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Paraunitary Filter Banks Over Finite Fields 
See-May Phoong, Member, IEEE, and P. P. Vaidyanathan, Fellow, IEEE 

Abstract-In real and complex fields, unitary and paraunitary 
(PU) matrices have found many applications in signal processing. 
There has recently been interest in extending these ideas to the 
case of finite fields. In this paper, we will study the theory of PU 
filter banks (FB’s) in GF(y) with y prime. Various properties 
of unitary and PU matrices in finite fields will be studied. In 
particular, a number of factorization theorems will be given. We 
will show that i) all unitary matrices in GF(y) are factorizable 
in terms of Householder-like matrices and permutation matrices, 
and ii) the class of first-order PU matrices (the lapped orthogonal 
transform in finite fields) can always be expressed as a product 
of degree-one or degree-two building blocks. If Q > 2, we do not 
need degree-two building blocks. While many properties of PU 
matrices in finite fields are similar to those of PU matrices in 
complex field, there are a number of differences. For example, 
unlike the conventional PU systems, in finite fields, there are 
PU systems that are unfuctorizable in terms of smaller building 
blocks. In fact, in the special case of 2 x 2 systems, all PU matrices 
that are factorizable in terms of degree-one building blocks are 
diagonal matrices. We will derive results for both the cases of 
G F ( 2 )  and G F ( y )  with q >  2 .  Even though they share some 
similarities, there are many differences between these two cases. 

I. INTRODUCTION 

ILTER BANKS (FB’s) have found many successful ap- F plications in the subband coding of images and audio 
and video signals [ll-[6]. In the past, many researchers have 
contributed to the theory and design of FB’s over real or 
complex field [ll-[8], especially for the class of paraunitary 
(PU) FB’s that have the property of energy conservation. 
Consider Fig. l(a) and (b), where an M-channel FB and its 
polyphase implementation are shown, respectively. In real or 
complex field, a FB is said to be PU if its polyphase matrix 
E ( z )  = CI ,  e(k)z-I, satisfies [ll-[6]: 

Et (e jm)E(e ja)  = I ,  for all w (1.1) 

where the superscript t represents transpose conjugate. Note 
that if we take R(e3”) = then we have a perfect 
reconstruction (PR) FB. The class of PU FB’s has the ad- 
vantage [1]-[6] that PR can be obtained with FIR filters, and 
the synthesis filters are simply the time-reversed version of 
the analysis filters. What makes PU FB’s so attractive in the 
application of subband coding is that both the analysis and 
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(a) -U-channel maximally decimated FB (b) Its polyphase represen- 

synthesis banks have the energy preservation property. This 
property guarantees that the coding gain is greater than unity. 

Despite the success of real or complex FB’s in various 
applications, little attention has been paid to the case of finite 
fields. Even though in most of the applications the input is a 
digital signal that has a finite number of quantization levels, 
FB’s from real or complex field have been used. FB’s over 
finite fields have the advantage that all the round-off error and 
the coefficient quantization error can be eliminated completely. 
In addition, FB’s in finite fields have potential applications in 
cryptography, in the theory of error-correcting codes, and in 
the coding or analysis of halftone images [9]-[ll]. While these 
applications still remain to be explored, the immediate purpose 
of this paper is to study the theory of PU FB’s in finite fields. 

It should be noted that the finite field methods developed 
in our paper are not meant to be alternate implementations of 
traditional real-field subband coders. Such real-field subband 
coders have lossy quantizers in the subband. Such lossy 
quantization is not allowed in the finite field case because 
errors cannot be quantified as being small or large. It is, 
however, conceivable that finite field FB’s can employ lossless 
quantization in the subbands; some applications of this kind 
have indeed been considered in the past [ l l] .  

A. Previous Work 

The generalization of PU FB’s to the case of GF(2)  was 
first done in [9]. The author showed that even though many 
properties of PU FB’s in complex field continue to hold in the 
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case of GF(  2) ,  there were some unexpected properties. Unlike 
the conventional PU FB’s, it was shown that there are PU 
FB’s over GF(2)  that cannot be decomposed into degree-one 
building blocks. In [lo], the authors used the alias cancellation 
(AC) matrix approach to study the theory of FB’s over finite 
fields. In order to obtain PR FB’s in finite fields using the AC 
matrix approach, the authors needed the existence of Mth root 
of unity in GF(q)  for a M-channel FB over GF(q)  (which 
is not always possible). Because of this limitation, the authors 
in [lo] are unable to obtain M-channel PR FB’s over GF(q)  
when M 2 q .  In [ 1 I], the authors proposed a new binary field 
transform as an alternative to the DFT over GF(  2 ) .  Using the 
new transform, the authors were able to define bandwidth, 
vanishing moments and spectral content in the filters over 
GF(2) .  The application of FB’s in GF(2)  to the analysis 
of binary images was also demonstrated. In [12], the author 
studies the connection between the theory of finite field FB’s 
and the theory of convolutional codes and applies the finite 
field FB’s to the problem of partial response channel. In [13] 
and [14], the authors consider the wavelet construction for the 
class of finite length signals (the length is a prime number) 
with real or complex value. The domain (i.e., time argument) 
of the input signal is therefore drawn from a finite field. In 
this paper, we consider the case where the signals have infinite 
length and amplitudes drawn from a finite field. 

B. A Note on Jargon in GF(q)  

In finite fields, since a nonzero vector v can have vTv = 0, 
the vector space of all M-dimentional vectors is not an 
inner-product space. Hence, orthogonality is not well defined. 
However, for simplicity, in this paper, we will borrow the 
jargon from the theory of convolutional codes [15], [16]. Two 
vectors that satisfy uTv = 0 are said to be orthogonal, and 
matrices that satisfy ATA = I will be called unitary matrices. 
Similarly, in finite fields, we call a rational matrix that satisfies 
ET(z - l )E( z )  = I a PU matrix. Since we do not have an 
inner product space, many properties of unitary matrices in 
finite fields are different from those of unitary matrices in the 
complex field. 

C. Main Results of the Paper 

Our aim in this paper is to study theoretical aspects of FB’s 
in finite fields. We will focus on the class of unitary and PU 
matrices. In Sections 11-VII, we will consider the GF(2)  case, 
and in Section VIII, we will consider the GF(q)  case for any 
prime number q > 2 .  The following are the main results and 
outline of the paper: 

1) In Section 11, we will discuss some basic properties of 
unitary matrices in GF(2) .  Even though unitary matrices 
in GF(2)  have many properties similar to those of 
the unitary matrices in complex field, there are some 
exceptions. For example, in GF(2)  case, the fact that 
uTATAu = uTu for all vectors U does not imply the 
unitariness of the matrix A, and none of the columns (or 
rows) of a unitary matrix can have all elements equal to 
1. Despite all these unusual properties, we can prove 
that all unitary matrices can be expressed as a product 
of permutation matrices and Householder-like matrices. 

2) PU matrices in GF(2)  are studied in Section 111. As in 
the complex case, we will show that the synthesis filters 
of a PR PU FB are the mirror images of the analysis 
filters. 

3) In Section IV, we will present a degree-one building 
block for PU matrices in GF(2)  and derive the con- 
ditions under which arbitrary PU matrices in GF(2)  
can be factorized into these building blocks. A degree- 
one reduction algorithm will be given. Even though 
the building block is the most general degree-one PU 
system, as we will show, there are PU systems in GF(2)  
that cannot be expressed in terms of these building 
blocks. In fact, in the 2 x 2 case, all PU matrices that 
are factorizable in terms of degree-one PU systems are 
diagonal. 

4) We will establish new factorization theorems for PU 
matrices in Section V. The new theorems involve a 
building block of degree two. Using these degree-two 
building blocks, we are able to factorize some PU 
systems that are unfactorizable in terms of degree-one 
building blocks. However, there are PU systems that 
cannot be decomposed into any combination of these 
degree-one and degree-two building blocks. 

5) In real or complex fields, the lapped orthogonal trans- 
form (LOT) has been studied in detail [3]. In Section 
VI, we will study the LOT in GF(2) .  A LOT of degree 
p in GF(2)  can be completely characterized by a set of 
p independent vectors. Moreover, the class of LOT’s 
in GF(2)  can always be factorized in terms of the 
degree-one and degree-two building blocks. We also 
find the constraints on the degree-one and degree-two 
building blocks, which will guarantee the LOT property 
structurally. 

6) State-space representation of PU systems in GF(2)  
will be considered in Section VII. We will show that 
the implementations based on the factorization given 
in previous sections are minimal in terms of delay 
elements. In real or complex fields, it is known [4] that a 
system is PU if and only if there is a unitary reazization 
matrix. In GF(2) ,  we will show that a system is PU 
if its realization matrix is unitary. However, unlike the 
conventional PU systems, PU systems in finite fields 
may not have a unitary realization matrix. Thus, the 
well-known LBR lemma [4] cannot be extended to the 
GF(2)  case. 

7) In the last section, the theory of PU systems in C F ( 2 )  
will be extended to the case of GF(q)  for prime q > 2. 
Even though they share many similarities, there are 
many differences between these two cases. In particular, 
the factorization theorems are very different. In GF(q)  
with q > 2, all LOT’s are factorizable in terms of degree- 
one building blocks. No degree-two building block is 
needed. 

