
OPTIMIZING SYNCHRONIZATION IN MULTIPROCESSOR DSP SYSTEMS

Shuvra S. Bhattacharyya, Sundararajan Sriram, and Edward A. Lee

February 11, 1997

ABSTRACT

This paper is concerned with multiprocessor implementations of embedded applications specified

as iterative dataflow programs, in which synchronization overhead can be significant. We develop tech-

niques to alleviate this overhead by determining a minimal set of processor synchronizations that are

essential for correct execution. Our study is based in the context ofself-timed execution ofiterative data-

flow programs. An iterative dataflow program consists of a dataflow representation of the body of a loop

that is to be iterated an indefinite number of times; dataflow programming in this form has been studied

and applied extensively, particularly in the context of signal processing software. Self-timed execution

refers to a combined compile-time/run-time scheduling strategy in which processors synchronize with one

another only based on inter-processor communication requirements, and thus, synchronization of proces-

sors at the end of each loop iteration does not generally occur.

We introduce a new graph-theoretic framework, based on a data structure called thesynchroniza-

tion graph, for analyzing and optimizing synchronization overhead in self-timed, iterative dataflow pro-

grams. We show that the comprehensive techniques that have been developed for removingredundant

synchronizationsin non-iterative programs can be extended in this framework to optimally remove redun-

dant synchronizations in our context. We also present an optimization that converts a feedforward dataflow

graph into a strongly connected graph in such a way as to reduce synchronization overhead without slow-

ing down execution.

— IEEE Transactions on Signal Processing, Vol. 45, No. 6, June 1997 —

2

This research was partially funded as part of the Ptolemy project, which is supported by the

Advanced Research Projects Agency and the U. S. Air Force (under the RASSP program, contract

F33615-93-C-1317), Semiconductor Research Corporation (project 94-DC-008), National Science Foun-

dation (MIP-9201605), Office of Naval Technology (via Naval Research Laboratories), the State of Cali-

fornia MICRO program, and the following companies: Bell Northern Research, Dolby, Hitachi, Mentor

Graphics, Mitsubishi, NEC, Pacific Bell, Philips, Rockwell, Sony, and Synopsys.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory, Hitachi America, Ltd., 201

East Tasman Drive., San Jose, California 95134, USA. Phone: (408)922-4121, FAX: (408)954-8907, Elec-

tronic mail: shuvra@hmsi.hitachi.com.

S. Sriram is with the DSP R&D Centre at Texas Instruments, MS446, 13510 North Central

Expressway, Dallas, TX75265-5474, USA. Phone: (972)995-0336, FAX: (972)995-6194, Electronic mail:

sriram@hc.ti.com,.

E. A. Lee is with the Department of Electrical Engineering and Computer Sciences, University of

California at Berkeley, California 94720, USA, Phone: (510)642-0455, FAX: (510)642-2739, Electronic

mail: eal@eecs.berkeley.edu.

3

1. Introduction

Inter-processor synchronization overhead can severely limit the speedup of a multiprocessor

implementation. This paper develops techniques to minimize synchronization overhead in shared-memory

multiprocessor implementations of iterative synchronous dataflow (SDF) programs. Our study is motivated

by the widespread popularity of the SDF model in DSP design environments and the suitability of this

model for exploiting parallelism. Our work is particularly relevant when estimates are available for the task

execution times, and actual execution times are usually close to the corresponding estimates, but deviations

from the estimates of arbitrary magnitude can occasionally occur due to phenomena such as cache misses

or error handling.

SDF and closely related models have been used widely in DSP design environments, such as those

described in [14, 19, 22, 25]. In SDF, a program is represented as a directed graph in which the vertices,

calledactors, represent computations, and the edges specify FIFO channels for communication between

actors. The termsynchronous refers to the requirement that the number of data values produced (con-

sumed) by each actor onto (from) each of its output (input) edges is a fixed value for each firing of that

actor, and is known at compile time [16] and should not be confused with the use of “synchronous” in syn-

chronous languages [2]. The techniques developed in this paper assume that the input SDF graph ishomo-

geneous, which means that the numbers of data values produced or consumed are identically unity.

However, since efficient techniques have been developed to convert general SDF graphs into equivalent

(for our purposes) homogeneous SDF graphs [16], our techniques apply equally to general SDF graphs. In

the remainder of this paper, when we refer to adataflow graph (DFG) we imply a homogeneous SDF

graph.

Delays on DFG edges represent initial tokens, and specify dependencies between iterations of the

actors in iterative execution. For example, if tokens produced by the th execution of actor are con-

sumed by the th execution of actor , then the edge contains two delays. We represent an

k A

k 2+() B A B,()

4

edge with delays by annotating it with the symbol “ ” (see Fig. 1).

Multiprocessor implementation of an algorithm specified as a DFG involves scheduling the actors.

By “scheduling” we collectively refer to the tasks of assigning actors in the DFG to processors, ordering

execution of these actors on each processor, and determining when each actor fires (begins execution) such

that all data precedence constraints are met. In [17] the authors propose a scheduling taxonomy based on

which of these tasks are performed at compile time (static strategy) and which at run time (dynamic strat-

egy); in this paper we will use the same terminology that was introduced there.

In thefully-static scheduling strategy of [17], all three scheduling tasks are performed at compile

time. This strategy involves the least possible runtime overhead. All processors run in lock step and no

explicit synchronization is required when they exchange data. However, this strategy assumes that exact

execution times of actors are known. Such an assumption is generally not practical. A more realistic

assumption for DSP algorithms is that good estimates for the execution times of actors can be obtained.

Under such an assumption on timing, it is best to discard the exact timing information from the

fully static schedule, but still retain the processor assignment and actor ordering specified by the fully

static schedule. This results in theself-timed scheduling strategy of [17]. Each processor executes the

actors assigned to it in the order specified at compile time. Before firing an actor, a processor waits for the

data needed by that actor to become available. Thus in self-timed scheduling, processors are required to

perform run-time synchronization when they communicate data. Such synchronization is not necessary in

the fully-static case because exact (or guaranteed worst case) times could be used to determine firing times

of actors such that processor synchronization is ensured. As a result, the self-timed strategy incurs greater

run-time cost than the fully-static case because of the synchronization overhead.

