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ABSTRACT
-]
This paper is concerned with multiprocessor implementations of embedded applications specified

as iterative dataflow programs, in which synchronization overhead can be significant. We develop tech-
niques to alleviate this overhead by determining a minimal set of processor synchronizations that are
essential for correct execution. Our study is based in the contsalfdimedexecution ofterative data-
flow programs. An iterative dataflow program consists of a dataflow representation of the body of a loop
that is to be iterated an indefinite number of times; dataflow programming in this form has been studied
and applied extensively, particularly in the context of signal processing software. Self-timed execution
refers to a combined compile-time/run-time scheduling strategy in which processors synchronize with one
another only based on inter-processor communication requirements, and thus, synchronization of proces-
sors at the end of each loop iteration does not generally occur.

We introduce a new graph-theoretic framework, based on a data structure cadlgntctireniza-
tion graph for analyzing and optimizing synchronization overhead in self-timed, iterative dataflow pro-
grams. We show that the comprehensive techniques that have been developed for nevdowitent
synchronizationg non-iterative programs can be extended in this framework to optimally remove redun-
dant synchronizations in our context. We also present an optimization that converts a feedforward dataflow
graph into a strongly connected graph in such a way as to reduce synchronization overhead without slow-

ing down execution.
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1. Introduction
|

Inter-processor synchronization overhead can severely limit the speedup of a multiprocessor
implementation. This paper develops technigues to minimize synchronization overhead in shared-memory
multiprocessor implementations of iterative synchronous dataflow (SDF) programs. Our study is motivated
by the widespread popularity of the SDF model in DSP design environments and the suitability of this
model for exploiting parallelism. Our work is particularly relevant when estimates are available for the task
execution times, and actual execution times are usually close to the corresponding estimates, but deviations
from the estimates of arbitrary magnitude can occasionally occur due to phenomena such as cache misses
or error handling.

SDF and closely related models have been used widely in DSP design environments, such as those
described in [14, 19, 22, 25]. In SDF, a program is represented as a directed graph in which the vertices,
calledactors, represent computations, and the edges specify FIFO channels for communication between
actors. The termrsynchronousefers to the requirement that the number of data values produced (con-
sumed) by each actor onto (from) each of its output (input) edges is a fixed value for each firing of that
actor, and is known at compile time [16] and should not be confused with the use of “synchronous” in syn-
chronous languages [2]. The techniques developed in this paper assume that the input SDRayraph is
geneouswhich means that the numbers of data values produced or consumed are identically unity.
However, since efficient techniques have been developed to convert general SDF graphs into equivalent
(for our purposes) homogeneous SDF graphs [16], our techniques apply equally to general SDF graphs. In
the remainder of this paper, when we refer tiaflow graph (DFG) we imply a homogeneous SDF
graph.

Delayson DFG edges represent initial tokens, and specify dependencies between iterations of the
actors in iterative execution. For example, if tokens produced by the th execution &t actor are con-
sumed by th€k + 2) th execution of ac®r , then the gdgye) contains two delays. We represent an
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edge withn delays by annotating it with the symboD* " (see Fig. 1).

Multiprocessor implementation of an algorithm specified as a DFG involves scheduling the actors.
By “scheduling” we collectively refer to the tasks of assigning actors in the DFG to processors, ordering
execution of these actors on each processor, and determining when each actor fires (begins execution) such
that all data precedence constraints are met. In [17] the authors propose a scheduling taxonomy based on
which of these tasks are performed at compile time (static strategy) and which at run time (dynamic strat-
egy); in this paper we will use the same terminology that was introduced there.

In thefully-static scheduling strategy of [17], all three scheduling tasks are performed at compile
time. This strategy involves the least possible runtime overhead. All processors run in lock step and no
explicit synchronization is required when they exchange data. However, this strategy assumes that exact
execution times of actors are known. Such an assumption is generally not practical. A more realistic
assumption for DSP algorithms is that good estimates for the execution times of actors can be obtained.

Under such an assumption on timing, it is best to discard the exact timing information from the
fully static schedule, but still retain the processor assignment and actor ordering specified by the fully
static schedule. This results in tef-timed scheduling strategy of [17]. Each processor executes the
actors assigned to it in the order specified at compile time. Before firing an actor, a processor waits for the
data needed by that actor to become available. Thus in self-timed scheduling, processors are required to
perform run-time synchronization when they communicate data. Such synchronization is not necessary in
the fully-static case because exact (or guaranteed worst case) times could be used to determine firing times
of actors such that processor synchronization is ensured. As a result, the self-timed strategy incurs greater
run-time cost than the fully-static case because of the synchronization overhead.

A straightforward implementation of a self-timed schedule would require that for each inter-pro-
cessor communicatiofiPC) the sending processor ascertains that the buffer it is writing to is not full, and

the receiver ascertains that the buffer it is reading from is not empty. The processors suspend execution



until the appropriate condition is met. In each kind of platform, every IPC that requires such synchroniza-
tion checks costs performance, and sometimes extra hardware complexity: semaphore checks cost execu-
tion time on the processors, synchronization instructions that make use of synchronization hardware also
cost execution time, and blocking interfaces in hardware/software implementations require more hardware
than non-blocking interfaces [10].

The main goal of this paper is to present techniques that reduce the rate at which processors must
access shared memory for the purpose of synchronization in embedded, shared-memory multiprocessor
implementations of iterative dataflow programs. We assume that “good” estimates are available for the
execution times of actors and that these execution times rarely display large variations so that self-timed
scheduling is viable for the applications under consideration. As a performance metric for evaluating DFG
implementations we use the average iteration périod , (or equivalently the throm’@ﬁput ) which is the
average time that it takes for all the actors in the graph to be executed once. Thus an optimal schedule is
one that minimizeg

2. Related Work

Numerous research efforts have focused on constructing efficient parallel schedules for DFGs. For
example in [5, 20], techniques are developed for exploiting overlapped execution to optimize throughput,
assuming zero cost for IPC. Other work has focused on taking IPC costs into account during scheduling [1,
18, 23, 27], while not explicitly addressing overlapped execution. Similarly, in [9], techniques are devel-
oped to simultaneously maximize throughput, possibly using overlapped execution, and minimize buffer
memory requirements under the assumption of zero IPC cost. Our work can be used as a post-processing
step to improve the performance of implementations that use any of these scheduling techniques.

Among the prior work that is most relevant to this paper ib#nger-MIMD concept, discussed

in [7]. However, the techniques of barrier MIMD do not apply to our problem context because they assume



a hardware barrier mechanism; they assume that tight bounds on task execution times are available; they do
not address iterative, self-timed execution, in which the execution of successive iterations of the DFG can
overlap; and because even for non-iterative execution, there appears to be no obvious correspondence [3]
between an optimal solution that uses barrier synchronizations and an optimal solution that employs
decoupled synchronization checks at the sender and receivetiote] synchronizatiorn).

In [26], Shaffer presents an algorithm that minimizes the number of directed synchronizations in
the self-timed execution of a DFG. However, this work, like that of Dietz, etads not allow the execu-
tion of successive iterations of the DFG to overlap. It also avoids having to consider dataflow edges that
have delay. The technique that we present for removing redundant synchronizations generalizes Shaffer's
algorithm to handle delays and overlapped, iterative execution. The other major technigue that we present
for optimizing synchronization — handling the feedforward edges dcfythehronization graph -is fun-
damentally different from Shaffer’s technique since it addresses issues that are specific to our more general
context of overlapped, iterative execution.