D. Notations and DeJnitions 
1) Notations: Boldfaced lowercase and uppercase letters 

(such as U ,  v and U ,  V )  represent vectors and matrices, 
respectively. The transpose of a matrix A is denoted as 
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AT. The dimension of the matrices are M x M unless it 
is mentioned otherwise. The symbol I is reserved for the 
identity matrix, and the vector e; is used to denote the 
ith column vector of the identity matrix I .  The symbol 
J denotes the reversal matrix. For example, the 4 x 4 
reversal matrix is 

YO 0 0 1 1  
0 0 1 0  

~ 4 =  I o  o l  
L1 0 0 01 

2) Finite Fields: In this paper, we will consider finite 
fields of the form GF(q)  with prime q only. All the 
computations (addition and multiplication for scalars 
and matrices) are defined modulo q. The multiplicative 
inverse of a nonzero scalar c in GF(q)  is denoted by 
C-1. 

3) Dot Product and Orthogonality: The dot product of two 
vectors U and v is defined as uTv = E, U,V,. Note 
that the defined dot product is not a valid inner product 
because it is possible that uTu = 0 even if U # 0. 
The scalar quantity uTu is represented by lU. There are 
nonzero vectors U in finite fields with ZU = 0. Two 
vectors U and v are said to be orthogonal if uTv = 0. 

4 )  Unitary Matrices: A matrix A in GF(q)  is said to be 
unitary if A ~ A  = I .  

5) Paraunitary (PU) Matrices: A rational matrix E ( z )  in 
GF(q)  is called a PU matrix if E T ( z - l ) E ( z )  = 1. In 
this paper, we will only study polynomial PU matrices. 

6 )  Order versus Degree: The order of a causal FIR transfer 
matrix E(x)  is the largest power of 2-l in its expression, 
whereas the McMillan degree (which is often just called 
degree) is the smallest number of delays with which 
we can implement the system. For example, if E ( z )  = 
e(0) + z - l e ( l )  with e(1) # 0, then its order = 1, 
whereas its degree is equal to the rank of the matrix 

7 )  Lapped Orthogonal Transforms (LOT): In GF(q) ,  a 
first-order PU system, i.e., a PU system of the form 
E ( z )  = e(0) + z-'e(l), is said to be a LOT in GF(q) .  

4 1 )  VI. 

11. UNITARY MATRICES OVER GF(2)  

For simplicity, we assume that all the matrices in this section 
are M x M square matrices. The result for rectangular matrices 
can be obtained in a similar manner. In the first part of this 
section, we will study some basic properties of unitary matrices 
over GF(2) ,  which we are going to use throughout the paper. 
In the second part, we will show that all unitary matrices can 
be factorized by using some basic building blocks similar to 
the Householder transformation. 

A. Basic Properties of Unitary Matrices 

to be unitary if 
As defined in Section I, the matrix A over GF(2)  is said 

A ~ A  = I .  (2.1) 
One important property of unitary matrices that we are going 
to use repeatedly later is the following: 

Fact 2.2: None of the column (or row) vectors of a unitary 

It is not difficult to see that if A1 and A2 are unitary, so is 
the product A1A2. Post-multiplying (2.1) by A-', we obtain 
that A-' = AT. Thus, if A is unitary, its inverse is simply 
its own transpose. Pre-multiplying A-' = AT by A, we get 
AAT = I .  Summarizing the results, we have shown that the 
following are equivalent: 

matrix in GF(2)  can have an even number of 1. 

i) A is unitary. 
ii) A ~ A  = I .  
iii) A A ~  = I .  
iv) A-' = AT. 

From the above discussion, we see that unitary matrices over 
GF(2)  enjoy many properties similar to unitary matrices over 
the real or complex field. However, there are some differences. 
For example, it is well known that in real or complex field, a 
matrix is unitary ,if and only if it has the property of energy 
conservation [4]. This means that A is unitary if and only if 
u ~ A ~ A u  = ut, for all U .  In GF(2) ,  there are nonunitary 
matrices that satisfy uTATAu = uTu for all U. To explain 
this, note that 

I 

1 

For any symmetric matrix B over GF(2) ,  the above equation 
reduces to uTBu = Cl ulbll .  Thus, any symmetric matrix 
with b,, = 1 will satisfy uTBu = uTu. If A is such that 
all columns have odd number of nonzero elements, then ATA 
is symmetric with diagonal elements = 1. Thus, even though 
A is not unitary, we have uTATAu = uTu for all vectors 
U .  For unitariness of matrices in GF(2) ,  we need a stronger 
condition as follows: 

Fact 2.2: If uTATAv = uTv for all possible vectors U and 

Proof: Let U and v be, respectively, the unit vectors e, 
and e3 defined in Section I. If eTATAe, = eTe, for all i , j ,  
then we have 

U ,  then A is unitary. 

r e: 1 

Since [eo el . . . e ~ - l ]  = I ,  it immediately follows from 

Fact 2.3: If A is a unitary matrix over GF(2) ,  then none 
of the columns (or rows) can have all elements equal to unity. 

ProoJ? Let A = [(LO a1 . . .  a ~ - 1 ] .  Suppose 00 

is a column vector with all elements equal to unity. Since 
aTuo = 0 for i # 0, we conclude that a, must have an even 
number of unit elements, which is a contradiction to Fact 2.1 .m 

Combining Facts 2.1 and 2.3, we conclude that for any 
M x M unitary matrix with M 5 3, the column has only 
one nonzero element. Therefore, any M x M unitary matrix 

the above equation that ATA = I .  
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with M 5 3 must be a permutation of the identity matrix. 
As we will see later in this section, Fact 2.3 is very useful 
in the factorization of unitary matrices. Before we derive the 
factorization theorem for unitary matrices, we would like to 
introduce the following building block: 

Fact 2.4: In GF(2) ,  the matrix U = I+uuT with uTa = 0 

The above fact can be proven by direct computation of 
UTU. Moreover, it can be verified that U is its own inverse. 
As we will see next, the building block in Fact 2.4 has a similar 
function as the Householder transformation. 

is unitary. 

B. Factorization of Unitary Matrices over GF ( 2 )  

In this section, we will show how to parameterize all M x M 
unitary matrices. In the real field, all unitary matrices can 
be written as a product of planar rotations. Since the planar 
rotations involve sines and cosines, we cannot attempt the 
same approach in the finite field. Instead, we will use an 
approach similar to the Householder factorization. In real or 
complex field, the Householder transformation is a matrix 
of the form ( I  - 2vvT/vTv) [17]. In GF(2) ,  since all 
the computations are performed modulo 2, there is no such 
Householder transformation in GF( 2). However, we will 
show that we can capture all unitary matrices using the 
building block U introduced in Fact 2.4. As we have pointed 
out above, all M x M unitary matrix with M 5 3 must be 
a permutation of the identity matrix so that only M > 3 is of 
interest in the discussion of this section. Before we derive the 
factorization theorem for M > 3, we will show two lemmas 
that are crucial in this context. 

Lemma 2.1: Let v be a vector over GF(2)  such that vTv = 
1, and vo = 0. Then 

T ( I  + ww )U = eo, and vT(I  + wwT) = e: (2.4) 

where w = v + eo, and eo = [l 0 . . . O I T .  
The above lemma can be proved by direct substitution. Note 

that the vector w has wTw = 0 so that ( I  + wwT) is unitary 
(by Fact 2.4). The function of ( I  + wwT) is similar to the 
Householder matrix in the real or complex case. The matrix 
( I  + wwT) will transform the vector v into the vector eo. It is 
not difficult to generalize the result of Lemma 2.1 as follows: 
If II is a vector such that vTv = 1 and U, = 0, then it can be 
shown that the matrix ( I  + wwT) with w = v + e, transforms 
the vector w into e,. As a consequence of Lemma 2.1, we 
have the following: 

Lemma 2.2: Let A be M x M unitary over GF(2)  with 
Aoo = 0. Define the vector w = a0 + eo, where ao is the 
zeroth column of A. Then, wTw = 0, and 

(2.5) 

where B is ( M  - 1) x ( M  - 1) unitary. 
Pro08 Since A is unitary with Aoo = 0, the vector a0 

satisfies the conditions in Lemma 2.1. Applying the result of 
Lemma 2.1, we have ( I  + wwT)ao = eo. Thus 

( I  + wwT)A = [eo G] (2.6) 

where C is M x ( M  - 1). Since both A and ( I  + wwT) are 
unitary, the right-hand side of (2.6) is also unitary. Thus, the 
first row of C contains only zeros. Inverting ( I  + wwT) in 
(2.6), we immediately get (2.5). 

With the above two lemmas, we are now ready to prove the 
main factorization for unitary matrices in GF(2) .  

Theorem 2.1: An M x M matrix A over GF(2)  (with 
M > 3)  is unitary if and only if it can be factorized as 

where U,  = If u,uy with uTu, = 0, and P is a permutation 
of the identity matrix. 

Pro03 The “if’ part is self evident. To prove the “only 
if’ part, assume that A is unitary. If Aoo # 0, we can apply 
a row permutation such that the (0, 0)th element is zero. This 
is always possible because of Fact 2.3. Then, the factorization 
in Lemma 2.2 can be applied. Repeat the permutation and 
factorization operations on the smaller unitary matrix B.  
Continuing the process, we can successively generate unitary 
matrices of increasingly smaller size until we get a 3 x 3 
unitary matrix, which itself is a permutation of the identity 
matrix. Thus, we have the following factorization: 

where V, = I+v,vy with vyv, = 0, and P,  are permutations 
of the identity matrix. By using the fact that P,V, = U,P, 
for some unitary matrix of the form U ,  = I f u,uF, we can 
shift all the permutations to the right and obtain (2.7). 

