main result.
First, we write

(75)

where

(76)

and

(77)

with

(78)

Let us consider as defined in (76) first.
First, we obtain the mean and covariance, respectively, of

given an effective channel response as

(79)

and

(80)

In turn, averaging over the possible channel responses,
we obtain

(81)

where we have used the fact that since the mean and variance
of are independent of , so are those of . Next,
we obtain

where is as defined in (68a). Then,

(82)

Using (4) and applying, in turn, Lemmas 2 and 1 to (82), we
then obtain, for each

(83)

Hence, combining (81) with (83), we have, for any particular
channel response ,

(84)

for each .
Looking next at as defined in (77), we express

in the form

(85)

Then

(86)

where

(87)

Therefore, is a zero-mean sequence.
Again, for a fixed realization of (and hence ), we

have

and

(88)
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However, (88) is asymptotically independent of . To see
this, first note that

(89)

Then, since

where is as defined in (68b), we have

(90)

Hence, again using (4) and applying, in turn, Lemmas 2 and
1 to (90), we then obtain, for each,

(91)

Hence, combining (89) with (91), we have, for any particular
channel response ,

(92)

for each .
Thus, we can write

(93)

where

(94)

is the equivalent noise. However, since and are
statistically independent,

for all and

and hence

which, using (84) and (92), yields (13).
Finally, we need to show that for a given realization of the

channel response that and are asymptotically
uncorrelated. Due to (94), it suffices to show that is
asymptotically uncorrelated with and individually.

First, using (76), we have

where the last equality follows from the fact that the processes
and are statistically independent.

Next, using (86), we have

where the last equality follows from the fact that the symbol
stream is white. Thus, it remains only to show that

for all .
To see this, we first note that

(95)

Next,

(96)
Hence, again using (4) and applying, in turn, Lemmas 2 and
1 to (96), we then obtain, for each

(97)

Hence, combining (95) with (97), we have

(98)

for each .
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