3. Terminology
|

We represent a DFG by an ordered [§&ir E) , Whére is the set of verticEs and s the set of

edges. The source vertex, sink vertex and delay of aneedge are dem¢@d snk(e), delagte)

A pathin (V, E) is a finite, nonempty sequen(e,, e,, ..., e,) , where egch is a member of
E, andsnk(e,) = src(e) ,snk(e,) = src(e) ,...,snk(e,_,) = src(g) . A path thatis directed from
some vertex to itself is calledcgicle and dundamental cycleis a cycle of which no proper subsequence
isacycle. Ifp = (e, e, ...,e,) isapathiV, E) ,we define thath delay of p, denotedDelay(p) ,

n
by Delay(p) = z delay( g) . Between any two verticesy[1V , either there is no path komy to ,or
i=1



there exists aminimum-delay path from x toy . That is, if there is a path fron Yo , then there exists a
pathp fromx toy such thdbelay(p')= Delay(p ,forall patips  directed from yto . Given a DFG

G, and vertices;, y , we defing;(x,y) tobe if there is no path fxomy to , and equal to the path

delay of a minimum-delay path from yo if there exists a path fxomy to

A DFG (V, E) isstrongly connectedif for each pair of distinct verticeg y , there is a path
directed fromx toy and there is a path directed fpom x to stréngly connected component (SCG)f
(V, E) is a strongly connected suba&tl VvV such that no strongly connected suldset of  properly con-
tainsV' . IfV' is an SCC, its associated subgraph is also called an SCC. AW'SCC o ¥, G isa
source SCCif De E, (snk(e) O V') O (src(e) OV'); V' is asink SCCif
(src(e) V") O (snk(e) O V') . An edgee is deedforward edge of(V, E) ifitis not contained in an
SCC; an edge that is contained in an SCC is calfeddbackedge.

We denote the number of elements in a finiteSset |Sby . Also, if is a real number, then we
denote the smallest integer that is greater than or equal tg r Joy . Finally, if are verfeg)n ,

we defined (x, y) to represent an edge (that is not necessakly in ) whose source and sink vextices are

andy , respectively, and whose delayis

4. Analysis of Self-Timed Execution
|

Fig. 1(c) illustrates the self-timed execution of the four-processor schedule in Fig. 1(a&b) (IPC is
ignored here). If the timing estimates are accurate, the schedule execution settles into a repeating pattern
spanning two iterations @& , and the average estimated iteration period is 7 timguhigssection we

develop an analytical model to study such an execution of a self-timed schedule.
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4.1 Inter-processor Communication Modelling Graph

We model a self-timed schedule using a D& = (V, Ejyc) derived from the original SDF
graphG = (V, E) and the given self-timed schedule. The g(agg , which we will refer toiatethe
processor communication modelling graphor IPC graph for short, models the fact that actors@®f
assigned to the same processor execute sequentially, and it models constraints due to inter-processor com-
munication. For example, the self-timed schedule in Fig. 1 (b) can be modelled by the IPC graph in Fig. 1
(d). The IPC edges are shown using dashed arrows. The rest of this subsection describes the construction of
the IPC graph in detail.

The IPC graph has the same vertexX\6et Gas , corresponding to the set of &torsin . The self-
timed schedule specifies the actors assigned to each processor, and the order in which they execute. For
example in Fig. 1, processor 1 execues  and Ehen  repeatedly. We modeGjis in by drawing a
cycle around the vertices correspondingito Bnd , and placing a delay on the edge frém to . The
delay-free edge from tB represents the fact thakthe th executfon of precekles the th execution of
E, and the edge froe tA with a delay represents the fact thiat the th execudion of  can occur only
after the(k—1) th execution & has completed. Thus if aotgys,, ..., v, are assigned to the same
processor in that order, th@;pc would have a cyOle, V), (V5, Vg), ..., (Vg1 V) (Vi V1)) , with
delay((v,,Vv4)) = 1. Ifthere areP processors in the schedule, then wefave such cycles correspond-
ing to each processor.

As mentioned before, edges®  that cross processor boundaries after scheduling represent inter-
processor communication. We will call such edg&s edges Instead of explicitly introducing special
sendandreceiveprimitives at the ends of the IPC edges, we will model these operations as part of the
sending and receiving actors themselves. For example, in Fig. 1, data produced By actor is sent from
processor 2 to processor 1; instead of inserting explicit communication primitives in the schedule, we

model the send within act@®® and we model the receive as part ofeactor
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For each IPC edge i  we add an IPC eelge Gjjp between the same actors. We also set the
delay on this edge equal to the deldglay(e) , on the corresponding e@ge in . An IPC edge represents a
buffer implemented in shared memory, and initial tokens on the IPC edge are used to initialize the shared
buffer. In a straightforward self-timed implementation, each such IPC edge would also be a synchroniza-
tion point between the two communicating processors.

The IPC graph has the same semantics as a DFG, and its execution models the execution of the
corresponding self-timed schedule. The following definitions are useful to formally state the constraints
represented by the IPC graph. Time is modelled as an integer that can be viewed as a multiple of a base

clock.

Definition 1:  The functionstart(v, K) O z" (non-negative integer) represents the time at whidh the th

execution of the actor starts in the self-timed schedule. The furertdry K O yal represents the time
at which thek th execution of the actor ends, and produces data tokens at its output edges. Since we
are interested in thie th execution of each actokfer 1, 2, 3 ... ,wstadfv, K = 0 and

end v B = 0 for k<0 as the “initial conditions”.

As per the semantics of a DFG, each e(:lqevi) Gigd represents the following data depen-

dency constraint:

start( v, k) = end v k— delay((vj, vi))), B(v;, v;) O Ejpe, Uk > delay(vj, V). Q)
This is because each actor consumes one token from each of its input edges when it fires. Since there are
alreadydelay(e) tokens on each incoming edge of actor , an&thetelay(e) tokens must be pro-
duced ore before thie th executionvof can begin. Thus the sici@) must have completed its

(k—delay(e)) th execution befor& can begin ks th execution. The constraints in (1) are due both to

IPC edges (representing synchronization between processors) and to edges that represent serialization of
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actors assigned to the same processor.

To model execution times of actors we associate executiort firpe with each vertex of the IPC
graph;t(v) assigns a positive integer execution time to each\actor (again, the actual execution time can
be interpreted agv) cycles of a base clock), tdajl includes the time taken to execute all IPC opera-
tions Gend andreceives) that the actov  performs. Now, we can substitute

eno(vj, k) = start(vj, k) +t(vj) in (1) to obtain

start( v, k) = start(vj, k—delay((vj, vi))) + t(vj) for each edgévj, V;) in Gjpc. (2)
In the self-timed schedule, actors fire as soon as data is available at all their input edges. Such an

“as soon as possible” (ASAP) firing pattern implies:

start( v, k) = max({ start(vj, k—delay((vj,vi))) +t(vj)|(vj, V;) U Ejpc}) - 3
The IPC graph can also be looked upon as a timed marked graph [21] or Reiter's computation

graph [24]. The same properties hold for it, and we state some of the relevant properties here. See [24] for

proofs of Lemmas 1 and 3, and [3] for a proof of Lemma 2.