Remark: In (2.5) we have extracted a left factor from A. If 
we take the zeroth row of A, UT to form the vector iiu = iio+eo, 
then we can rewrite (2.5) as 

A =  [o 1 0  g](l+wwT).  

In this case, we can extract a factor from the right of A. 

111. PARAUNITARY MATRICES AND 
FILTER BANKS OVER GF(2)  

Let E ( z )  be a matrix whose entries are rational with 
coefficients from GF (2). As defined in Section I, the matrix 
E ( z )  is said to be PU if 

ET(z- l )E(z )  = I .  (3.1) 

In this section, we will restrict our attention to the FIR 
case when E ( z )  = EF=oe(k)z -k .  As we mentioned in the 
introduction, the number N is called the order of the system. 
In the case of real or complex field, the first-order PU matrix 
is called the lapped orthogonal transform (LOT) [3]. The class 
of LOT in GE(2)  can be similarly defined. We will see that 
this class allows a minimal factorization in terms of smaller 
PU building blocks. However, unlike the complex case, we 
need both degree-one and degree-two building blocks in the 
factorization of LOT in GF(2) .  
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A. Some Basic Properties of PU Matrices 

Equation (3.1) gives a x-domain characterization of PU 
matrices. In the time domain, it can be shown that the impulse 
response satisfies 

(3.2) 
I ,  k = 0; 
0, otherwise. 

n 

eT(n)e(n + IC) = 

The conditions in (3.2) are very similar to those for PU 
matrices in real or complex field. Equation (3.2) gives one 
time-domain condition for PU matrices. Using the fact that 
(3.1) implies E ( x ) E T ( d )  = I ,  we obtain another time- 
domain condition as 

(3.3) 
I ,  IC = 0; 
0, otherwise. 

n c e(n)eT(n + I C )  = 

Even though some properties of the real or complex case 
continue to hold in the case of GF(2) ,  there are some 
exceptions. For example, in the real or complex field, if 
the system E(z )  has the input-output energy preservation 
property, then it is PU. In general, this is not true for the 
GF(2)  case. A counterexample is given by 

A =  [i i i ]  (3.4) 

In this case, uTATAu = uTu for all U ,  but ATA # I .  
The precise relation between PU property and input-output 
mapping is given by the following result: 

Lemma 3.1: Let yo(n )  and gl(n) be, respectively, the 
outputs of E(z )  in response to uo(n) and ul(n). Then, E ( z )  
[over GF(2)]  is paraunitary if and only if 

(3.5) 
n n 

for all possible inputs pairs uo (n)  and u1 (n)  . 
Pro08 The outputs can be written as y i ( n )  = 

XI, e(IC)ui(n - I C )  for i = 0 , l .  Substituting this into the 
left-hand side of (3.5) and rearranging the result, we get 

Y:(n)Yl(n) 
n 

uF(1) ce ' (n)e(n  + I C )  ul(Z - k ) .  (3.6) =F ( n  ) 
A@) 

If we choose u ~ ( n )  = e,S(n) and ul(n) = e,S(n), then the 
right-hand side of (3.6) reduces to U%, (O), which is the ( i ,  j) th 
element of A(0).  Using (3.5), we conclude that A(0) = I .  
Similarly, by choosing uo(n) = e,S(n) and ul(n) = e,S(n + 

1) McMillan Degree and Determinant of PU Systems: In 
the FIR case, the PU property puts a strong constraint on the 
determinant of E ( z ) .  Taking the determinant of (3.1), we get 
[det E(z)]  = 2 - P  for some integer p. In [18], it is proved for 
the real and complex fields that the McMillan degree of causal 
systems with anticausal inverses is equal to the degree of the 
determinant. One can verify that the same proof carries through 

I C ) ,  we can prove that A(k) = 0 for IC # 0. 

for systems in the finite fields. In particular, the PU system 
in GF(2)  has an anticausal inverse; therefore, the degree of 
the determinant is equal to McMillan degree. The McMillan 
degree of systems in finite fields has been investigated by 
researchers in coding theory [15], [16]. For a detailed study 
on the topic of McMillan degree, refer to [41, [151, [16], [18], 
and [19]. 

B. PU FB's in GF(2)  

to the polyphase matrices as 
Consider Fig. 1. The analysis and synthesis filters are related 

M-1 M - 1  

H,+(z) = E,+i(zM)z-2, FI,(z) = R i k ( Z M ) Z 2  

i=O i=O 
(3.7) 

where E ~ , i ( z )  and R;I,(z) are, respectively, the (k,i)th and 
(i, IC) th elements of E( z )  and R( 2 ) .  If the analysis polyphase 
matrix E(x)  is PU, then the polyphase components of the 
analysis filters satisfy the relation 

2 

which is very similar to the orthogonality condition in the 
case of real or complex field. Equation (3.8) can be rewritten 
as [ H Z ( Z - ~ ) H I , ( Z ) ] L M  = 6(IC - Z ) ,  where X ( Z ) [ L M  denotes 
the z transform of s ( M n ) .  If we take the synthesis polyphase 
matrix as 

R(z)  = ET(z- l )  (3.9) 

then we have a perfect reconsmction (PR) FB in GF(2) .  
Using (3.7) and (3.9), we find that the synthesis filters Fk(z)  
are time-reversed versions of the analysis filters HI,  (2) 

FI,(x) = H k ( x - 1 ) .  (3.10) 

In the special case of two-channel FIR PU FB's, all the 
analysis and synthesis filters are determined by one filter. To 
be more specific, we have 

H l ( Z )  =z-%O(x-l), Fo(z) = Ho(z-1) 
F1(z) = P H o ( z )  (3.11) 

where N is the order of the filter Ha(.). The other filters are 
simply either time-reversed or delayed versions of HO ( z ) .  

Iv .  DEGREE-ONE P u  SYSTEMS AND FACTORIZATIONS 

In this section, we introduce the following degree-one causal 
FIR system over GF(2)  

D ( z )  = I + vuT + z - ~ w w ~ ,  wTv = 1. (4.1) 

By direct computation, we can verify that DT(z-I)D(z)  = I .  
Therefore, this is a PU system. The system in (4.1) has degree 
one, and Fig. 2 shows an implementation using one delay. We 
will study its properties and show that it can be used for the 
synthesis of more general PU systems. 
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Fig. 2. Degree-one PU building block. Here, plTv = 1 

Fig. 3. Inverse of the degree-one PU system in Fig. 2. 

A. Basic Properties of the Degree-one Building Block 

1) The inverse system is obtained by replacing 2-l with 
z .  That is 

D - l ( z )  = D ( Y 1 )  = I+vv'+z'uzI', vTpl = 1. (4.2) 

Fig. 3 shows an implementation of the inverse D-'(z). 
2) A cascade of k such systems gives IIktimesD(z) = 

3) Let (210,  v1, . . . , vs-l} be a set of vectors in GF(2)  such 
D(2". 

that vTv, = S(z - 3 ) .  Then, the cascade 
9 - 1  s-1 s-1 

z=o z = o  z=o 

It is clear from the right-hand side of (4.3) that if we 
interchange any U, with any U,, the system remains the 
same. Hence, the factors (I+v,vF+z-'v,vT) commute. 
Moreover, it can be shown that a cascade of PU building 
blocks Dz(z) with vectors v, will have order-one if 
and only if the vectors satisfy vTv, = S ( i  - j ) .  If we 
let V = [vg . . . v,-l], then the system in (4.3) can be 
rewritten as I + VV' + 2 - l ~ ~ ' .  

Lemma 4.I-Most General Degree-One PU System: The 
most general M x M causal FIR degree-one PU system over 
GF(2)  can be written as 

E ( z )  = (I + vvT + z - ~ v J ) E ( ~ )  (4.4) 

where v is a column vector with v'v = 1, and E(1) is a 
M x M unitary matrix. 

The proof of Lemma 4.1 is very similar to the case of real 
or complex field [4]. Note that the PU system E ( z )  in (4.4) 
can be rewritten as E(x)  = E ( l ) ( I  + UU' + z-'aaT) with 
U = E (1)v (hence, uTu = vTv = 1). 

B. Degree-One Reduction Using D ( z )  
To show how we can extract D(x)  from a PU system, we 

consider the general M x M PU system of the form E ( z )  = 
e(k)z-'" with degree p .  To avoid trivial cases, let e(0) # 

0 ,  and e ( N )  # 0. Therefore, the system E ( z )  has order N .  
From the PU conditions in (3.2), we get eT(0)e(N)  = 0, 
which implies that both the matrices e(0) and e ( N )  are 

a 

T 

singular. Let v be a vector in the null space of e(0) such 
that vTv = 1. Form the new system 

E'(z) = E ( z ) ( I +  vuT + 2v.T). (4.5) 

We say that the degree-one reduction is successful if the new 
system E'(z)  satisfies the following three conditions: 

i) It is causal. 
ii) It is PU. 
iii) It has degree p - 1, where p is the degree of E(z ) .  