A straightforward implementation of a self-timed schedule would require that for each inter-pro-

cessor communication (IPC) the sending processor ascertains that the buffer it is writing to is not full, and

the receiver ascertains that the buffer it is reading from is not empty. The processors suspend execution

n nD

5

until the appropriate condition is met. In each kind of platform, every IPC that requires such synchroniza-

tion checks costs performance, and sometimes extra hardware complexity: semaphore checks cost execu-

tion time on the processors, synchronization instructions that make use of synchronization hardware also

cost execution time, and blocking interfaces in hardware/software implementations require more hardware

than non-blocking interfaces [10].

The main goal of this paper is to present techniques that reduce the rate at which processors must

access shared memory for the purpose of synchronization in embedded, shared-memory multiprocessor

implementations of iterative dataflow programs. We assume that “good” estimates are available for the

execution times of actors and that these execution times rarely display large variations so that self-timed

scheduling is viable for the applications under consideration. As a performance metric for evaluating DFG

implementations we use the average iteration period , (or equivalently the throughput) which is the

average time that it takes for all the actors in the graph to be executed once. Thus an optimal schedule is

one that minimizes .

2. Related Work

Numerous research efforts have focused on constructing efficient parallel schedules for DFGs. For

example in [5, 20], techniques are developed for exploiting overlapped execution to optimize throughput,

assuming zero cost for IPC. Other work has focused on taking IPC costs into account during scheduling [1,

18, 23, 27], while not explicitly addressing overlapped execution. Similarly, in [9], techniques are devel-

oped to simultaneously maximize throughput, possibly using overlapped execution, and minimize buffer

memory requirements under the assumption of zero IPC cost. Our work can be used as a post-processing

step to improve the performance of implementations that use any of these scheduling techniques.

Among the prior work that is most relevant to this paper is thebarrier-MIMD concept, discussed

in [7]. However, the techniques of barrier MIMD do not apply to our problem context because they assume

T T
1–

T

6

a hardware barrier mechanism; they assume that tight bounds on task execution times are available; they do

not address iterative, self-timed execution, in which the execution of successive iterations of the DFG can

overlap; and because even for non-iterative execution, there appears to be no obvious correspondence [3]

between an optimal solution that uses barrier synchronizations and an optimal solution that employs

decoupled synchronization checks at the sender and receiver end (directed synchronization).

In [26], Shaffer presents an algorithm that minimizes the number of directed synchronizations in

the self-timed execution of a DFG. However, this work, like that of Dietz et al., does not allow the execu-

tion of successive iterations of the DFG to overlap. It also avoids having to consider dataflow edges that

have delay. The technique that we present for removing redundant synchronizations generalizes Shaffer’s

algorithm to handle delays and overlapped, iterative execution. The other major technique that we present

for optimizing synchronization — handling the feedforward edges of thesynchronization graph —is fun-

damentally different from Shaffer’s technique since it addresses issues that are specific to our more general

context of overlapped, iterative execution.

3. Terminology

We represent a DFG by an ordered pair , where is the set of vertices and is the set of

edges. The source vertex, sink vertex and delay of an edge are denoted , and .

A path in is a finite, nonempty sequence , where each is a member of

, and , , …, . A path that is directed from

some vertex to itself is called acycle, and afundamental cycleis a cycle of which no proper subsequence

is a cycle. If is a path in , we define thepath delayof , denoted ,

by . Between any two vertices , either there is no path from to , or

V E,() V E

e e()src e()snk e()delay

V E,() e1 e2 … en, , ,() ei

E e1()snk e2()src= e2()snk e3()src= en 1–()snk en()src=

p e1 e2 … en, , ,()= V E,() p p()Delay

p()Delay ei()delay
i 1=

n

∑= x y, V∈ x y

7

there exists aminimum-delay path from to . That is, if there is a path from to , then there exists a

path from to such that , for all paths directed from to . Given a DFG

, and vertices , we define to be if there is no path from to , and equal to the path

delay of a minimum-delay path from to if there exists a path from to .

A DFG isstrongly connectedif for each pair of distinct vertices , there is a path

directed from to and there is a path directed from to . Astrongly connected component (SCC)of

is a strongly connected subset such that no strongly connected subset of properly con-

tains . If is an SCC, its associated subgraph is also called an SCC. An SCC of a DFG is a

source SCC if , ; is asink SCC if

. An edge is afeedforward edge of if it is not contained in an

SCC; an edge that is contained in an SCC is called afeedbackedge.

We denote the number of elements in a finite set by . Also, if is a real number, then we

denote the smallest integer that is greater than or equal to by . Finally, if are vertices in ,

we define to represent an edge (that is not necessarily in) whose source and sink vertices are

and , respectively, and whose delay is .

4. Analysis of Self-Timed Execution

Fig. 1(c) illustrates the self-timed execution of the four-processor schedule in Fig. 1(a&b) (IPC is

ignored here). If the timing estimates are accurate, the schedule execution settles into a repeating pattern

spanning two iterations of , and the average estimated iteration period is 7 time units. In this section we

develop an analytical model to study such an execution of a self-timed schedule.

x y x y

p x y p′()Delay p()Delay≥ p′ x y

G x y, ρG x y,() ∞ x y

x y x y

V E,() x y,

x y y x

V E,() V′ V⊆ V

V′ V′ V′ V E,()

e E∈∀ e() V′∈snk() e() V′∈src()⇒ V′

e() V′∈src() e() V′∈snk()⇒ e V E,()

S S r

r r x y, V E,()

dn x y,() E x

y n

G

8

A

B

E

F

H

I

CG

Proc 1

Proc 4

Proc 3
Proc 2

Execution Time Estimates

A, C, H, F

B, E

G, I

: 3

: 4

A E

C
I

G
H

B F
A

B
C

I

E

G
F

H I

A

B F
C G

H

E A

I H
C

B F
E A

G C G
B F

I H

14

E

A E

C

I

G

H

B F

= Idle

Proc 1
Proc 2
Proc 3
Proc 4

= Send

= Receive

(a) DFG “G”

(b) Schedule on four processors

(c) Self-timed execution

Figure 1. Self-timed execution.