Lemma 1: [24] Every cycleC in the IPC graph has a path delay of at least one if and only if the static

schedule it is constructed from is free of deadlock. That is, for each@ydelay(C) > 0

Lemma 2: [3] The number of tokens in any cycle of the IPC graph is always conserved over all possi-

ble valid firings of actors in the graph, and is equal to the path delay of that cycle.

Lemma 3: The asymptotic iteration period foisgrongly connectetPC graphG when actors execute

as soon as data is available at all inputs is given by [24]:

0 3 g

— max 0 isonC

T= cycleC in G Delay(C) E @
g g

Note thatDelay(C) >0 from Lemma 1.



The quotient in (4) is called tloycle meanof the cycleC . The entire quantity on the RHS of (4)
is called the “maximum cycle meanf the strongly connected IPC graggh . If the IPC graph contains
more than one SCC, then different SCCs may have different iteration periods, depending on their individ-
ual maximum cycle means. In such a case, the iteration period of the overall graph (and hence the self-
timed schedule) is thmaximunover the maximum cycle means of all the SCC&gf , because the exe-
cution of the schedule is constrained by the slowest component in the system. Henceforth, we will define

the maximum cycle mean as follows.
Definition 2:  Themaximum cycle meanof an IPC graplG;,. , denoted By, ., , is the maximal cycle

mean over all SCCs @&, : Thatis,

O Z t(v) O

A - max [L/D isonC B
max  cycleC in Gy Delay(C)
O O

A cycle inGj,. whose cycle meanis, ., is calledréical cycle of Gjyc. Thus the throughput of the

system of processors executing a particular self-timed schedule is equal to the corre?%nding value.
max

For example, in Fig. 1(df5j,c  has one SCC, and its maximal cycle mean is 7 time units. This cor-
responds to the critical cyc(éB, E), (E, ), (I,G), (G, B)) . We have not included IPC costs in this calcu-
lation, but these can be included in a straightforward manner by addisgniti@ndreceivecosts to the
corresponding actors performing these operations.

The maximum cycle mean can be calculated in t®(1|e/|| Eipc|log2(|V| +D+T)) , Where

andT are such thatelay( § <D el Eipc an@v)<T OvOV  [15].
4.2 Execution Time Estimates

If we only have execution time estimates available instead of exact values, and (V¢ set in the
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previous section to be these estimated values, then we obtastithatedteration period by calculating

A mayx- Henceforth we will assume that we know ¢istimated throughput calculated by setting the

m

A

max
t(v) values to the available timing estimates.

In the transformations that we present in the rest of the paper, we will preserve the estimated
throughput by preserving the maximum cycle mea6;gf , with agh set to the estimated execution

time of v . In the absence of more precise timing information, this is the best we can hope to do.
4.3 Strongly Connected Components and Buffer Size Bounds

In dataflow semantics, the edges between actors represent infinite buffers. Accordingly, the edges
of the IPC graph are potentially buffers of infinite size. However, from Lemma 2, the number of tokens on
each feedback edge (an edge that belongs to an SCC, and hence to some cycle) during the execution of the
IPC graph is bounded above by a constant. We will call this constes#lthened buffer bound of that
edge, and for a feedback edge we will represent this bouig, () . Lemma 2 yields the following

self-timed buffer bound:

Biy(e) = min({ Delay(C)| Cis a cycle that contaire} ) (5)
Feedforward edges have no such bound on buffer size; therefore for practical implementations we
need tamposea bound on the sizes of these edges. For example, Fig. 2(a) shows an IPC graph where the
IPC edge(A, B) could be unbounded when the execution time of is less thanBhat of , for example. In
practice, we need to bound the buffer size of such an edge; we will denote such an “imposed” bound for a
feedforward edge bPBg(e) . Since the effect of placing such a restriction includes “artificially” con-

strainingsrc(e) from getting more thaBg(e)  invocations aheadriq e) , its effect on the estimated

(@ DC@":)D (b) [@__:DD

Fig. 2. An IPC graph with a feedforward edge: (a). original graph (b). imposing bounded buffers.
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throughput can be modelled by adding the reverse eggenk(e), src( §) , Where

m = By(e) —delay(e) , to Gjpc (grey edge in Fig. 2(b)). Since adding this edge introduces a new cycle in
Gipc, it may reduce the estimated throughput; to prevent such a redigi@), must be chosen large
enough so that the maximum cycle mean remains unchanged upon dg¢smi(e), src( 6)

Sizing buffers optimally such that the maximum cycle mean remains unchanged has been studied
by Kung Lewis and Lo in [13], where the authors propose an integer linear programming formulation of
the problem, with the number of constraints equal to the number of fundamental cycles in the DFG (poten-
tially an exponential number of constraints).

An efficient albeit suboptimal procedure to deterniige is to note that if

Bﬁ(e)zﬁg t(x)%xmaxw (6)
x UV

holds for each feedforward edge , then the maximum cycle mean of the resulting graph does not exceed

Amax- This is because the reverse edge that gets added as a result of imposing a buffer eound on intro-

m

duces new cycles; the maximum execution time along any such newly introduced cycle can be at most

g t(x); and hence adding the number of delays given by (6) guarantees no change in the maximum
xv

cycle mean.

Then, doing a binary search 8g(e) for each feedforward edge, and computing the maximum
cycle mean at each search step and ascertaining that it is legs, than results in a buffer assignment for
the feedforward edges. Although this procedure is efficient, it is suboptimal because the order that the
edgese are chosen is arbitrary and may effect the quality of the final solution. However, as we will see in
Section 9, imposing such a bouBg isadve approach for bounding buffer sizes and, in terms of syn-
chronization costs, there is a better technique for bounding buffers. Thus, in our final algorithm, we will

not in fact find it necessary to use or compute these bddds

14



5. Synchronization Model
|

5.1 Synchronization Protocols

We define two basic synchronization protocols for an IPC edge based on whether or not the length
of the corresponding buffer is guaranteed to be bounded from the analysis presented in the previous sec-
tion. Given an IPC grap® , and an IPC edge Gin , if the length of the corresponding buffer is not
bounded — that is, i€ is a feedforward edgezof — then we apply a synchronization protocol called
unbounded buffer synchronization (UBS) which guarantees that (a) an invocatiorsok(e) never
attempts to read data from the buffer unless the buffer contains at least onandkbhan invocation of
src(e) never attempts to write data into the buffer unless the number of tokens in the buffer is less than
some pre-specified limBg(e) , which is the amount of memory allocated to the buffer as discussed in sub-
section 4.3.

On the other hand, if the topology of the IPC graph guarantees that the buffer lerggth for is
bounded by some valugy,(e) (the self-timed buffer bounel of ), then we use a simpler protocol, called
bounded buffer synchronization (BBS) that only explicitly ensures (a) above. Below, we outline the
mechanics of the two synchronization protocols that we have defined.