The new system E'(z)  in (4.5) is causal because e(0)v = 0. 
Since both E ( z )  and ( I  + vvT + zw')  are PU, so is E' ( z ) .  
Taking the determinant of (4.3, we see that the degree of 
E'(z) is p' = [detE'(z)] = p - 1. Hence, E'(z) satisfies 
the three conditions mentioned above. We have sucesshlly 
extracted a degree-one building block from E(x) .  Inverting 
( I  + vu' + zvwT), we conclude that E(x)  can be written as 
E ( z )  = E'(x)(I+ vvT + zplvvT). If we can successfully 
repeat the above degree reduction process p times, then E ( z )  
can be written as 

-1 T E ( z )  =E(l)(I+v,-lv;-l + x v,-1vP-1)-' 

(I + vov: + ,-1v,v;, (4.6) 

where vTv, = 1, and E(1) is a constant unitary matrix. 
Similarly, one can show that if the null space of e'(0) 
contains a vector U with uTu = 1, then we can write E ( z )  as 
(I+u~'+z-~~u')E'(x) for some causal PU system E'(z) .  If 
E ( z )  is completely factorizable into p terms, using this degree 
reduction process from the left, we can write E ( z )  as 

E ( z )  = ( I  + uou; + x-lu,U;). . . ( I  + Up-lu;-l 
+ z-lU,-lU;-l)E(l). (4.7) 

1) The Equivalence of (4.6) and (4.7): If E ( z )  can be writ- 
ten as the factorized form in (4.6), then it can also be expressed 
as (4.7). To prove this, we consider (4.6). Starting from the 
left, we can move the constant matrix E(1) to the right by 
letting U, = E(l)v, .  

In the real or complex field, it is well known that all FIR 
causal PU matrices of degree p can always be factorized into 
a product of p degree-one PU systems of the form D ( z ) .  A 
similar property is not true in GF(2) .  To see this, consider 
the following example: 

Example 4.1-A PU System that 1s Unfactorizable in Terms 
o fD(z ) :  Let G(x) be the following M x M system with M 
odd: 

(4.8) G(z)  = wwT + x - ' ( I +  WW') 

where w = [I 1 1IT so that wTw = 1. It can be 
verified that G'(z-l)G(z) = I .  Therefore, G ( z )  is PU. Let 
{uo,... , u M - ~ }  be a set of independent vectors such that 
wTuk = 0. Then, we get g(1)w = 0 and g(1)uk = zlk for 
0 5 k 5 M-2. Therefore, g( 1) has rank M-1, and the degree 
of G(z)  is M - 1. Suppose that degree reduction from the left 
is possible. This means that G(z)  = (I+~v~+z-~vv~)G'(z), 
where vTv = 1, and G'(z) is a causal FIR PU system of degree 
p' = M - 2. Inverting the degree-one system, we have 

G'(z) = ( I  + VU' + XVV')G(Z). (4.9) 
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Therefore, G'(x) is causal only if vTw = 0, which implies that 
v has an even number of ones, violating the requirement of 
vTv = 1. Thus, degree reduction from the left is impossible. 
Similarly, we can show that degree reduction from the right is 
also impossible. Therefore, we conclude that the system G( x) 
in (4.8) cannot be factorized in terms of degree-one PU system 
D(z ) .  From the above discussion, it is clear that the degree 
reduction fails because neither the null space of e(0) nor eT (0) 
contains a vector with an odd number of ones. In the complex 
field, this can never happen because nonzero vectors always 
have nonzero norm. H 

Lemma 4.2: Let E(z )  = C ; = ' = , e ( k ) ~ - ~  be a causal PU 
system. The degree-one reduction for E(z )  fails if and only 
if the null spaces of e(0) and eT(0) contain only vectors with 
an evea number of ones. W 

The above lemma can be proved in a straightforward 
manner. Note that it is not necessary to exhaust the whole 
null space for the test. We need only to look at any basis that 
spans the null space. If none of the vectors in this basis has 
an odd weight, then any linear combination of vectors in the 
null space has an even weight because in GF(2)  

V. DEGREE-TWO PU BUILDING 
BLOCKS AND FACTORIZATIONS 

As we have seen in Example 4.1, there are PU systems 
that cannot be factorized by using the degree-one building 
blocks. In this section, we will include a degree-two building 
block in the factorization so that some PU systems that cannot 
be factorized before can now be factorized. To establish 
new factorization theorems for PU systems, we introduce the 
following degree-one system: 

where u and v are nonzero vectors over GF(2) .  The above 
system is not PU unless u = v, and vTv = 1. To see this, 
suppose GT(z-')G(x) = I .  Computing the coefficient of z-', 
we get uT(I + uv') = 0, which implies that uT = U' and 
that U*U = 1. The non-PU system G(z) is useful because 
it can generate degree-two PU building blocks for the new 
factorization theorem. 

Lemma 5.1: The system G(z)  over GF(2)  in (5.1) always 
has a FIR inverse. Its inverse is 

(5.2) G-l(z) = { G(z-') ,  if vTu = 1; 
G(z) ,  if v'u = 0. 

H 
The above lemma can be proved by direct substitution. It 

shows that in GF(2) ,  we can have a nontrivial system that is 
its own inverse, i.e., G(x)G(z) = I .  

Fig. 4. (a) Cascade implementation of the degree-two PU system K ( z ) .  
(b) Parallel implementation of the degree-two PU system K ( z ) .  Here, 
uTu = TJ*V = 0, and vTu = 1 .  

A. Degree-Two PU Building Blocks 

the vectors U and v satisfy 
One useful special case of the system G(x) in (5.1) is when 

In this case, if we form the following cascade system: 

K ( z )  = ( I  + uvT + z-'uv*)(I + vuT + x-'vu') 
= I + uvT + vuT + 2-'(uv' + VUT) 

k(0) k(1) 

(5.4) - - 
then it can be verified that K*(z- ')K(z) = I .  Therefore, 
K ( z )  is PU even though each individual factor is not PU. From 
the second equality of (5.4), it is clear that K(x)  remains the 
same if we interchange the vectors u and 21. Therefore, we can 
also write K ( z )  as (I+vuT + z-'vuT)(I+uvT + z-'uvT). 
Using (5.4), we have the cascade and parallel implementations 
of K ( z )  as shown in Fig. 4(a) and (b), respectively. 

B. Basic Properties of K ( z )  
1) It is symmetric, i.e., K T ( z )  = K(z ) .  The inverse system 

is given by K-'(z)  = K(2- l ) .  
2) Note that k( 1)u = u and k( 1)" = v; therefore, the range 

of k(1) has rank = 2 ,  which implies the system K(x)  
has degree two. Hence, we have [det K(x)]  = x-'. 

3) K ( z )  cannot be factorized into building blocks of the 
form D ( z )  in (4.1). This can be seen by investigating 
the null space of the zeroth coefficient k(0 )  = I+uvT + 
vuT. If w is a vector in the null space of k(O), then it 
must satisfy w = (vTw)u + (u'w)~. This implies that 
w has an even weight since it is a linear combination of 
two even weight vectors [see (4.10)l. Using Lemma 4.2, 
we can conclude that K ( z )  cannot be written in terms 
of degree-one PU system D ( z ) .  

4) Let K,(z) = [I+u,vT +v,uT +z-'(u,vT +v,uT)] for 
0 5 i 5 s - 1 be degree-two PU systems. Then, it can 
be verified that the product K (  x) = K O  ( 2 )  . . . K,-  I (2) 

remains order-one if and only if the vectors U, and ut are 
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WTW = 3 2 s  = 

such that the matrix W = [ w p o  . . us-1v,-1] satisfies 

- J 2  - 
J 2  0 

0 
J 2  (5.5) 

- J z  - 

where 

J z  = [ y  i]. 
Furthermore, if (5.5) is true, then the factors K,(z)  
commute so that we can write the product as 

s-1 s-1 

2 = 0  2=0 
s-1 

-y(utv;l’ + vtuT) =I + W&WT + z-lW&WT 
2=0 

(5.6) 

where the 2s x 2s matrix JzZ, is as defined in (5.5). 

C. Degree-Two Reduction Using K ( z )  
In Section IV-B, we have given a procedure for the extrac- 

tion of degree-one building block D(z) .  Suppose that we have 
factored out all the extractable degree-one building blocks of 
the form D ( z ) ,  and E ( z )  is the remaining system that is 
unfactorizable in terms of D ( z ) .  Hence, the null spaces of 
e(0)  and eT(0)  do not contain any vector with an odd weight. 
Next, we will provide an algorithm to extract the degree-two 
PU building block K ( z )  whenever it is possible. 

Let (210, v l ,  . . . , vs- l}  be a set of independent vectors that 
span the null space of e(0). Since there is no degree-one 
building block, we have v:wt = 0 for all 2 .  Suppose there 
is a pair of vectors v2 and vug such that vTv, = 1. Then, the 
following system 

E+) = E ( z ) ( I  + v,v; + .,UT + z(v,v,. + v,vT)) (5.7) 

is a causal PU system with degree p’ = p - 2, where p is the 
degree of the original system E ( z ) .  The causality of E’(z) 
follows from the fact that both v, and U ,  are in the null space 
of e(0). Since the vectors vz and U, satisfy the condition (5.3), 
the anticausal system ( I  + v,vT + v,vT + z(vzv: + v,v:)) is 
the inverse of a degree-two PU system K(z ) .  Therefore, E’(z) 
is PU. Taking the determinant of (5.7), we get [det E’(z)] = 
z2 . [det E(z ) ]  = z-(P-’). Since E’(z) is PU, its degree is 
equal to p - 2 (see Section 111-A). After rearranging (5.7), we 
get 

every degree-two reduction from the right, we must test if 
there is any degree-one building block. Similarly, if we can 
find a pair of vectors in the null space of eT(0) that satisfies 
(5.3), then we can extract a degree-two factor K ( z )  from the 
left of E( 2). 