D

D

: 2

A

B

E

F

I H

CG

Proc 1 Proc 4

Proc 3Proc 2

D

D

D

D

D

D

(d) The IPC graph

9

4.1 Inter-processor Communication Modelling Graph

We model a self-timed schedule using a DFG derived from the original SDF

graph and the given self-timed schedule. The graph , which we will refer to as theinter-

processor communication modelling graph, or IPC graph for short, models the fact that actors of

assigned to the same processor execute sequentially, and it models constraints due to inter-processor com-

munication. For example, the self-timed schedule in Fig. 1 (b) can be modelled by the IPC graph in Fig. 1

(d). The IPC edges are shown using dashed arrows. The rest of this subsection describes the construction of

the IPC graph in detail.

The IPC graph has the same vertex set as , corresponding to the set of actors in . The self-

timed schedule specifies the actors assigned to each processor, and the order in which they execute. For

example in Fig. 1, processor 1 executes and then repeatedly. We model this in by drawing a

cycle around the vertices corresponding to and , and placing a delay on the edge from to . The

delay-free edge from to represents the fact that the th execution of precedes the th execution of

, and the edge from to with a delay represents the fact that the th execution of can occur only

after the th execution of has completed. Thus if actors are assigned to the same

processor in that order, then would have a cycle , with

. If there are processors in the schedule, then we have such cycles correspond-

ing to each processor.

As mentioned before, edges in that cross processor boundaries after scheduling represent inter-

processor communication. We will call such edgesIPC edges. Instead of explicitly introducing special

send andreceive primitives at the ends of the IPC edges, we will model these operations as part of the

sending and receiving actors themselves. For example, in Fig. 1, data produced by actor is sent from

processor 2 to processor 1; instead of inserting explicit communication primitives in the schedule, we

model the send within actor and we model the receive as part of actor .

Gipc V Eipc,()=

G V E,()= Gipc

G

V G G

A E Gipc

A E E A

A E k A k

E E A k A

k 1–() E v1 v2 … vn, , ,

Gipc v1 v2,() v2 v3,() … vn 1– vn,() vn v1,(), , , ,()

vn v1,()()delay 1= P P

G

B

B E

10

For each IPC edge in we add an IPC edge in between the same actors. We also set the

delay on this edge equal to the delay, , on the corresponding edge in . An IPC edge represents a

buffer implemented in shared memory, and initial tokens on the IPC edge are used to initialize the shared

buffer. In a straightforward self-timed implementation, each such IPC edge would also be a synchroniza-

tion point between the two communicating processors.

The IPC graph has the same semantics as a DFG, and its execution models the execution of the

corresponding self-timed schedule. The following definitions are useful to formally state the constraints

represented by the IPC graph. Time is modelled as an integer that can be viewed as a multiple of a base

clock.

Definition 1: The function (non-negative integer) represents the time at which the th

execution of the actor starts in the self-timed schedule. The function represents the time

at which the th execution of the actor ends, and produces data tokens at its output edges. Since we

are interested in the th execution of each actor for , we set and

 for as the “initial conditions”.

As per the semantics of a DFG, each edge of represents the following data depen-

dency constraint:

, . (1)

This is because each actor consumes one token from each of its input edges when it fires. Since there are

already tokens on each incoming edge of actor , another tokens must be pro-

duced on before the th execution of can begin. Thus the actor must have completed its

th execution before can begin its th execution. The constraints in (1) are due both to

IPC edges (representing synchronization between processors) and to edges that represent serialization of

G e Gipc

e()delay G

start v k,() Z
+∈ k

v end v k,() Z
+∈

k v v

k k 1 2 3 …, , ,= start v k,() 0=

end v k,() 0= k 0≤

vj vi,() Gipc

start vi k,() end vj k vj vi,()()delay–,()≥ vj vi,() Eipc k vj vi,()delay>∀,∈∀

e()delay e v k e()delay–

e k v e()src

k e()delay–() v k

11

actors assigned to the same processor.

To model execution times of actors we associate execution time with each vertex of the IPC

graph; assigns a positive integer execution time to each actor (again, the actual execution time can

be interpreted as cycles of a base clock), and includes the time taken to execute all IPC opera-

tions (sends andreceives) that the actor performs. Now, we can substitute

 in (1) to obtain

. (2)

In the self-timed schedule, actors fire as soon as data is available at all their input edges. Such an

“as soon as possible” (ASAP) firing pattern implies:

. (3)

The IPC graph can also be looked upon as a timed marked graph [21] or Reiter’s computation

graph [24]. The same properties hold for it, and we state some of the relevant properties here. See [24] for

proofs of Lemmas 1 and 3, and [3] for a proof of Lemma 2.

Lemma 1: [24] Every cycle in the IPC graph has a path delay of at least one if and only if the static

schedule it is constructed from is free of deadlock. That is, for each cycle , .

Lemma 2: [3] The number of tokens in any cycle of the IPC graph is always conserved over all possi-

ble valid firings of actors in the graph, and is equal to the path delay of that cycle.

Lemma 3: The asymptotic iteration period for astrongly connected IPC graph when actors execute

as soon as data is available at all inputs is given by [24]:

. (4)

Note that from Lemma 1.

t v()

t v() v

t v() t v()

v

end vj k,() start vj k,() t vj()+=

start vi k,() start vj k vj vi,()()delay–,() t vj() for each edgevj vi,() in Gipc+≥

start vi k,() start vj k vj vi,()()delay–,() t vj()+ vj vi,() Eipc∈{ }()max=

C

C C()Delay 0>

G

T
max

cycle C in G

t v()
v is onC

∑
C()Delay

 
 
 
 
 

=

C()Delay 0>

12

The quotient in (4) is called thecycle meanof the cycle . The entire quantity on the RHS of (4)

is called the “maximum cycle mean” of the strongly connected IPC graph . If the IPC graph contains

more than one SCC, then different SCCs may have different iteration periods, depending on their individ-

ual maximum cycle means. In such a case, the iteration period of the overall graph (and hence the self-

timed schedule) is themaximum over the maximum cycle means of all the SCCs of , because the exe-

cution of the schedule is constrained by the slowest component in the system. Henceforth, we will define

the maximum cycle mean as follows.