BBS In this mechanism, arite pointerwr(e) for eis maintained on the processor that executes
src(e) ; aread pointerrd (e) for e is maintained on the processor that execstdge) ; and a copy of
wr(e) is maintained in some shared memory locasufe) . The poirdée wHe({E) are initial-
ized to zero andielay(e) , respectively. Just after each executiert (&) , the new data value produced
ontoe is written into the shared memory bufferéor at oftgsete) wr(e) is updated by the following
operation —wr(e) — (wr(e) + 1) modBg,(e) ; andv(e) is updated to contain the new valuwer¢€)

Just before each execution@ik(e) , the value containssl(i®) is repeatedly examined until it is found

to benot equalto rd (e) ; then the data value residing at offsi(e) of the shared memory bufter for is
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read; andd (e) is updated by the operatidfe) — (rd (e) + 1) mod By, (€)

UBS This mechanism also uses the read/write poimtHis) walle) , and these are initialized
the same way; however, rather than maintaining a copyr ) in the shared memory Ilexgajon , we
maintain a count (initialized tdelay(e) ) of the number of unread tokens that currently reside in the
buffer. Just aftesrc(e) executesy(e) is repeatedly examined until its value is found to be less than
B (e) ; then the new data value produced omto is written into the shared memory buéfer for  at offset
wr(e); wr(e) is updated as in BBS (except that the new value is not written to shared memory); and the
countinsv(e) is incremented. Just before each executicamk(k) , the value contaswd)in is
repeatedly examined until it is found to be nonzero; then the data value residing at¢éset of the
shared memory buffer far is read; the counsiie) is decrementedd#ap is updated as in BBS.

Note that in the case of edges for whigjj(e) is too large to be practically implementable,

smaller bounds must be imposed, using a protocol identical to UBS.
5.2 The Synchronization Graph  Gg = (V, E)

An IPC edge inGj,; represents two functions: 1) reading and writing of data values into the buffer
represented by that edge; and 2) synchronization between the sender and the receiver, which could be
implemented with UBS or BBS. We find it useful to differentiate these two functions by creating another
graph called theynchronization graph (Gs), in which edges between actors assigned to different proces-
sors, callegynchronization edgesrepresensynchronization constraints onlRecall from Subsection

4.1 that an IPC edg(e/j, Vi) @i, representssyrechronization constraint

start( v, k) = end Vo k- delay((vj, v;))) Ok> delay(vj, V). (7
Initially, the synchronization graph is identical to the IPC graph, because every IPC edge repre-

sents a synchronization point. However, we will modify the synchronization graph in certain “valid” ways

(which will be defined shortly) by adding some edges and deleting some others. At the end of our optimi-
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zations, the synchronization graph may look very different from the IPC graph: it is of the form
(V, (Epc—F +F')), whereF is the set of edges deleted from the IPC grapk'and is the set of edges
added to it. At this point the IPC edgesG, represent buffer activity, and must be implemented as buff-
ers in shared memory, whereas the synchronization edges represent synchronization constraints, and are
implemented using UBS and BBS. If there is an IPC edge as well as a synchronization edge between the
same pair of actors, then the synchronization protocol is executed before the buffers corresponding to the
IPC edge are accessed so as to ensure sender-receiver synchronization. On the other hand, if there is an IPC
edge between two actors in the IPC graph, but there is no synchronization edge between the two, then no
synchronization needs to be done before accessing the shared buffer. If there is a synchronization edge
between two actors but no IPC edge, then no shared buffer is allocated between the two actors; only the
corresponding synchronization protocol is invoked.

All transformations that we perform @&  must respect the synchronization constraints implied
by Gjpc - If we ensure this, then we only need to implement the synchronization edges of the optimized
synchronization graph. The following theorem underlies the validity of the main techniques that we will

present in this paper.

Theorem 1. The synchronization constraints in a synchronization g@apt (V, E,) imply the syn-
chronization constraints of the synchronization grégh= (V, E,) if for each&dge that is present in
G, but notinG, there is a minimum delay path frens(e)  sttk(e) Gp that has total delay of at

mostdelay(€) , that is the following condition holdse U E,, e 0 E; pGl(src(e), snk(g)) < delay(¢)

(Note that since the vertex sets for the two graphs are identical, it is meaningful to ss6€e}o and
snk(e) as being vertices db; eventhoughl E,, e UE; )

First we prove the following lemma.
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Lemma4: |If p = (e,e,...,e)isapathinG, ,then
start(snk(e,), k) = end(src( g ), k— Delay(p))
Proof: The following constraints hold along such a ppth  (as per (7))
start(snk(e,), K = end(src( ), k—delay(g))). (8)
Similarly,
start(snk(e,), K = end(src( &), k—delay( s,))
Noting thatsrc(e,) = snk(g) , we obtaistart(snk(e,), K =endsnk( g), k—delay( g))

Causality implieend v R = start(v, K) , so we get

start(snk(e,), K = start(snk(e), k—delay( g)). (9
Substituting (8) in (9),
start(snk(e,), K = endsrc( g), k—delay( e,) —delay(e;)) .
Continuing alongp in this manner, it can easily be verified that

start(snk(e,), K = endsrc( g), k—delay( g,) —delay(e,_,) —... — delay(e,));

that is,

start(snk(e,), K =endsrc( g), k—Delay( p) . Q. E.D.

Proof of Theorem 1if € 0 E,, € 00 E,, then the synchronization constraint due to the edge  holds in both

graphs. But foreach J E,, e HE; we need to show that the constraint due to

start(snk(e), K >end src(g), k— delay(¢)) (10)
holds inG, providechl(src(s), snk(g)) < delay(e) , which implies there is at least one path
p = (e,&,...,e,) fromsrc(e) tosnk(e) inG, (src(e;) = src(e) andsnk(e,) = snk(e) ) such that
Delay(p) < delay(¢) .

From Lemma 4, the existence of such a gmth  implies
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start(snk(g,), K =end(src( g), k—Delay( p) .
That is,
start(snk(e), K = end src(e), k— Delay( p)) . 11D
If Delay(p) < delay(g), thenendsrc(g), k— Delay( p)) = end src(g), k— delay(€)) . Substituting this
in (11) we obtain
start(snk(e), K = endsrc(¢g), k—delay(g)) .
The above relation is identical to (10), and this proves the theQek.D

Theorem 1 motivates the following definition.

Definition 3:  If G; = (V, E;) andG, = (V, E,) are synchronization graphs with the same vertex-

set, we say thab, preservesG, if e E,, e E,, we havepGl(src(s), snk(g)) < delay(e) .

Thus, Theorem 1 states that the synchronization constrai(\s &) imply the synchronization con-
straints of(V, E,) if(V, E;) preserve§V, E,)

Given an IPC grapiB,. , and a synchronization gréph  suctGthat  pre&ggves , iIf we implement
the synchronizations corresponding to the synchronization ed@&s of , then, because the synchronization
edges alone determine the interaction between processors, the iteration period of the resulting system is

determined by the maximal cycle meanGaf

5.3 Computing Buffer Bounds from  apd  Gjy¢
After all the optimizations are complete we have a final synchronization graph that pr&grves
Since the synchronization edgesGg are the ones that are finally implemented, it is advantageous to cal-

culate the self-timed buffer bounds as a final step after all the transformati@3s on are complete, instead

of deriving the bounds fror;,. . This is because addition of the eéiges ~ may reduce these buffer
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bounds. It is easily verified that removal of the eddges () cannot change the buffer bounds in (5) as long as
the synchronizations i,  are preserved. The following theorem tells us how to compute the self-timed

buffer bounds fronGg .