Example 5.1-A PU System that Is Factorizable in Terms 
o f K ( z )  but Not in Terms o f D ( z ) :  Consider the PU system 
G ( z )  in (4.8) in Example 4.1. Let M = 5 so that G(z)  can 
be written as: 

1 1 1 1 1  0 1 1 1 1  

1 1 1 1 1  1 1 1 1 0  

The PU system G(z)  has degree equal to 4 as the rank of 
g( l )  = 4. Since the null space of g(0) consists of vectors 
with even weight only, degree-one reduction fails (by Lemma 
4.2). However, one can verify that G(z)  can be written as 
a product of two degree-two PU factors K ( z ) .  One of such 
representations is given as 

G ( z )  1 [I + . ~ o ~ ; f  + VOW: + Z - ’ ( U ~ ~ J :  + VOU;)] 

. [I + U ~ Z I T  + v1.T + z-’(u~wT + WIUT)] (5.10) 

where the vectors are 

(5.11) 

Note that the vectors U ,  and U, in (5.11) satisfy (5.3). More- 
over, one can show that the ordering of K ( z )  in (5.10) is 
irrelevant because the two factors commute (see Property 4 
of Section V-A). Later, we will see that in general, it is true 
that all the factors (degree-one or degree-two) commute for 
the class of LOT’S over GF(2) .  

D. Noncompleteness of D ( z )  and K ( z )  
As we have seen in Example 5.1, PU systems that cannot 

be factorized in terms of D ( z )  can sometimes be expressed as 
a product of K ( z ) .  It is natural to ask if all PU systems can be 
represented as a product of D ( z )  and K ( z ) .  The answer is no 
in general. However, we will see in the next section that the 
class of LOT over G F ( 2 )  can always be factorized in terms 
of D ( z )  and K ( z ) .  

E. Most General Unfactorizable Degree-Two 2 x 2 PU Systems 

E ( z )  = E ’ ( z ) ( I + v , v ~ + v , v ~  +z- l (v ,v~+v,vT)) .  (5 .8)  It is shown in Appendix A that the most general 2 x 2 PU 
system over GF(2)  that cannot be factored in terms of the 

We have sucessfully extracted a degree-two PU building block 

can extract the degree-one PU building block D ( z )  from the 
right-hand side of the reduced PU system E’(z) (degree-one 
reduction from the left of E’(z) is impossible because degree- 
one reduction from the left of E(z )  fails). Therefore, after 

degree-one building block D ( z )  has the following form: 
from the right of E ( z ) .  Note that it is possible that we 1 1  

G(z)  = [i i] + z-’g(1) + z-’ (5.12) 

where g( 1) = G(1), which equals to either the identity matrix 
1 2  or the reversal matrix J 2 .  It can be verified that the 
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Fig. 5. Unfactorizable degree-two PU system in G F ( 2 ) .  

coefficients g ( k )  satisfy (3.2) so that G(z) is PU. The system 
G(z) has degree two because [det G(z)] = x P 2 .  Fig. 5 shows 
a minimal realization of G( z )  when g( 1) = 1 2 .  Using Lemma 
4.2, we know that G(z) cannot be factorized in terms of D ( z )  
because the null spaces of g(0) and g T ( 0 )  contain only one 
vector, namely, [ :], which has an even weight. Moreover, the 
system G(z) cannot be re-expressed in the form K(z ) .  If it 
could, there would exist two vectors U and v in the null space 
of g(0) or g T ( 0 )  such that uTv = 1 (which is impossible as 
the null spaces contain only [ :] ). Therefore, we conclude that 
G(x) is a PU system that cannot be written as a product of 
D(x) or K(z ) .  

the following 2 x 2 PU system: 
1) A Degree-Four Unfactorizable PU System: Consider 

The system G‘(z) has degree 4. Both the degree-one reduction 
by D ( z )  and the degree-two reduction by K ( z )  are impossible 
because the null spaces of g(0) and g T ( 0 )  contain only the 
vector [l 1IT, which has an even weight. Moreover, G’(z) 
cannot be written as a product of the system G(z) in (5.12), 
even though G(z) is the most general unfactorizable 2 x 2 
PU system. To see this, assume that G’(z) = Gl(z)G2(z), 
where G,(z) are of the form As in (5.12). Comparing the 
zeroth coefficient, we have 

(5.14) 1 1 1 1  [: :I = [l 1][l 11 = O  

which is a contradiction. Therefore, G’(z) cannot be expressed 
in terms of D ( z ) , K ( z )  and G(x). 

From the examples given in (5.12) and (5.13), we know 
that the PU building blocks D ( z )  and K ( z )  are not complete. 
For a general PU system E(z) ,  we have the following test for 
unfactorizability : 

Lemma 5.2: Let E(z )  = Cf=oe(k)z-k be a causal PU 
system. Let {VO, e , V , ~ - I }  be any basis that spans the null 
space of e(0)  and {UO, a , ZL,-~} be any basis that spans the 
null space of eT(0). Then, both the degree-one and degree-two 
reductions fail if and only if vTvJ = 0 and uTuJ = 0 for all 

Note that the number of independent vectors ut and ut are 
the same because the null spaces of e(0) and eT(0)  have 
the same dimension. In addition, note that if there is a basis 
for the null space of e(0) that satisfies the condition in the 
above lemma, so are all the other bases because of (4.10). 
Therefore, it is sufficient to check one basis. Letting the 
matrices V = [VO, . . . , v,-1] and U = [UO, . + . , u,-l], then the 
condition in Lemma 5.2 can be restated as VTV = UTU = 0 .  

i , j .  

VI. LAPPED ORTHOGONAL TRANSFORMS OVER GF(2)  

In this section, we consider the following M x M first-order 

(6.1) 

The rank p of the matrix e(1) is the degree of the system, 
and p 5 M .  If E ( z )  is a PU system, then we call the system 
E(z )  a lapped orthogonal transform (LOT) over GF(2) .  The 
coefficients of the LOT in (6.1) should satisfy the PU condition 
in (3.2), which we restate as follows: 

eT(0)e(l) = o (6.2a) 
eT(0)e(O) + eT(l)e(l) = I .  (6.2b) 

In the following, we will first give a minimal parameteriza- 
tion of LOT’s over GF(2)  and then show the factorization 
theorem. 

system over GF(2)  

~ ( z )  = e(0) + e(1)z-l. 

A. Minimal Characterization of LOT 

In the case of real or complex field, it is well-known [3], 
[4] that all LOT’s of degree p can be parameterized by a 
set of p orthonormal vectors and a unitary matrix. We can 
capture all LOT’s by varying the p orthonormal vectors and 
the unitary matrix. There is an implementation associated with 
this minimal parameterization that will structurally guarantee 
the LOT properties [4], [3]. In this section, we will derive a 
similar result for the GF(2)  case. 

Theorem6.1: In GF(2) ,  the M x M system E(x)  = 
e(0) + e(1)z-l is a LOT with degree p if and only if there is 
a M x p matrix U, = [uO u1 e e .  uP-1] such that U;fU, 
is invertible, and 

(6.3) E ( z )  = E(l)[I+ U,L-lUT + X - ~ U , L - ~ U ; ]  

where L = U;fU, ,  and E(1) is unitary. 
Proofi The “if’ part can be proved by directly substi- 

tuting the expression in (6.3) into the product ET(z - ’ )E(z ) .  
One can verify that ET(x-’)E(z) = I .  To show the “only if’ 
part, assume E ( z )  is LOT with degree p. As E(z )  is PU, it 
can always be rewritten as 

E(z )  = E(l)[I + w + z-lw] (6.4) 

where E( 1) is unitary, and I + W + zP1W is PU. Since E(z )  
has degree p ,  the matrix e(1) = E(1)W has rank p .  Thus, 
there are independent vectors U, and independent vectors ut 
for i = 0, l , . . .  , p  - 1 such that 

T w = [U0 ‘111 . I ’  U,-l][.O VI . . . up-11 ’ 

Letting 

U, =[U0  U1 . . . ~,,-1] and 

v, = [U0 U1 . .  . ‘UP-11 

we can rewrite (6.4) as 

E ( z )  = E(l)[I+ U,VT + ~-~U,v;f]. (6.5) 

Substituting the coefficients into (6.2a) and simplifying the 
result, we get 

(6.6) (I + V,U~)U,V,T = 0. 
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X 

Fig 6 
unitary matrix, and L = UFU,. 

Minimal characterization of a LOT with degree p .  Here, E(1) is a 

As the vectors vi are independent, we can conclude from (6.6) 
that 

The above equation has two implications: i) The vector U ,  is 
a linear combination of U,, and ii) the p x p matrix UFU, is 
invertible as both U ,  and V ,  have rank equal to p .  Hence, 
we can write V ,  = U,L-’, where L = U;fU,. Substituting 

Note that in the proof of the “only if’ part, we have not 
used the second PU condition of (6.2b). One can verify that 
the choice of V = UL-l  will automatically satisfy (6.2b). 
From Theorem 6.1, we have the implementation of LOT as in 
Fig. 6. Note that the matrix L in Theorem 6.1 functions like 
a “nomalization” matrix. In the special case of L = I , ,  we 
can write E(z )  as 

(6.8) 
where the matrix UTU = I , .  Using Property 3 of D ( z )  in 
Section IV-A, we conclude that in the special case of L = I ,  
the LOT in (6.3) can be written as a product of D ( z )  

V ,  = i7,L-l into (6.5), we immediately get (6.3). 