Definition 2: Themaximum cycle mean of an IPC graph , denoted by , is the maximal cycle

mean over all SCCs of : That is,

.

A cycle in whose cycle mean is is called acritical cycle of . Thus the throughput of the

system of processors executing a particular self-timed schedule is equal to the corresponding value.

For example, in Fig. 1(d), has one SCC, and its maximal cycle mean is 7 time units. This cor-

responds to the critical cycle . We have not included IPC costs in this calcu-

lation, but these can be included in a straightforward manner by adding thesend andreceive costs to the

corresponding actors performing these operations.

The maximum cycle mean can be calculated in time , where

and are such that and [15].

4.2 Execution Time Estimates

If we only have execution time estimates available instead of exact values, and we set in the

C

G

Gipc

Gipc λmax

Gipc

λmax
max

cycle C in G

t v()
v is onC

∑
C()Delay

 
 
 
 
 

=

Gipc λmax Gipc

1
λmax

Gipc

B E,() E I,() I G,() G B,(), , ,()

O V Eipc log2 V D T+ +()() D

T delay e() D≤ e Eipc∈∀ t v() T≤ v V∈∀

t v()

13

previous section to be these estimated values, then we obtain theestimated iteration period by calculating

. Henceforth we will assume that we know theestimated throughput calculated by setting the

 values to the available timing estimates.

In the transformations that we present in the rest of the paper, we will preserve the estimated

throughput by preserving the maximum cycle mean of , with each set to the estimated execution

time of . In the absence of more precise timing information, this is the best we can hope to do.

4.3 Strongly Connected Components and Buffer Size Bounds

In dataflow semantics, the edges between actors represent infinite buffers. Accordingly, the edges

of the IPC graph are potentially buffers of infinite size. However, from Lemma 2, the number of tokens on

each feedback edge (an edge that belongs to an SCC, and hence to some cycle) during the execution of the

IPC graph is bounded above by a constant. We will call this constant theself-timed buffer bound of that

edge, and for a feedback edge we will represent this bound by . Lemma 2 yields the following

self-timed buffer bound:

(5)

Feedforward edges have no such bound on buffer size; therefore for practical implementations we

need toimpose a bound on the sizes of these edges. For example, Fig. 2(a) shows an IPC graph where the

IPC edge could be unbounded when the execution time of is less than that of , for example. In

practice, we need to bound the buffer size of such an edge; we will denote such an “imposed” bound for a

feedforward edge by . Since the effect of placing such a restriction includes “artificially” con-

straining from getting more than invocations ahead of , its effect on the estimated

λmax
1

λmax

t v()

Gipc t v()

v

e Bfb e()

Bfb e() C()Delay C is a cycle that containse{ }()min=

A B,() A B

A B

Fig. 2. An IPC graph with a feedforward edge: (a). original graph (b). imposing bounded buffers.

D D
A B

D D
mD

(a) (b)

e Bff e()

e()src Bff e() e()snk

14

throughput can be modelled by adding the reverse edge , where

, to (grey edge in Fig. 2(b)). Since adding this edge introduces a new cycle in

, it may reduce the estimated throughput; to prevent such a reduction, must be chosen large

enough so that the maximum cycle mean remains unchanged upon adding .

Sizing buffers optimally such that the maximum cycle mean remains unchanged has been studied

by Kung, Lewis and Lo in [13], where the authors propose an integer linear programming formulation of

the problem, with the number of constraints equal to the number of fundamental cycles in the DFG (poten-

tially an exponential number of constraints).

An efficient albeit suboptimal procedure to determine is to note that if

(6)

holds for each feedforward edge , then the maximum cycle mean of the resulting graph does not exceed

. This is because the reverse edge that gets added as a result of imposing a buffer bound on intro-

duces new cycles; the maximum execution time along any such newly introduced cycle can be at most

; and hence adding the number of delays given by (6) guarantees no change in the maximum

cycle mean.

Then, doing a binary search on for each feedforward edge, and computing the maximum

cycle mean at each search step and ascertaining that it is less than results in a buffer assignment for

the feedforward edges. Although this procedure is efficient, it is suboptimal because the order that the

edges are chosen is arbitrary and may effect the quality of the final solution. However, as we will see in

Section 9, imposing such a bound is anaive approach for bounding buffer sizes and, in terms of syn-

chronization costs, there is a better technique for bounding buffers. Thus, in our final algorithm, we will

not in fact find it necessary to use or compute these bounds .

dm e()snk e()src,()

m Bff e() e()delay–= Gipc

Gipc Bff e()

dm e()snk e()src,()

Bff

Bff e() t x()
x V∈
∑ 

  λmax⁄≥

e

λmax e

t x()
x V∈
∑

Bff e()

λmax

e

Bff

Bff

15

5. Synchronization Model

5.1 Synchronization Protocols

We define two basic synchronization protocols for an IPC edge based on whether or not the length

of the corresponding buffer is guaranteed to be bounded from the analysis presented in the previous sec-

tion. Given an IPC graph , and an IPC edge in , if the length of the corresponding buffer is not

bounded — that is, if is a feedforward edge of — then we apply a synchronization protocol called

unbounded buffer synchronization (UBS), which guarantees that (a) an invocation of never

attempts to read data from the buffer unless the buffer contains at least one token;and (b) an invocation of

 never attempts to write data into the buffer unless the number of tokens in the buffer is less than

some pre-specified limit , which is the amount of memory allocated to the buffer as discussed in sub-

section 4.3.

On the other hand, if the topology of the IPC graph guarantees that the buffer length for is

bounded by some value (the self-timed buffer bound of), then we use a simpler protocol, called

bounded buffer synchronization (BBS), that only explicitly ensures (a) above. Below, we outline the

mechanics of the two synchronization protocols that we have defined.