Theorem 2:  If Gg preservesG,. and the synchronization edgeSdn  are implemented, then for each

feedback IPC edge Bj,c , the self-timed buffer boune oBy,(€) — an upper bound on the number

of data tokens that can ever be preserg err is given by:
Biy(e) = pGS(snk( 8, src(e) + delay(e) ,

Proof: By Lemma 4, if there is a pafn  froenk(§ s$oc(e) @ , then
start(src(e), k) = end snk( g, k—Delay( p).

Takingp to be an arbitrary minimum-delay path fremk( e sto(e) Gn , we get
start(src(e), k) = end snk( 8, k— pGS(snk( 9, src(9)).

That is,src(e) cannot be more th[ags(snk( 8,src(€g) iterations “aheadsmife) . Thus there can
never be more thaIGS(snk( 8,src(e)) tokens more than the initial number of tokeas on . Since the ini-

tial number of tokens oa  idelay(e) , the size of the buffer correspondieg to is bounded above by
Biy(e) = pGS(snk( 8, src(e) + delay(e). Q. E. D.

The quantitiespGS(snk( e, src(e)) can be computed using Dijkstra’s algorithm [6] to solve the
all-pairs shortest path problem on the synchronization graph irO(rhds) . ThBg,the values can
be computed irO(|V|3) time.

6. Problem Statement
|

We refer to each access of the shared memory “synchronization vaisapdg”  src(by and
snk(e) as asynchronization accessto shared memory. If synchronization for  is implemented using

UBS, then we see that on average, synchronization accesses are requ@ired for in each DFG iteration
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period, while BBS implie2 synchronization accesses per iteration period. We defigpadhmnization
costof a synchronization grap;  to be the average number of synchronization accesses required per iter-
ation period. Thus, ifi;  denotes the number of synchronization edg&s in that are feedforward edges,
andng, denotes the number of synchronization edges that are feedback edges, then the synchronization
cost of G can be expressed(@® ¢ + 2ng)

In the remainder of this paper, we present two mechanisms to minimize the synchronization cost
— removal of redundant synchronization edges, and conversion of a synchronization graph that is not
strongly connected into one that is strongly connected

7. Removing Redundant Synchronizations
|

Formally, a synchronization edgeredundant in a synchronization grap8  if its removal yields
a synchronization graph that preser@s . Equivalently, from Definition 3, a synchronizatian edge is
redundant in the synchronization gragh  if there is a patltfe) G in  directedshafe)  snk(te)
such thatDelay(p) < delay( @ .

Thus, the synchronization function associated with a redundant synchronization edge “comes for
free” as a by product of other synchronizations. Fig. 3 shows an example of a redundant synchronization
edge. Here, before executing acibr , the processor that ex¢&ytBsC, D} does not need to synchro-
nize with the processor that execufés F, G, H} because due to the synchronizatiap edge |, the corre-
sponding invocation oF  must complete before each invocati@h of ~ begins.xthus,  is redundant.

The following theorem establishes that the order in which we remove redundant synchronization

1. Note that in our measure of the number of shared memory accesses required for synchronization, we ne-
glect the accesses to shared memory that are performed while the sink actor is waiting for the required data
to become available, or the source actor is waiting for an “empty slot” in the buffer. The number of accesses
required to perform these “busy-wait” or “spin-lock” operations is dependent on the exact relative execution
times of the actor invocations. Since in our problem context, this information is not generally available to us,
we use thdest caseiumber of accesses — the number of shared memory accesses required for synchroni-
zation assuming that IPC data on an edge is always produced before the corresponding sink invocation at-
tempts to execute — as an approximation.

21



edges is not important.

Theorem 3:  Suppose thaG, = (V, E) is a synchronization gragh, @pd  are distinct redundant
synchronization edges i@ ,a@ =(V,E-{g}) .Then is redundaf;?sin

Proof: Sincee, isredundanti®, ,thereisapath(e,) G directed fsorte,)  snige,)

such that

Delay(p) < delay(e,) . (12)
Similarly, there is a patip’ # (e;) , contained in b@h a%gd , that is directedsrofe, ) to
snk(e,), and that satisfies

Delay(p’) < delay( g)) . (13)

Now, if p does not contaie; , them exists(ﬁg , and we are done. Otherwise, let
P = (Xq; Xy, ..., X,) ; Observe thap is of the formp = (y;, Yo, --os Vi _ 15 €0 Yo Y 10 -0 Y > @nd
define p”" = (Y4, Yo -+ Y 10 X190 %91 ooos X Vi Vi 10 -+ Yy) - Clearlyp”  is a path frosrc(e,) to
snk(e,) in és. Also,

Delay(p") = Z delay( x) + Z delay(y;)

= Delay(p') + (Delay( p) — delay( g))

® ®
®) ®
© < ©

Fig. 3. An example of a redundant synchronization edge.
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<Delay(p) (from (13))

<delay(e,) (from (12)).Q. E. D

Theorem 3 tells us that we can avoid implementing synchronizatiafi fedundant synchroniza-
tion edges since the “redundancies” are not interdependent. Thus, an optimal removal of redundant syn-
chronizations can be obtained by applying a straightforward algorithm that successively tests the
synchronization edges for redundancy in some arbitrary sequence, arghsirtest patttomputation is a
tractable problem, we can expect such a solution to be practical.

Fig. 4 presents an efficient algorithm, based on the ideas presented above, for optimal removal of

redundant synchronization edges. In this algorithm, we first compute the path delay of a minimum-delay

Function RemoveRedundantSynchs
Input: A synchronization graph G, = (V, E) such that | OE is the set of synchronization

edges.
Output : The synchronization graph G0 = (V, (E-E)), where E, is the set of redundant

synchronization edges in Gq.

1. Compute st(x, y) for each ordered pair of vertices in Gg.
2. Initialize: E, = O.
3. For each el |

For each output edge e, of src(e) except for e

If delay(e,) + pGS(snk(eo), snk( 8) < delay(e)
Then

E, = E O{e}

Break [* exit the innermost enclosing For loop */
End If

End For
End For

4. Return (V,(E-E)).

Fig. 4. An algorithm that optimally removes redundant synchronization edges.
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path fromx toy for each ordered pair of verti¢esy) ; here, we assign a path delay of  whenever

there is no path from tgp . This computation is equivalent to solving an instance of the welldthown

points shortest paths problg®]. Then, we examine each synchronization eelge — in some arbitrary
sequence — and determine whether or not there is a path from some successiai(e) of (other than
snk(e)) to snk(e) that has a path delay that does not ex¢dethy(e) — delay(src( 8, v)) . It is easily

verified that this check is equivalent to checking whether oenot is redundant [3].

From the definition of a redundant synchronization edge, it is easily verified that given a redundant

synchronization edge, 6, , and two arbitrary vertigeg ]V ,if wéLeI: (V,(E-{¢})) , then

S

Pg (X, ¥) = pg (X y). Thus, none of the minimum-delay path values computed in Step 1 need to be

recalculated after removing a redundant synchronization edge in Step 3.
In [3], it is shown thaRemoveRedundantSynelitains a time complexity of
O(|V|2Iogz(|V|) +|V||E) if we use a modification of Dijkstra’s algorithm described in [6] for Step 1.