E(z )  = E(l)[I + UUT + z-lUUT] 

P - 1  

[I + U,U: + Z-’U,UT]. (6.9) 
z=o 

Remarks: 
In Theorem 6.1, the vectors U ,  cannot be arbitrary 
independent vectors. They should be chosen such that 
the matrix U;fU,  is invertible. The subtlety is that in 
finite fields, the independence of U ,  does not always 
guarantee the invertibility of UFU,. Unlike the real or 
complex field, the matrices U ,  and UFU, may not have 
the same rank in finite fields. One such counter example 
is the matrix 

in GF(2) .  
In the real or complex field, the matrix L in (6.3) 
can always be decomposed as QTQ for some positive 
definite p x p matrix Q.  This is the same as saying 
that the vectors U ,  can always be orthonormalized in the 
cases of real or complex field. 

B. Complete Factorization of LOT 

Consider the first-order system E ( z )  in (6.1). Assume that 
E ( z )  is a LOT with degree p so that the conditions in (6.2) are 
met. To avoid trivial cases, we assume 1 5 p 5 M - 1. From 
(6.2a), we know that the column vectors in the matrix e(1) 
i s  in the null mace of eT(Ol. Suuvose that we cannot extract 

either a degree-one or a degree-two building block from E( 2). 

By Lemma 5.2, it is necessary that eT( l )e ( l )  = 0, which 
implies eT(0)e(O) = I from (6.2b). Hence, e(0) is unitary and 
invertible. Inverting eT(0) of (6.2a), we have e(1) = 0, which 
implies that E ( z )  is a constant unitary matrix. Therefore, we 
conclude that eT(l)e(l) # 0 if p > 0. Using Lemma 5.2, 
we know that we can always extract either the factor D ( z )  
or the factor K ( z )  from E ( z )  if its degree p > O .  After the 
degree reduction, we will have a new LOT system E’(z) with 
degree p ’ < p .  We can further reduce the degree of E’(z) 
by extracting a degree-one or degree-two building blocks. 
Continuing the degree-reduction process, we will finally arrive 
at a constant unitary matrix. Summarizing the result, we have 
proved Theorem 6.2. 

7’heorem 6.2: All LOT’s over GF(2)  are factorizable in 

Since the LOT’s have order one, the vectors in the factors 
of D ( z )  and K ( z )  have to satisfy some constraints so that 
the product of these first-order building blocks remains a first- 
order system. Let w, be the vectors in D z ( z )  and (u3,v3) be 
the vectors in K3 ( 2 ) .  Then, we have the following: 

terms of D( z )  and K (  2). 

1) The product of Do(z) and Ill(.) has order one if and 
only if the vectors W O  and w1 are such that the matrix 
W = [WO wl] satisfies (see Section IV-A) 

WTW = I2 (6.10) 

where 12 is a 2 x 2 identity matrix. Moreover, 
Do(z )Dl ( z )  = Dl(z )Do(z )  in this case. 

2) The product of KO (2) and K 1 ( z )  has order one if and 
only if the vectors U ,  and U, are such that the matrix 
C = [UO uo u1 2111 satisfies (see Section V-A) 

(6.1 1) 

where the matrix 

L 

Moreover, Ko(z)Kl(z)  = K l ( z ) K o ( z )  in this case. 
3) The product of Do(z)  and K o ( z )  has order one if and 

only if the vector W O  is such that w;fuo = 0 and 
WTVO = 0. Moreover, Do(z)Ko(z) = Ko(z)Do(z)  in 
this case. 

Combining the above results with Theorem 6.2, we 
have Theorem 6.3. 

Theorem 6.3: The system E ( z )  in (6.1) is a LOT with 
degree p if and only if it can be written as 

P 1 - 1  

E(z )  =E(1) [ I +  w,w: + z-lW%w:] 
z=o 

p 2 - 1  

3=0 

. n [I + U p :  + v p ;  + z - l (u j v ;  + u p ; ) ]  

(6.12) 

where p = p 1 +  2 p 2 ,  E(1) is a unitary matrix, and the vectors 
are such that the M x p matrix 
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- 
0 

CTC= J 2  5 2  

0 
J 2  - 

(6.13) 

VII. STATE-SPACE MANIFESTATION OF P u  SYSTEMS 

Consider the M x M causal FIR system E ( z )  = 
C ~ o e ( i ) z - z  in GF(2) .  Let z(n) and y ( n )  be the input and 
the output of E(z ) ,  respectively. Then, given any structure for 
E(z ) ,  we can write down two equations of the form 

s(n + 1) = As(n) + Bz(n), (state eqn.) 
g(n) = Cs(n)  + Dz(n), (output eqn.) (7.1) 

where A is p x p, B is p x M ,  C is M x p, and D is M x M .  
The vector s(n)  is called the state vector, which consists of the 
output of delay elements. If the dimension of the matrix A is 
the smallest possible, then the structure is said to be minimal, 
and p is called the McMillan degree of the system. As shown 
in [4] and [18], the McMillan degree of a PU system is equal 
to the degree of its determinant. Given (A,  B,  C ,  D )  for a 
structure, the (A4 + p)  x (A4 + p )  matrix 

is called the realization matrix of the structure. The state-space 
description (7.1) of MIMO systems in the real or complex 
case has been studied extensively in the past [4], [19]. In 
finite fields, the concept of minimality has been introduced 
and studied in the area of coding theory [15], [16]. Analogous 
to the complex case, we can define the concepts of complete 
reachability (cr), complete observability (CO), and minimality 
in finite fields. It can be verified that the following properties 
continue to hold: 

1) A structure is cr if and only if the following matrix 
SA,B has rank p in GF(q):  

SA,B = [B AB . . .  Ap-lB] .  (7.3) 

2) A structure is CO if and only if the following matrix 
O A , ~  has rank p in GF(q): 

r c i  
(7.4) 

3) A structure is minimal if and only if it is both cr and CO. 
4) The impulse responses e ( i )  are related to (A,  B ,  C ,  D )  

as 

Note that in GF(q) ,  the Cayley-Hamilton theorem contin- 
ues to hold [17]. For any p x p matrix A, its power AP is a 
linear combination of At for 0 5 i 5 p - 1. That means if the 
matrix SA a in (7.3) does not have rank p, then adding more 
columns of the form A3B for j 2 p will not increase the rank. 
Therefore, providing more inputs will not help the reachability 
of the state. The situation is similar for the observability. 

Example 7.1-Realization Matrices of D ( z )  and K(z ) :  
1) Consider Fig. 2. The realization matrix of the structure 

for D ( z )  in Fig. 2 is 

(7.6) 

One can verify that RTR = I so that R is unitary. It 
can be shown that the realization matrix for a cascade 
of D ( z )  is also unitary. 

2) Consider Fig. 4(b). The realization matrix of the struc- 
ture for K ( z )  in Fig. 4(b) is 

One can verify that RTR # I so that the realization 
matrix is not unitary. In this case 

L J L  J 

Since U and 21 are independent, both SA B and OA c 
have rank two. Thus, the structure in Fig. 4(b) ’is 
minimal. 

Since a cascade of minimal structures is also minimal [19], 
we conclude that the implementation based on cascade of D ( z )  
and K ( z )  is minimal. In particular, the factorization of LOT 
given in Theorem 6.3 is minimal. Moreover, the realization 
matrix R of D ( z )  given in (7.6) is unitary. Therefore, a 
cascade of D ( z )  also has a unitary realization matrix. On the 
other hand, the realization matrix for K ( z )  given in (7.7) is 
not unitary. In fact, later, we will show that there does not 
exist any unitary realization matrix for K (  2). Even though PU 
systems in GF(2)  may not have a unitary realization matrix, 
the following is true: 

Lemma 7.1: Consider the causal FIR system E ( z )  = 
C z o  e(+? in GF(2) .  If there is a minimal implementation 

Proo$ Assume that the initial state s(n0) = 0. Let zo(n) 
and z1(n) be two arbitrary finite-length inputs such that the 
corresponding outputs yo (n) ,  y, (n) ,  and the state vector s( n) 
are zero for n > K for some finite K.  Using the unitariness 
of R, one can show that 

with a unitary realization matrix R, then E(z )  is PU. 

K K 

(7.8) 

e(0) = D ,  e( i )  = CAZ-lB, for 1 5 i 5 N .  (7.5) Since (7.8) holds for arbitrary choice of zo(n) and zl(n), we 
conclude from Lemma 3.1 that E(z )  is PU. 
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One natural question is to ask if the converse of Lemma 7.1 
is true. The answer is yes when we are dealing with real or 
complex case [4]. It is shown that in the real or complex case, 
a system is PU if and only if there is an implementation with 
unitary realization matrix. In GF(2) ,  the converse of Lemma 
7.1 is not necessarily true as we will see in the following. 

1)  Realization Matrices of K (  2): One minimal realization 
matrix R of K ( z )  is given in (7.7). Since the realization 
(A, B ,  C ,  D )  is minimal, any other minimal realization 
(a, b, c, D )  is related to (A, B ,  C ,  D )  as follows [4], [19]: 

a = T-lAT, b = T-lB, c = CT (7.9) 

for some nonsingular matrix T in GF(2).  If there is a unitary 
realization for K(x) ,  there will exist a 2 x 2 nonsingular matrix 
T such that 

is unitary. Computing the product RITR’ and equating to the 
identity, we get 

T~ J ~ T  = I~ (7.11) 

where 

J z  = [; ;I* 
Equation (7.11) implies J2 = (T-l)TT-l ,  which is not 
possible (see Appendix B). Therefore, we conclude that the 
PU system K ( z )  does not have a unitary realization matrix. 