BBS. In this mechanism, awrite pointer for is maintained on the processor that executes

; a read pointer for is maintained on the processor that executes ; and a copy of

 is maintained in some shared memory location . The pointers and are initial-

ized to zero and , respectively. Just after each execution of , the new data value produced

onto is written into the shared memory buffer for at offset ; is updated by the following

operation — ; and is updated to contain the new value of .

Just before each execution of , the value contained in is repeatedly examined until it is found

to benot equalto ; then the data value residing at offset of the shared memory buffer for is

G e G

e G

e()snk

e()src

Bff e()

e

Bfb e() e

e()wr e

e()src e()rd e e()snk

wr e() e()sv e()rd e()wr

e()delay e()src

e e e()wr e()wr

e()wr e()wr 1+() Bfb e()mod← e()sv e()wr

e()snk e()sv

e()rd e()rd e

16

read; and is updated by the operation .

UBS. This mechanism also uses the read/write pointers and , and these are initialized

the same way; however, rather than maintaining a copy of in the shared memory location , we

maintain a count (initialized to) of the number of unread tokens that currently reside in the

buffer. Just after executes, is repeatedly examined until its value is found to be less than

; then the new data value produced onto is written into the shared memory buffer for at offset

; is updated as in BBS (except that the new value is not written to shared memory); and the

count in is incremented. Just before each execution of , the value contained in is

repeatedly examined until it is found to be nonzero; then the data value residing at offset of the

shared memory buffer for is read; the count in is decremented; and is updated as in BBS.

Note that in the case of edges for which is too large to be practically implementable,

smaller bounds must be imposed, using a protocol identical to UBS.

5.2 The Synchronization Graph

An IPC edge in represents two functions: 1) reading and writing of data values into the buffer

represented by that edge; and 2) synchronization between the sender and the receiver, which could be

implemented with UBS or BBS. We find it useful to differentiate these two functions by creating another

graph called thesynchronization graph (), in which edges between actors assigned to different proces-

sors, calledsynchronization edges, representsynchronization constraints only. Recall from Subsection

4.1 that an IPC edge of represents thesynchronization constraint:

. (7)

Initially, the synchronization graph is identical to the IPC graph, because every IPC edge repre-

sents a synchronization point. However, we will modify the synchronization graph in certain “valid” ways

(which will be defined shortly) by adding some edges and deleting some others. At the end of our optimi-

e()rd e()rd e()rd 1+() Bfb e()mod←

e()rd wr e()

e()wr e()sv

e()delay

e()src e()sv

Bff e() e e

e()wr e()wr

e()sv e()snk e()sv

e()rd

e e()sv e()rd

Bfb e()

Gs V Es,()=

Gipc

Gs

vj vi,() Gipc

start vi k,() end vj k vj vi,()()delay–,()≥ k vj vi,()delay>∀

17

zations, the synchronization graph may look very different from the IPC graph: it is of the form

, where is the set of edges deleted from the IPC graph and is the set of edges

added to it. At this point the IPC edges in represent buffer activity, and must be implemented as buff-

ers in shared memory, whereas the synchronization edges represent synchronization constraints, and are

implemented using UBS and BBS. If there is an IPC edge as well as a synchronization edge between the

same pair of actors, then the synchronization protocol is executed before the buffers corresponding to the

IPC edge are accessed so as to ensure sender-receiver synchronization. On the other hand, if there is an IPC

edge between two actors in the IPC graph, but there is no synchronization edge between the two, then no

synchronization needs to be done before accessing the shared buffer. If there is a synchronization edge

between two actors but no IPC edge, then no shared buffer is allocated between the two actors; only the

corresponding synchronization protocol is invoked.

All transformations that we perform on must respect the synchronization constraints implied

by . If we ensure this, then we only need to implement the synchronization edges of the optimized

synchronization graph. The following theorem underlies the validity of the main techniques that we will

present in this paper.

Theorem 1: The synchronization constraints in a synchronization graph imply the syn-

chronization constraints of the synchronization graph if for each edge that is present in

 but not in there is a minimum delay path from to in that has total delay of at

most , that is the following condition holds: , .

(Note that since the vertex sets for the two graphs are identical, it is meaningful to refer to and

 as being vertices of even though .)

First we prove the following lemma.

V Eipc F– F′+(),() F F′

Gipc

Gs

Gipc

G1 V E1,()=

G2 V E2,()= ε

G2 G1 ε()src ε()snk G1

ε()delay ε E2 ε E1∉,∈∀ ρG1
ε()src ε()snk,() ε()delay≤

ε()src

ε()snk G1 ε E2 ε E1∉,∈

18

Lemma 4: If is a path in , then

Proof: The following constraints hold along such a path (as per (7))

. (8)

Similarly,

.

Noting that , we obtain .

Causality implies , so we get

. (9)

Substituting (8) in (9),

.

Continuing along in this manner, it can easily be verified that

;

that is,

. Q. E. D.

Proof of Theorem 1: If , then the synchronization constraint due to the edge holds in both

graphs. But for each we need to show that the constraint due to :

(10)

holds in provided , which implies there is at least one path

 from to in (and) such that

.

From Lemma 4, the existence of such a path implies

p e1 e2 … en, , ,()= G1

start en() k,snk() end e1() k p()Delay–,src()≥

p

start e1()snk k,() end e1()src k e1()delay–,()≥

start e2()snk k,() end e2()src k e2()delay–,()≥

e2()src e1()snk= start e2()snk k,() end e1()snk k e2()delay–,()≥

end v k,() start v k,()≥

start e2()snk k,() start e1()snk k e2()delay–,()≥

start e2()snk k,() end e1()src k e2() e1()delay–delay–,()≥

p

start en()snk k,() end e1()src k en() en 1–() …–delay– e1()delay–delay–,()≥

start en()snk k,() end e1()src k p()Delay–,()≥

ε E2 ε E1∈,∈ ε

ε E2 ε E1∉,∈ ε

start ε()snk k,() end ε()src k ε()delay–,()>

G1 ρG1
ε()src ε()snk,() ε()delay≤

p e1 e2 … en, , ,()= ε()src ε()snk G1 e1()src ε()src= en()snk ε()snk=

p()Delay ε()delay≤

p

19

.