8. Comparison with Shaffer's Approach
|

In [26], Shaffer presents an algorithm that minimizes the number of directed synchronizations in
the self-timed execution of a DFG under the (implicit) assumption that the execution of successive itera-
tions of the DFG are not allowed to overlap. In Shaffer’'s technique, a construction identical to our synchro-
nization graph is used with the exception that there is no feedback edge connecting the last actor executed
on a processor to the first actor executed on the same processor, and edges that have delay are ignored since
only intra-iteration dependencies are significant. Thus, Shaffer's synchronization graph is Reyatie-
eRedundantSynclesin be viewed as an extension of Shaffer’s algorithm to handle self-timed, iterative exe-
cution of a DFG.

Fig. 5 shows a DFG that arises from a four-channel multiresolution QMF filter bank, and Fig. 5(b)

24



(b)
PrOC. 1 Al, A2, Bl, Cl, Dl; E11 F11 F2

Proc. 2A;, A, B, E, Fg Fy

|
|
|
|
|

=TT

b oo

-&

lw)
SO OO~
AN
AN
\ 1
\\’
~ 1
N
\I
~%)

Fig. 5. Application of RemoveRedundantSynchs to a multiresolution QMF filter bank
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shows a self timed schedule for this DFG. For elaboration on the derivation of this DFG from the original
SDF graph see [3, 16]. The synchronization graph that corresponds to Figs. 5(a&b) is shown in Fig. 5(c).
The dashed edges are synchronization edges. If we apply Shaffer's method, which considers only those
synchronization edges that do not have delay, we can eliminate the need for explicit synchronization along
only one of the 8 synchronization edges — e@fg B,) . In contrast, if we RppipveRedun-
dantSynchswe can detect the redundancy(éf;, B,) as well as four additional edgés,8,) :

(A4 By), (B, Eq), and(B,, E,) . The synchronization graph that results from appRemoveRedun-
dantSynchss shown in Fig. 5(d). The number of synchronization edges is reduce@fror8 to

9. Deriving a Strongly Connected Synchronization Graph
|

Earlier, we defined two synchronization protocols — BBS, which has a cost of 2 synchronization
accesses per iteration period, and UBS, which has a cost of 4 synchronization accesses. We pay the
increased overhead of UBS whenever the associated edge is a feedforward edge of the synchronization
graphGs .

One alternative to implementing UBS for a feedforward ezlge is to add synchronization edges to
G so thate becomes encapsulated in an SCC; such a transformation would allow to be implemented
with BBS. We have developed an efficient technique to perform such a graph transformation in such a way
that the net synchronization cost is minimized, the impact on the self-timed buffer bounds of the IPC edges
is optimized, and the estimated throughput is not degraded. This technique is similar in spirit to the one in
[30], where the concept of converting a DFG that contains feedforward edges into a strongly connected
graph has been studied in the context of retiming.

Fig. 6 presents our algorithm for transforming a synchronization graph that is not strongly con-
nected into a strongly connected graph. This algorithm simply “chains together” the source SCCs, and sim-

ilarly, chains together the sink SCCs. The construction is completed by connecting the first SCC of the
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“source chain” to the last SCC of the sink chain with an edge that we csithkhgource edgeFrom each
source or sink SCC, the algorithm selects a vertex that has minimum execution time to be the chain “link”
corresponding to that SCC. Minimum execution time vertices are chosen in an attempt to minimize the
amount of delay that must be inserted on the new edges to preserve the estimated throughput of the original
graph.

The following theorem establishes that a solution computécbinyert-to-SC-graphlways has a

synchronization cost that is no greater than that of the original synchronization graph:

Theorem 4:  Suppose thaG is a synchronization graph, @nd s the graph that results from applying

algorithmConvert-to-SC-grapko G. Then the synchronization cost 6f s less than or equal to the syn-

chronization cost o6

Function Convert-to-SC-graph
Input : A synchronization graph G that is not strongly connected.

Output : A strongly connected graph obtained by adding edges between the SCCs of G.

1. Generate an ordering C,, C,, ..., C, of the source SCCs of G, and similarly, generate
an ordering D4, D,, ..., D,, of the sink SCCs of G.
2. Select a vertex v, 0 C; that minimizes t(*) over C,.
3.Fori=23.,m
* Select a vertex v, O C; that minimizes t(*) over C;.
* Instantiate the edge dy(v;_4, V).

End For
4. Select a vertex w,; 0 D; that minimizes t(*) over D; .

5.Fori =2 3...,n
* Select a vertex w; [0 D; that minimizes t(*) over D;.
* Instantiate the edge dgy(w; _;, ;).

End For

6. Instantiate the edge dy(w,, v;) .

Fig. 6. An algorithm for converting a synchronization graph that is not strongly con-
nected into a strongly connected graph.
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Proof: Recall that in a connected grapi] ED) |EH]  must exqé¥d] —2) [6]. Thus, the number of

feedforward edges; must satigfy; >n.—2) ,whege is the number of SCCs. Now, the number of

new edges introduced I§onvert-to-SC-grapis equal to(ng,. + g, — 1) , where, . is the number of

SIrc
source SCCs, ana,,, is the number of sink SCCs, and consequently, the number of synchronization

accesses per iteration peri@®)], , that is required to implement the edges introdGoentday-to-SC-

graphis (2 x (ng,. + Ng,,—1)) , while the number of synchronization accesSes, , eliminat€biy

Src
vert-to-SC-graphby allowing the feedforward edges of the original synchronization graph to be imple-

mented with BBS rather than UBS) equais . It follows that the net cl{&@)geS_) in the number of

synchronization accesses satisfies

(5,-S) =2(ng; + Ny = 1) —2n; < 2(n.—1-n¢) <2(n.—1-(n.—-1)),

Src

and thus(S, -S_)<0 . Q. E.D.

Fig. 7 shows the synchronization graph topology that results from a four-processor schedule of a
synthesizer for plucked-string musical instruments in seven voices based on the Karplus-Strong technique.
This graph containg; = 6  synchronization edges (the black, dashed edges), all of which are feedforward
edges, so the synchronization costis = 24 . Since the graph has one source SCC and one sink SCC,
only one edge is added Bpnvert-to-SC-grapkshown by the grey, dashed edge), and adding this edge

reduces the synchronization cosig +2 = 14 — a 42% savings.

Fig. 7. A solution obtained by Convert-to-SC-graph when applied to a 4-processor schedule
of a synthesizer for musical instruments based on the Karplus-Strong technique.
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One issue remains to be addressed in the conversion of a synchronizatioB graph into a strongly
connected graplfn:;S — the proper insertion of delays sdigat is not deadlocked, and does not have
lower estimated throughput th&), . The location (edge) and magnitude of the delays that we add are sig-
nificant since (from Theorem 2) they affect the self-timed buffer bounds of the IPC edges. Since the self-
timed buffer bounds determine the amount of memory that we allocate for the corresponding buffers, it is
desirable to prevent deadlock and decrease in estimated throughput in such a way that we minimize the
sum of the self-timed buffer bounds over all IPC edges. In this subsection, we present an efficient algo-
rithm for addressing this goal. Our algorithm produces an optimal re€at if has only one source SCC or
only one sink SCC; in other cases, the algorithm must be viewed as a heuristic.