VIII. UNITARY MATRICES AND P u  SYSTEMS OVER GF(q)  
In this section, we will generalize the theory developed 

earlier to the case of GF(q)  for any prime number q >  2. 
While many results in the GF(2) case can be easily extended 
to the case of GF(q) ,  there are some exceptions, which we 
first point out. 

A. Unitary Matrices Over GF(q)  
Let A be a matrix with elements in GF(q)  for some prime 

q > 2. In GF(q) ,  there are a number of properties that are 
different from those in GF(2) .  In particular, the condition 
that uTATAu = uTu for all U is sufficient to ensure the 
unitariness of A in GF(q)  for q > 2. To be more precise, we 
have Fact 8.1. 

Fact 8.1: In GF(q)  for some prime q > 2 ,  A is unitary if 
and only if uTATAu = uTu for all possible vectors U in 

Prooj? The “only if’ part is clear. To show the “if” part, 
assume that uTu = uTATAu. Substituting B = ATA into 
(2.2), we get 

GF(q) .  

1 1 ,>I 

where we have used the fact that B = ATA is symmetric. 
Letting U to be the unit vector e,, we get bll = 1 from (8.1). 

Using bll = 1, (8.1) can be rewritten as 2 uzu3bZ3 = 0.  
Now, if we choose U = e,, + eJ0 for some io > j o ,  we get 
2bzo3, = 0, which implies btOI0 = 0 (as 2 is coprime to 4). 

Recall from Fact 2.3 that in GF(2) ,  none of the columns 
or rows of a unitary matrix can have all elements equal to 1. 
The same is not true for unitary matrices in GF(q)  for q > 2. 
For example, the following matrix is unitary in GF(5) .  

Therefore, B = A ~ A  = I .  

1 1 2 2 4 0  
11 1 3 3 4 0 1  
1 1 0 0 2 0  
1 4 2 3 0 4  

A =  I 1 4 3 2 0 4  

In Section 11-B, we have seen that the factorizability of unitary 
matrices in GF(2)  depends on Fact 2.3. In GF(q) ,  even 
though a result similar to Fact 2.3 is no longer true, we will see 
later that all unitary matrices in GF(q)  are still factorizable. 

from 
Section 11-B that for the factorization of unitary matrices 
in GF(2) ,  we have used the building blocks of the form 
[I + uuT], where uTu = 0. In the GF(q)  case, we will make 
use of the following building block: 

Householder-like Transformation in GF(q):  Recall 

U = I - 21,IuuT (8.3) 

where U is any vector with lu = uTu # 0 so that u-l 
exists. One can verify that U is unitary and that it is its own 
inverse. Note that unlike the complex field, 1% may not be 
the square of some number in GF(q) .  Hence, it is not always 
possible to “normalize” a nonzero vector U in GF(q)  such 
that lU = 1. One such example is the vector [:] in GF(3) .  
The Householder matrix in (8.3) has a very useful property. 
Given any two vectors x and y such that rc’x = yTy and 
(x - y ) T ( z  - y) # 0, the Householder matrix in (8.3) with 
U = x - y transforms the vector x into the vector y. More 
precisely, we have Ux = y, where U = x - y. Using this 
transformation property of Householder matrix, we can prove 
the following lemma: 

Lemma 8.1: Let A be M x M unitary over GF ( 4 )  for some 
prime q > 2, and let Aoo # 1. Define the vector U = eo - ao, 
where a0 is the zeroth column of A. Then, lU = uTu # 0,  and 

[; 4 A = ( I  - 21i1uuT) (8.4) 

where B is ( M  - I) x ( M  - I) unitary. 
Prooj? As A00 # 1, we have 1.11 = (eo-ao)T(eo-ao) = 

2 - 2Aoo # 0. Therefore, we can form the unitary matrix U 
given in (8.3). As we mentioned before, the matrix U has the 
property that Uao = eo. Therefore, we have 

The matrix on the right-hand side of (8.5) is unitary as A and 
U 

With Lemma 8.1, we are ready to prove the factorization 
theorem for the unitary matrix A in GF(q) .  The problem to 
be solved is, given any unitary matrix A, how to avoid the 

U are unitary. Thus, v = 0 and B is unitary. 
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case where A00 = 1. This can be avoided by using both 
column permutation Pcol and row permutation Pro,. Given 
any M x M unitary matrix A with A 4  > 1, there is always an 
element A,, # 1. Therefore, we can find PcOl and P r o ,  such 
that A' = Pro,APco~ with Ab,, = A,, # 1. Then, Lemma 8.1 
can be applied to A', and we can write A as 

A = Prow(I - 21,'uuT) (8.6) 

for some vector U with lu # 0. We can continue the above 
process and arrive at the following result: 

Theorem 8.1: An M x M matrix A over GF(q)  (where q 
is a prime >2)  is unitary if and only if it can be factorized as 

A = U M . * * U ~ U ~ P  (8.7) 

where UI, are as in (8.3), and P is a permutation of the identity 
matrix. 

B. Paraunitary Matrices Over GF(q)  
As we have seen in the previous discussion, many properties 

of unitary matrices in GF(q)  are different from those in 
GF(2) .  In this section, we will extend the results of PU 
matrices in G F ( 2 )  derived in Sections 111-VI1 to the GF(q)  
case and point out the differences between these two cases. 

Given any vector v in GF(q)  with lv = vTv # 0, we form 
the following degree-one system: 

D&) = I - 1,lVVT + z-1l;lvvT 

Note that D 4 ( z )  in (8.8) is slightly different from the GF(2)  
degree-one building block D ( z )  in (4.1). It can be verified that 
D;(z-l)Dq(z) = I .  Theefore, D,(z) is PU. For the building 
block Dq(z )  in (829, it can be shown that all the properties 
mentioned in Section IV-A continue to hold. In particular, any 
A 4  x M causal FIR degree-one PU system over GF(q)  can 
be written as 

E(z )  = ( I  - lilvvT + z-ll,lvvT)E(l) (8.9) 

for some vector v such that Zv = vTv # 0 and unitary matrix 
E(l) in GF(q) .  Given any causal FIR PU system G ( z )  in 
GF(q) ,  the algorithm for degree-one reduction is very similar 
to that given in Section IV-€3 for GF(2) .  The first step is to 
identify any vector v with vTv # 0 in the null space of g(0 )  or 
gT(0) .  Then, form the building block Dq(z)  as in (8.8). It can 
be verified that such D4(z)  can be used to reduce the degree 
of G( 2 ) .  However, the degree-one reduction is not always 
possible. As in the GF(2)  case, the degree-one building block 
D q ( z )  in (8.8) is not complete for the class of PU systems over 
GF(q) .  There are PU systems in GF(q)  that cannot be written 
as a product of D,(z) (see Example 8.1). In GF(q) ,  we can 
use the following to test if we can extract a degree-one PU 
building block. 

e(k)z-'" be a causal PU sys- 
tem over GF(q)  for some prime q > 2. Let U = [UO, . . . ,U,] 

and V = [vo, . . . , U , ]  be any bases that span the null spaces 
of e(0) and eT(0) ,  respectively. Then, we cannot extract a 
degree-one PU building block from E ( z )  if and only if both 

Lemma 8.2: Let E ( z )  = 

UTU = 0 and VTV = 0.  

Proof: It is not difficult to see that the degree-one reduc- 
tion fails if and only if neither the null space of e(0)  nor eT(0) 
contains any vector v with lv = vTv # 0. What remains to be 
shown is that the above condition is equivalent to UTU = 0 
and VTV = 0. To show the "if' part, assume that UTU = 0 
and that VTV = 0. Then, any vector U in the null space of 
e(0)  is a linear combination of U,, i.e., u = couo + . . . + c,u, 
for some constants e, E GF(q) .  Since UTU = 0, we have 
uTu = 0. Similarly, we can show that VTV = 0 implies that 
all the vectors in the null space of eT(0) have vTv = 0. To 
prove the "only if '  part, assume that UTU # 0 (the proof 
is similar if VTV # 0). If there is any U, with uTu, # 0, 
then we can form Dq(z)  with U,, and we are done. Therefore, 
assume that all U, have uTu, = 0. As UTU # 0, there are 
U, and U? such that UTU, # 0. With these U, and U?, we 
form the new vector U = U, + U? so that uTu = 2uTu, # 0 
(because 2 is coprime with q). Thus, we can form Dp(z)  with 
the new vector U, and the degree-one reduction with D q ( z )  
will succeed. Therefore, we conclude that if either UTU # 0 
or VTV # 0, the degree-one reduction will work. The proof 

One consequence of Lemma 8.2 is that in GF(q) ,  the 
degree-two PU system K ( z )  in (5.4) is factorizable in terms of 
the degree-one PU building block Dp(z). To see this, recall 
that 

K q ( z )  = I - uvT - vuT + +VU') (8.10) 

where the vectors U and v are such that uTu = vTv = 0 
and uTv = 1 (note that in G F ( 2 ) , 1  - uvT - vuT = 
I + uvT + vuT)). Form U+ = ti + v and U -  = U - v such 
that lv, = vyv+ = 2 # 0 and lv- = vTv- = q - 2 # 0 
(note that -2 = q - 2 in GF(q)) .  With U+ and U-, we can 
factorize the K 4 ( z )  in (8.10) as 

is complete. 