That is,

. (11)

If , then . Substituting this

in (11) we obtain

.

The above relation is identical to (10), and this proves the theorem.Q. E. D.

Theorem 1 motivates the following definition.

Definition 3: If and are synchronization graphs with the same vertex-

set, we say that preserves if , we have .

Thus, Theorem 1 states that the synchronization constraints of imply the synchronization con-

straints of if preserves .

Given an IPC graph , and a synchronization graph such that preserves , if we implement

the synchronizations corresponding to the synchronization edges of , then, because the synchronization

edges alone determine the interaction between processors, the iteration period of the resulting system is

determined by the maximal cycle mean of .

5.3 Computing Buffer Bounds from and

After all the optimizations are complete we have a final synchronization graph that preserves .

Since the synchronization edges in are the ones that are finally implemented, it is advantageous to cal-

culate the self-timed buffer bounds as a final step after all the transformations on are complete, instead

of deriving the bounds from . This is because addition of the edges may reduce these buffer

start en()snk k,() end e1()src k p()Delay–,()≥

start ε()snk k,() end ε()src k p()Delay–,()≥

p()Delay ε()delay≤ end ε()src k p()Delay–,() end ε()src k ε()delay–,()≥

start ε()snk k,() end ε()src k ε()delay–,()≥

G1 V E1,()= G2 V E2,()=

G1 G2 ε E2 ε E1∉,∈∀ ρG1
ε()src ε()snk,() ε()delay≤

V E1,()

V E2,() V E1,() V E2,()

Gipc Gs Gs Gipc

Gs

Gs

Gs Gipc

Gipc

Gs

Gs

Gipc F′

20

bounds. It is easily verified that removal of the edges () cannot change the buffer bounds in (5) as long as

the synchronizations in are preserved. The following theorem tells us how to compute the self-timed

buffer bounds from .

Theorem 2: If preserves and the synchronization edges in are implemented, then for each

feedback IPC edge in , the self-timed buffer bound of ()— an upper bound on the number

of data tokens that can ever be present on— is given by:

,

Proof: By Lemma 4, if there is a path from to in , then

.

Taking to be an arbitrary minimum-delay path from to in , we get

.

That is, cannot be more that iterations “ahead” of . Thus there can

never be more that tokens more than the initial number of tokens on . Since the ini-

tial number of tokens on is , the size of the buffer corresponding to is bounded above by

. Q. E. D.

The quantities can be computed using Dijkstra’s algorithm [6] to solve the

all-pairs shortest path problem on the synchronization graph in time . Thus the values can

be computed in time.

6. Problem Statement

We refer to each access of the shared memory “synchronization variable” by and

 as asynchronization access1 to shared memory. If synchronization for is implemented using

UBS, then we see that on average, synchronization accesses are required for in each DFG iteration

F

Gipc

Gs

Gs Gipc Gs

e Gipc e Bfb e()

e

Bfb e() ρGs
snk e() src e(),() e()delay+=

p snk e() src e() Gs

start e()src k,() end e()snk k p()Delay–,()≥

p snk e() src e() Gs

start e()src k,() end e()snk k ρGs
snk e() src e(),()–,()≥

e()src ρGs
snk e() src e(),() e()snk

ρGs
snk e() src e(),() e

e e()delay e

Bfb e() ρGs
snk e() src e(),() e()delay+=

ρGs
snk e() src e(),()

O V
3() Bfb e()

O V
3()

e()sv e()src

e()snk e

4 e

21

period, while BBS implies synchronization accesses per iteration period. We define thesynchronization

cost of a synchronization graph to be the average number of synchronization accesses required per iter-

ation period. Thus, if denotes the number of synchronization edges in that are feedforward edges,

and denotes the number of synchronization edges that are feedback edges, then the synchronization

cost of can be expressed as .

In the remainder of this paper, we present two mechanisms to minimize the synchronization cost

— removal of redundant synchronization edges, and conversion of a synchronization graph that is not

strongly connected into one that is strongly connected

7. Removing Redundant Synchronizations

Formally, a synchronization edge is redundant in a synchronization graph if its removal yields

a synchronization graph that preserves . Equivalently, from Definition 3, a synchronization edge is

redundant in the synchronization graph if there is a path in directed from to

such that .

Thus, the synchronization function associated with a redundant synchronization edge “comes for

free” as a by product of other synchronizations. Fig. 3 shows an example of a redundant synchronization

edge. Here, before executing actor , the processor that executes does not need to synchro-

nize with the processor that executes because due to the synchronization edge , the corre-

sponding invocation of must complete before each invocation of begins. Thus, is redundant.

The following theorem establishes that the order in which we remove redundant synchronization

1. Note that in our measure of the number of shared memory accesses required for synchronization, we ne-
glect the accesses to shared memory that are performed while the sink actor is waiting for the required data
to become available, or the source actor is waiting for an “empty slot” in the buffer. The number of accesses
required to perform these “busy-wait” or “spin-lock” operations is dependent on the exact relative execution
times of the actor invocations. Since in our problem context, this information is not generally available to us,
we use thebest casenumber of accesses — the number of shared memory accesses required for synchroni-
zation assuming that IPC data on an edge is always produced before the corresponding sink invocation at-
tempts to execute — as an approximation.

2

Gs

nff Gs

nfb

Gs 4nff 2nfb+()

G

G e

G p e()≠ G e()src e()snk

p()Delay e()delay≤

D A B C D, , ,{ }

E F G H, , ,{ } x1

F D x2

22

edges is not important.

Theorem 3: Suppose that is a synchronization graph, and are distinct redundant

synchronization edges in , and . Then is redundant in .

Proof: Since is redundant in , there is a path in directed from to

such that

. (12)

Similarly, there is a path , contained in both and , that is directed from to

, and that satisfies

. (13)

Now, if does not contain , then exists in , and we are done. Otherwise, let

; observe that is of the form ; and

define . Clearly, is a path from to

 in . Also,

Fig. 3. An example of a redundant synchronization edge.