We will use the following notation in the remainder of this sectio® # (V, E) is a DFG;

(€ €y, ---» €,_1) is @ sequence of distinct membersof ; AgdA,, ..., A, _ 1 0{0, 1, ..., o} , then
Gley - Ay - €,_1 —» A,_4] denotes the DFG

(V,((E-{eyep....e,_1})0{ey. e/ ....€,_41'})), where eacle,’ is defined by

src(g') = src(g), snk(g') = snk(¢),anddelay(g;') = 4; . ThusG[ey - Ay, -, €,_1 = B,_41] s
simply the DFG that results from “changing the delay” on egch  to the corresponding new delay value
A . Also, if G is a strongly connected synchronization graph that pres€yes IPCamk-source

path in G is a minimum-delay path i  directed frasnk(e) dm(e) ,where isan IPC edge (in
Gipc)-

Fig. 8 outlines the restricted version of our algorithm that applies when the synchronization graph
G, has exactly one source SCC. H&ellmanFordis assumed to be an algorithm that takes a synchroni-
zation graphZ as input, and applies the Bellman-Ford algorithm discussed in pp. 94-97 of [15] to return

the cycle mean of the critical cyclezh ; if one or more cycles exist that have zero path delBglithen
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manFordreturnse .

Function DetermineDelays

Input : Synchronization graphs G; = (V, E) and és, where és is the graph computed by Con-
vert-to-SC-graph when applied to G4. The ordering of source SCCs generated in Step 2 of
Convert-to-SC-graph is denoted C;,C,,...,C,. For i = 1,2 ..m-1, e denotes the edge
instantiated by Convert-to-SC-graph from a vertex in C; to a vertex in C;, ;. The sink-source
edge instantiated by Convert-to-SC-graph is denoted e, .

Output : Non-negative integers dy d;, ...,d,_; such that the estimated throughput of

GJe, - dg, ..., e, _; — d._,] equals the estimated throughput of G, .

XO = Gs[eo g 00’ ...,em_l — 00]
Amax= BellmanFord(X,) [* compute the max. cycle mean of G */

dyp = Eg t(X)%/)\max—‘ * an upper bound on the delay required for any ¢ */
xv

Fori =01.. m-1

o, = MinDelay( X, €, A a5 dup)

Xis1 = Xilg - 9] [* fix the delay on g to be 9, */
End For
Return 8y, 84, ..., 0

m-1-

Function MinDelay(X, e A, B)
Input : A synchronization graph X, an edge e in X, a positive real number A, and a positive
integer B.

Output : Assuming X[e — B] has estimated throughput no less than )\_1, determine the mini-

mum d O0{0, 1, ..., B} such that the estimated throughput of X[e - d] is no less than AT

Perform a binary search in the range [0, 1, ...,B] to find the minimum value of
r 040, 1, ...,B} such that BellmanFord(X[e - r]) returns a value less than or equal to A.
Return this minimum value of r.

Fig. 8. An algorithm for determining the delays on the edges introduced by Convert-to-SC-
graph. This algorithm assumes the original synchronization graph has only one sink SCC.
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Algorithm DetermineDelays$s based on the observations that the set of IPC sink-source paths
introduced byConvert-to-SC-graplkan be partitioned intsm  nonempty subge¢sP,, ..., P, such
that each member &, contaigg ey, ..., § L and contains no other membergf, e, ..., €,,_1} ,
and similarly, the set of fundamental cycles introduceB&ermineDelaysan be partitioned into
WO, Wy, o Wy such that each member‘tm‘i contadaasel, o € and contains no other members
of {ey €1 - €n_1} -

By construction, a nonzero delay on any of the edges, ..., €, “contributes to reducing the
cycle means of all members @,  ". AlgorithbetermineDelaystarts (iteration = 0 of th€or loop)
by determining the minimum del&y @3 thatis required to ensure that none of the cyles in has a
cycle mean that exceeds the maximum cycle mean, ~ Ggof . Then (in iteratidh ) the algorithm
determines the minimum deldy @  thatis required to guarantee that no meMbger of has a cycle
mean that exceeds,,,, , assuming telay(e;) = 9,

Now, if delay(ey) = 9, delay(e;) = d,, andd; >0 , then for any positive integes 8, k,
units of delay can be “transferred framp €9  ” without violating the property that no member of
(Wy O W;) contains a cycle whose cycle mean exceedls, . However, such a transformation increases
the path delay of each memberRyf  while leaving the path delay of each merfiger of unchanged, and
thus, from Theorem 2, such a transformation cannot reduce the self-timed buffer bound of any IPC edge.
Furthermore, apart from transferring delay fre;m ego , the only other change that can be made to
delay(e,) or delay(e;) — without introducing a member W, 0 W,)  whose cycle mean exceeds
A max — Is to increase one or both of these values by some positive integer amount(s). Clearly, such a
change cannot reduce the self-timed buffer bound on any IPC edge.

Thus, we see that the valugs  and  computeddigrmineDelay$or delay(e,) and

delay(e, ), respectively, optimally ensure that no membef\wf) 1 W,) has a cycle mean that exceeds

1. See Fig. 8 for the specification of what #je s represent.
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A max- After computing these valueBetermineDelaysomputes the minimum deld, @&y thatis
required for all members &/, to have cycle means less than or eqygl, o , assuming that
delay(ey) = o, anddelay(e;) = o, . Given the configuratiomélay(ey) = o, delay(e;) = &,
delay(e,) = d,), transferring delay frore, te; increases the path delay of all memb®xs of , while
leaving the path delay of each membe(fef U P,) unchanged; and transferring delay from, to
increases the path delay acr¢Bg U P,) , While leaving the path delay Bgross unchanged. Thus, by an
argument similar to that given to establish the optimalitfdgf d,) with respé®vgd1 W, ) , we can
deduce that (1). The values computedigyermineDelay$or the delays o, e;, e, guarantee that no
member of( W, O W, 0 W,) has a cycle mean that exceggls, ; and (2). For any other assignment of
delays(d,', 84", 0,") to(ey, €;,&,) that preserves the estimated throughput a@fgssl W, 00 W,) ,
and for any IPC edge  such that an IPC sink-source path of is contaiffgglinP, [ P,) , the self-
timed buffer bound oé under the assignméyy’, d,', 0,') is greater than or equal to self-timed buffer
bound ofe under the assignmegy,, 54, 5,) computed by iterafions), 1, 2 DetdrmineDelays.

After extending this analysis successively to each of the remaining iteratorg 4, ..., m—1

of thefor loop inDetermineDelayswe arrive at the following result.