K q ( z )  = [ I  - 2-1v+vy + z-12-1v+v:] 

D,, 
where both Dq0(z) and Dql(z )  are degree-one PU systems. 
In fact, in GF(q) ,  all first-order PU systems (i.e., LOT) are 
factorizable in terms of the degree-one PU system D q ( z )  in 
(8.8). 

Theorem 8.2-Complete Factorization of LOT in GF(q):  
Consider the first-order system E(z )  = e(0)  + e(1)z-l in 
GF(q)  for some prime q > 2. Then, E(z )  is a LOT of degree 
p if and only if it can be written as 

P - 1  

E(z )  = E( 1) [I  - litlv,v: + Z - ~ ~ G ~ ~ V , V : ]  (8.12) 

where the number lv, = vTv, # 0, the matrix E( 1) is unitary, 

The proof of the above theorem is very similar to that 
of Theorem 6.3. The LOT in GF(q)  also allows a minimal 
characterization that is similar to that given in Theorem 6.2. 
Even though in GF(q)  all LOT'S are factorizable, there are 
unfactorizable higher order PU systems. 

a=O 

and the vectors U, satisfy VTV, = lv,S(i - j ) .  
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Example 8.1-A 2 x 2 Unfactorizable PU System in GF(5):  
Consider the following second-order system: 

The system G ( z )  is not a LOT because its order >1. One can 
verify that the impulse response g(i) satisfies the condition 
in (3.2) so that G(z)  is PU. Moreover, G ( z )  has degree two 
because [det G(z)]  = z-'. Since g(0) is symmetric, the null 
spaces of g(0) and gT(0) are identical. The null space of g(0) 
consists of vectors of the form c[3 1IT, where c E GF(5) .  
As [3 1IT = 0, using Lemma 8.2, we conclude that 
the PU system G(z)  cannot be factorized in terms of D,(z). 

Nontrivial 2 x 2 Building Block Dq(z)  in GF(q):  In 
the theory of FB's and wavelets in the complex field, one 
important class is the two-channel PU FB's. The corresponding 
polyphase matrix is a 2 x 2 PU matrix that can always be 
decomposed into degree-one building blocks in the complex 
case. In the case of finite fields, we know from previous 
dicussions that the building block O,(z) is not complete. In 
fact, there are not many nontrivial 2 x 2 PU systems that are 
factorizable because there are few nontrivial 2 x 2 degree- 
one PU systems. (A system E ( z )  is said to be trivial if it is a 
diagonal matrix.) In particular, all 2 x 2 degree-one PU systems 
in GF(2)  are diagonal because there is no 2 x 1 vector v with 
vo # 0, w1 # 0 and 2 1 ~ v  # 0. Therefore, all factorizable 2 x 2 
PU systems in GF(2)  are diagonal systems. In the following, 
we will derive a formula for the number of nontrivial 2 x 2 
degree-one building block D,(z) in GF(q)  for q > 2. 

From (8.8), we see that Dp(z) is trivial if and only if 
the vector 21 is either [vug q I T .  Therefore, it 
is sufficient to consider vectors with WO # 0 and 211 # 0. 
However, the number of nontrivial Dp(z) is less than the 
number of distinct vectors (with WO # 0 and 211 # 0) because 
two distinct vectors could generate the same Dp(z). To be 
more precise, one can show that two building blocks O,(z) 
generated from two different vectors U and v are equivalent 
if and only if the vectors are related as U = kv for some 
k E GF(q) .  Define the set 

1][3 

OIT or [0 

Then it can be shown that if UO,UI E U,uo = cu1 if and 
only if uo = ul. Therefore, if uo and a1 (with uTu2 # 0) are 
vectors in U ,  then they generate two distinct nontrivial D, (2 ) .  

Moreover, it is not difficult to show the set U has the following 
property: For any v with nonzero elements, there is an U E U 
and a k E GF(q)  such that v = ku. Combining the above 
results, we can conclude that given any nontrivial degree-one 
PU building block D q ( z ) ,  there is a unique vector U E U 
such that D,(z) = T - 1G1uuT + z-lZ&luuT. Therefore, the 
number of nontrivial 2 x 2 degree-one PU systems is exactly 
the number of elements in the following set: 

U1 = {U E UIUTU # O}. (8.15) 

Note that in U ,  the number of vectors with uTu = 0 is equal 
to the number of solutions to the equation 

u2 = -1 mod q ,  for U E GF(q) .  (8.16) 

Except for the GF(2)  case (because in GF(2) ,  -1 = l)), one 
can show that U is a solution to (8.16) if and only if the order 
of U is 4, i.e., u4 = 1 mod q but U' # 1 mod q for i < 4. From 
number theory [20], we know that there is an element of order 
4 in GF(q)  if and only if q - 1 is divisible by 4. Using the 
Euler function [20], there are exactly two elements of order 
4 if they exist. Therefore, we conclude that (8.16) can have 
either no solution or two solutions, depending on whether q - 1 
is divisible by 4. More precisely, we have 

(number of vectors in U with uTu = 0) 

(8.17) 2 ,  i f q - l = O m o d d ;  = i  0, otherwise. 
Combining all the results, we have shown that the number of 
nontrivial 2 x 2 degree-one PU systems in GF(q)  for q > 2 is 

( 4  - 1) - 2 . S ( [ q  - 114) (8.18) 
where [q-1]4 denotes (4-1) mod4. From (8.18), we conclude 
that for q > 2, there are at most ( q  - 1) nontrivial 2 x 2 building 
blocks D,(z) in GF(q) .  

IX. CONCLUSIONS 

In this paper, we gave a detailed study on the theory of 
unitary and PU systems in finite fields. Explicit degree-one and 
degree-two reduction algorithms for the GF(2)  case are given 
(Sections IV-B and V-B). Several tests for factorizability of PU 
systems are also given (Lemmas 4.2, 5.2, and 8.2). We have 
proved a number of factorization theorems for both unitary 
matrices (Theorems 2.1 and 8.1) and PU systems (Theorems 
6.2, 6.3, and 8.2). In particular, we have shown that all LOT'S 
in GF(q)  for any prime number q are factorizable in terms 
of smaller (degree-one or degree-two) PU building blocks 
(Theorems 6.3 and 8.2). Even though these degree-one or 
degree-two building blocks are the most general, there are PU 
systems that cannot be factorized [see the examples in (5.12) 
and (8.13)]. 

All the theories in this paper are developed for finite fields of 
the form GF(q)  with prime q. It would be interesting to extend 
the results to the fields of the form GF( qm) . In particular, PU 
systems that cannot be factorized may be factorizable if we 
use building blocks from extension fields. This is still an open 
problem. In addition, we have studied the theory of systems 
with the PU property only [except the example in (5.1)]. It 
is important to look at other classes such as the unimodular 
matrices (which are useful in the coding theory [15], [16]) 
and the class of causal matrices with anticausal inverses [18] 
(which cover the PU systems as a special case). 

APPENDIX A 
MOST GENERAL 2 x 2 DEGREE-TWO 

UNFACTORIZABLE PU SYSTEMS IN GF(2)  

Consider the 2 x 2 degree-two PU system G(z)  = g(0) + 
g(1)z-' + g(2)z-'. Since G ( z )  has degree two, the rank 
of g(2) 5 1. If g(2) = 0, then g ( l )  has full rank so 
that the system reduces to the trivial factorizable system 
G ( z )  = g(l)z- l ,  where g ( l )  = 12 or Jz. Therefore, assume 
rank g(2) = 1. As G ( z )  is unfactorizable, the null spaces 
of g(0) and gT(0) should not contain any vector with an 
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odd weight. This implies that g(0) = [: :]. Using the PU 
conditions gT(0)g(2) = 0 and g(0)gT(2) = 0, we conclude 
that g(2) = [ i t ] .  To find g(1), we use the condition 

(A.1) 
Substituting g(0) and g(2) into the above equation, we get 
gT( l )g(  1) = I, which implies that g( 1) is unitary. The only 
2 x 2 unitary matrices are I 2  and Jz . One can verify that both 
the choices of g ( l )  = I2  and g ( l )  = 5 2  give a PU system. 
Thus, we conclude that the most general 2 x 2 degree-two 
unfactorizable PU system has the form 

gT(0)g(O) + gT( l )g( l )  + gT(2)g(2) = I .  

whefe g ( l )  = I 2  or J 2 .  

APPENDIX B 
A FACT FOR MATRICES IN GF(2)  

Lemma B.1: Let A be an M x M matrix in GF(2)  with 

Note that Lemma B.l is always true for all M 2 2 in the 
real or complex field as ATA is always semi positive definite 
while J M  is not. In GF(2) ,  the lemma does not hold for odd 
M .  To see this, consider M = 3. Then, it can be verified that 
the matrix 

M even. Then, ATA # J M .  

A =  [y i i] (B.1) 

satisfies ATA = J 3 .  
Proof of Lemma B.1: Suppose that there is a matrix A such 

that ATA = J M .  Let a, be the ith column vector of A. 
Then, all a, has an even weight because aTa, = 0 for all i. 
Therefore, we have [ 1 1 . . . 1]A = 0, which implies that 
A is singular. This contradicts the fact that A is nonsingular 
(because ATA = J M )  . Thus, we conclude that there does not 
exist such A.  
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