A

B

C

D

E

F

G

H

x1
x2

DD

Gs V E,()= e1 e2

Gs Gs
˜ V E e1{ }–,()= e2 Gs

˜

e2 Gs p e2()≠ Gs e2()src e2()snk

p()Delay e2()delay≤

p′ e1()≠ Gs Gs
˜ e1()src

e1()snk

p′()Delay e1()delay≤

p e1 p Gs
˜

p′ x1 x2 … xn, , ,()= p p y1 y2 … yk 1– e1 yk yk 1+ … ym, , , , , , , ,()=

p″ y1 y2 … yk 1– x1 x2 … xn yk yk 1+ … ym, , , , , , ,, , , ,()≡ p″ e2()src

e2()snk Gs
˜

p″()Delay xi()delay∑ yi()delay∑+=

p′()Delay p()Delay e1()delay–()+=

23

(from (13))

(from (12)).Q. E. D.

Theorem 3 tells us that we can avoid implementing synchronization forall redundant synchroniza-

tion edges since the “redundancies” are not interdependent. Thus, an optimal removal of redundant syn-

chronizations can be obtained by applying a straightforward algorithm that successively tests the

synchronization edges for redundancy in some arbitrary sequence, and sinceshortest path computation is a

tractable problem, we can expect such a solution to be practical.

Fig. 4 presents an efficient algorithm, based on the ideas presented above, for optimal removal of

redundant synchronization edges. In this algorithm, we first compute the path delay of a minimum-delay

p()Delay≤

e2()delay≤

Function RemoveRedundantSynchs
Input : A synchronization graph such that is the set of synchronization

edges.

Output : The synchronization graph , where is the set of redundant

synchronization edges in .

1. Compute for each ordered pair of vertices in .

2. Initialize: .

3. For each

For each output edge of except for

If

Then

Break /* exit the innermost enclosing For loop */
End If

End For
End For
4. Return .

Gs V E,()= I E⊆

Gs
∗ V E Er–(),()= Er

Gs

ρGs
x y,() Gs

Er ∅=

e I∈
eo e()src e

eo()delay ρGs
eo()snk e()snk,()+ e()delay≤

Er Er e{ }∪=

V E Er–(),()

Fig. 4. An algorithm that optimally removes redundant synchronization edges.

24

path from to for each ordered pair of vertices ; here, we assign a path delay of whenever

there is no path from to . This computation is equivalent to solving an instance of the well knownall

points shortest paths problem[6]. Then, we examine each synchronization edge — in some arbitrary

sequence — and determine whether or not there is a path from some successor of (other than

) to that has a path delay that does not exceed . It is easily

verified that this check is equivalent to checking whether or not is redundant [3].

From the definition of a redundant synchronization edge, it is easily verified that given a redundant

synchronization edge in , and two arbitrary vertices , if we let , then

. Thus, none of the minimum-delay path values computed in Step 1 need to be

recalculated after removing a redundant synchronization edge in Step 3.

In [3], it is shown thatRemoveRedundantSynchs attains a time complexity of

 if we use a modification of Dijkstra’s algorithm described in [6] for Step 1.

8. Comparison with Shaffer’s Approach

In [26], Shaffer presents an algorithm that minimizes the number of directed synchronizations in

the self-timed execution of a DFG under the (implicit) assumption that the execution of successive itera-

tions of the DFG are not allowed to overlap. In Shaffer’s technique, a construction identical to our synchro-

nization graph is used with the exception that there is no feedback edge connecting the last actor executed

on a processor to the first actor executed on the same processor, and edges that have delay are ignored since

only intra-iteration dependencies are significant. Thus, Shaffer’s synchronization graph is acyclic.Remov-

eRedundantSynchs can be viewed as an extension of Shaffer’s algorithm to handle self-timed, iterative exe-

cution of a DFG.

Fig. 5 shows a DFG that arises from a four-channel multiresolution QMF filter bank, and Fig. 5(b)

x y x y,() ∞

x y

e

v e()src

e()snk e()snk e()delay e()src v,()delay–()

e

er Gs x y, V∈ Gs
ˆ V E er{ }–(),()=

ρ
Gs
ˆ x y,() ρGs

x y,()=

O V
2
log2 V() V E+()

25

Fig. 5. Application of RemoveRedundantSynchs to a multiresolution QMF filter bank

A1 A2 A3 A4

B1 B2

D D

C1

D1E1 E2

nD

F1 F2 F3 F4

Proc. 1

Proc. 2

A1 A2 B1 C1 D1 E1 F1 F2, , , , , , ,

A3 A4 B2 E2 F3 F4, , , , ,

(n+1)DnD

nD

A1

A2

B1

C1

D1

E1

F1

F2

D

A3

A4

B2

E2

F3

F4

D

D

D

nD

(n+1)D

(a)

(b)

(c)

A1

A2

B1

C1

D1

E1

F1

F2

D

A3

A4

B2

E2

F3

F4

D

(d)

26

shows a self timed schedule for this DFG. For elaboration on the derivation of this DFG from the original

SDF graph see [3, 16]. The synchronization graph that corresponds to Figs. 5(a&b) is shown in Fig. 5(c).

The dashed edges are synchronization edges. If we apply Shaffer’s method, which considers only those

synchronization edges that do not have delay, we can eliminate the need for explicit synchronization along

only one of the 8 synchronization edges — edge . In contrast, if we applyRemoveRedun-

dantSynchs, we can detect the redundancy of as well as four additional edges — ,

, , and . The synchronization graph that results from applyingRemoveRedun-

dantSynchs is shown in Fig. 5(d). The number of synchronization edges is reduced from to .

9. Deriving a Strongly Connected Synchronization Graph

Earlier, we defined two synchronization protocols — BBS, which has a cost of 2 synchronization

accesses per iteration period, and UBS, which has a cost of 4 synchronization accesses. We pay the

increased overhead of UBS whenever the associated edge is a feedforward edge of the synchronization

graph .