Theorem 5:  Suppose thaG, is a synchronization graph that has exactly one sink Ség:; let and
(€ €y, ..., €y_1) b€ asinFig. 8; letdy, dy, ...,d,,_4) be the result of applyDetermineDelay$o

G andGAS ;and letdy’, d', ...,d,,_;") be any sequencef non-negative integers such that
és[e0 - dy, ....,en_1 » dy_41'] hasthe same estimated throughpuBas . Then

O(CJey — dy's o€y g — dpy_1'1) 2P(CJey — dg, - €1 — d_4]), where®(X) is the sum

of the self-timed buffer bounds over all IPC edge&in. induced by the synchronizatiorXgraph

Fig. 9 illustrates a solution obtained frametermineDelaysHere we assume thetv) = 1, for
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each vertew , and we assume that the set of IPC edfeg &} . The grey dashed edges are the edges

added byConvert-to-SC-graphWe see thak, .., is determined by the cycle in the sink SCC of the origi-

X
nal graph; inspection of this cycle yieldlg, ., = 4 . Also, theWgt — the set of fundamental cycles
that contaire, , and do not conta#éy =~ — consists of a single ¢ycle  that contains three edges. By
inspection of this cycle, we see that the minimum delagon  required to guarantee that its cycle mean
does not exceed ., is 1. Thus, the 0 iteration oRdrdoop in DetermineDelaysomputes
Oy = 1. Next, we see thatv; consists of a single cycle that contains five edges, and two delays must be
present on this cycle for its cycle mean to be less than or equaltp . Since one delay has been placed
on e, , DetermineDelaysomputesd; = 1 intheé = 1 iteration of ther loop. Thus, the solution
determined bybetermineDelays$or Fig. 9 is(d,, 0;) = (1, 1) ; the resulting self-timed buffer bounds of
e, ande, are, respectively, azd ;ad=2+1=3

Algorithm DetermineDelaysan easily be modified to optimally handle general graphs that have
only onesourceSCC. Here, the algorithm specification remains essentially the same, with the exception
thatfori = 1,2 ...,(m-1) ,e denotes the edge directed from a vertdxjn ; to a vertex in
D

whereD,, D,, ..., D,,, is the ordering of sink SCCs generated in Step 2 of the corresponding

m-—i+1’ m

invocation ofConvert-to-SC-graplie, still denotes the sink-source edge instantiateGdmyvert-to-SC-
graph). By adapting the argument of Theorem 5, it is easily verified that when it is applicable, this modi-

fied algorithm always yields an optimal solution.

Fig. 9. An example used to illustrate a solution obtained by algorithm DetermineDelays.
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As far as we are aware, there is no straightforward extensbatefmineDelay$o general
graphs (multiple source SCCs and multiple sink SCCs) that is guaranteed to yield optimal solutions. Some
fundamental difficulties in deriving such an extension are explained in [3].

However,DetermineDelaysan be extended to yield heuristics for the general case in which the
original synchronization grap@;  contains more than one sourceaB@@ore than one sink SCC. For
example, if(a;, a,, ..., ,) denote edges that were instantiateddyert-to-SC-graphBetween” the
source SCCs — with ead)  representingithe th edge created — and siifblaty, ..., b;) denote
the sequence of edges instantiated between the sink SCCs, then alBet¢énmineDelaysan be applied
with the modification thaim = k+ I+1 ,anfey, e, ...,e,,_1) = (&g a3, ay ..., , b, b _q, ..., D7)
wheree, is the sink-source edge fr@unvert-to-SC-graph

It should be noted that practical synchronization graphs frequently contain either a single source
SCC or a single SCC, or both — such as the example of Fig. 7.Dé&tesmineDelaygogether with its
counterpart for graphs that have a single source SCC, form a widely-applicable solution for optimally

determining the delays on the edges createddwert-to-SC-graph
If we assume that there exist constahts Rnd  such(tet T , for all deday{e) < D

for all edgese , then it can be shown tBatermineDelays— and any of the variations BfetermineDe-

laysdefined above — ha@(|V|4(Iogz(|V|))2) time complexity.

Although the issue of deadlock does not explicitly aridedtermineDelayghe algorithm does
guarantee that the output graph is not deadlocked, assuming that the input graph is not deadlocked. This is
because (from Lemma 1) deadlock is equivalent to the existence of a cycle that has zero path delay, and is
thus equivalent to an infinite maximum cycle mean. SeermineDelaysloes not increase the maxi-

mum cycle mean, the algorithm cannot convert a graph that is not deadlocked into a deadlocked graph.
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10. Complete Algorithm
|

In this section we outline our complete synchronization optimization algorithm. The input is a
DFG and a parallel schedule for it, and the output is an IPC @gph= (V, Ey) , which represents
buffers as IPC edges; a strongly connected synchronization Gaph(V, E) , which represents syn-
chronization constraints; and a set of shared-memory buffer{sg®)|e is an IPC edge iy} :
which specifies the amount of memory to allocate in shared memory for each IPC edge.

The pseudocode for the complete algorithm is given in Fig. 10. RerspveRedundantSynaébs
invoked twice, once at the beginning, and once again@étevert-to-SC-grapandDetermineDelaysit
is possible that the edge(s) addeddmnvert-to-SC-graplean make some of the existing synchronization
edges redundant, and thus, applyiemoveRedundantSynetfter Convert-to-SC-grapmay be benefi-

cial.

Function SynchronizationOptimize

Input: A DFG G and a self-timed schedule for this DFG.

Output: Gjpc, G, and{ Byy(€)|eis an IPC edge iGjpc} -

1. Extract G from G and the given parallel schedule (which specifies actor assignment to
processors and the order in which each actor executes on a processor)

2.SetGg = G /* Initially, each IPC edge is also a synchronization edge */

ipc

3. Gg = RemoveRedundantSyn¢hg) G

s

Q)
%)

I

Convert-to-SC-graph G

o

0]
%]

I

DetermineDelays @

/* Remove the synchronization edges that have become redundant as a result of Step 4. */
6. Gg = RemoveRedundantSynthg) G

7. Calculate buffer sizes Bg,(e) for each IPC edge e in Gjy. (to be used for BBS):
— Compute pGS(snk(e), src( ), and set Byy(e) = pGS(snk(e), src( 9) + delay(e) .

Fig. 10. The complete synchronization optimization algorithm.
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A code generator can then acc&y. &éhd |, and allocate a buffer in shared memory for each
IPC edgee specified b@;,.  of siBg,(e) , and generate synchronization code for the synchronization
edges represented @y . These synchronizations may be implemented using BBS. The synchronization

cost in the final implementation is equal2o, , whege is the number of synchronization eGges in

11. Conclusions

We have presented techniques to reduce synchronization overhead in self-timed, multiprocessor
implementations of iterative dataflow programs. We have introduced a graph-theoretic analysis framework
that allows us to determine the effects on throughput and buffer sizes of modifying the points in the target
program at which synchronization functions are carried out, and we have used this framework to extend an
existing technique — removal of redundant synchronization edges — for noniterative programs to the iter-
ative case, and to develop a new method for reducing synchronization overhead that converts a feedforward
DFG into a strongly connected graph in such a way as to reduce synchronization overhead without slowing
down execution. We have shown how our technigues can be combined, and how the result can be post pro-
cessed to yield a format from which IPC code can easily be generated.

Perhaps the most significant direction for further work is the incorporation of timing guarantees —
for example, hard upper and lower execution time bounds, as Dietz, Zaafrani, and O’keefe use in [7]; and
handling of a mix of actors some of which have guaranteed execution time bounds, and some that have no

such guarantees, as Filo, Ku, Coelho Jr.,and De Micheli, do in [8].
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