One alternative to implementing UBS for a feedforward edge is to add synchronization edges to

 so that becomes encapsulated in an SCC; such a transformation would allow to be implemented

with BBS. We have developed an efficient technique to perform such a graph transformation in such a way

that the net synchronization cost is minimized, the impact on the self-timed buffer bounds of the IPC edges

is optimized, and the estimated throughput is not degraded. This technique is similar in spirit to the one in

[30], where the concept of converting a DFG that contains feedforward edges into a strongly connected

graph has been studied in the context of retiming.

Fig. 6 presents our algorithm for transforming a synchronization graph that is not strongly con-

nected into a strongly connected graph. This algorithm simply “chains together” the source SCCs, and sim-

ilarly, chains together the sink SCCs. The construction is completed by connecting the first SCC of the

A1 B2,()

A1 B2,() A3 B1,()

A4 B1,() B2 E1,() B1 E2,()

8 3

Gs

e

Gs e e

27

“source chain” to the last SCC of the sink chain with an edge that we call thesink-source edge. From each

source or sink SCC, the algorithm selects a vertex that has minimum execution time to be the chain “link”

corresponding to that SCC. Minimum execution time vertices are chosen in an attempt to minimize the

amount of delay that must be inserted on the new edges to preserve the estimated throughput of the original

graph.

The following theorem establishes that a solution computed byConvert-to-SC-graph always has a

synchronization cost that is no greater than that of the original synchronization graph:

Theorem 4: Suppose that is a synchronization graph, and is the graph that results from applying

algorithmConvert-to-SC-graphto . Then the synchronization cost of is less than or equal to the syn-

chronization cost of .

Fig. 6. An algorithm for converting a synchronization graph that is not strongly con-
nected into a strongly connected graph.

Function Convert-to-SC-graph
Input : A synchronization graph that is not strongly connected.

Output : A strongly connected graph obtained by adding edges between the SCCs of .

1. Generate an ordering of the source SCCs of , and similarly, generate

an ordering of the sink SCCs of .

2. Select a vertex that minimizes over .

3. For
• Select a vertex that minimizes over .

• Instantiate the edge .

End For
4. Select a vertex that minimizes over .

5. For
• Select a vertex that minimizes over .

• Instantiate the edge .

End For
6. Instantiate the edge .

G

G

C1 C2 … Cm, , , G

D1 D2 … Dn, , , G

v1 C1∈ t *() C1

i 2 3… m,,=

vi Ci∈ t *() Ci

d0 vi 1– vi,()

w1 D1∈ t *() D1

i 2 3… n,,=

wi Di∈ t *() Di

d0 wi 1– wi,()

d0 wm v1,()

G Ĝ

G Ĝ

G

28

Proof: Recall that in a connected graph , must exceed [6]. Thus, the number of

feedforward edges must satisfy , where is the number of SCCs. Now, the number of

new edges introduced byConvert-to-SC-graphis equal to , where is the number of

source SCCs, and is the number of sink SCCs, and consequently, the number of synchronization

accesses per iteration period, , that is required to implement the edges introduced byConvert-to-SC-

graph is , while the number of synchronization accesses, , eliminated byCon-

vert-to-SC-graph(by allowing the feedforward edges of the original synchronization graph to be imple-

mented with BBS rather than UBS) equals . It follows that the net change in the number of

synchronization accesses satisfies

,

and thus, . Q. E. D.

Fig. 7 shows the synchronization graph topology that results from a four-processor schedule of a

synthesizer for plucked-string musical instruments in seven voices based on the Karplus-Strong technique.

This graph contains synchronization edges (the black, dashed edges), all of which are feedforward

edges, so the synchronization cost is . Since the graph has one source SCC and one sink SCC,

only one edge is added byConvert-to-SC-graph(shown by the grey, dashed edge), and adding this edge

reduces the synchronization cost to — a 42% savings.

V∗ E∗,() E∗ V∗ 2–()

nf nf nc 2–>() nc

nsrc nsnk 1–+() nsrc

nsnk

S+

2 nsrc nsnk 1–+()×() S−

2nf S+ S−–()

S+ S−–() 2 nsrc nsnk 1–+() 2nf–= 2 nc 1– nf–() 2 nc 1– nc 1–()–()≤ ≤

S+ S−–() 0≤

Fig. 7. A solution obtained by Convert-to-SC-graph when applied to a 4-processor schedule
of a synthesizer for musical instruments based on the Karplus-Strong technique.

DD

D

D

ni 6=

4ni 24=

2ni 2+ 14=

29

One issue remains to be addressed in the conversion of a synchronization graph into a strongly

connected graph — the proper insertion of delays so that is not deadlocked, and does not have

lower estimated throughput than . The location (edge) and magnitude of the delays that we add are sig-

nificant since (from Theorem 2) they affect the self-timed buffer bounds of the IPC edges. Since the self-

timed buffer bounds determine the amount of memory that we allocate for the corresponding buffers, it is

desirable to prevent deadlock and decrease in estimated throughput in such a way that we minimize the

sum of the self-timed buffer bounds over all IPC edges. In this subsection, we present an efficient algo-

rithm for addressing this goal. Our algorithm produces an optimal result if has only one source SCC or

only one sink SCC; in other cases, the algorithm must be viewed as a heuristic.

We will use the following notation in the remainder of this section: if is a DFG;

 is a sequence of distinct members of ; and , then

 denotes the DFG

, where each is defined by

, , and . Thus, is

simply the DFG that results from “changing the delay” on each to the corresponding new delay value

. Also, if is a strongly connected synchronization graph that preserves , anIPC sink-source

path in is a minimum-delay path in directed from to , where is an IPC edge (in

).

Fig. 8 outlines the restricted version of our algorithm that applies when the synchronization graph

 has exactly one source SCC. Here,BellmanFord is assumed to be an algorithm that takes a synchroni-

zation graph as input, and applies the Bellman-Ford algorithm discussed in pp. 94-97 of [15] to return

the cycle mean of the critical cycle in ; if one or more cycles exist that have zero path delay, thenBell-

Gs

Gs
ˆ Gs

ˆ

Gs

Gs

G V E,()=

e0 e1 … en 1–, , ,() E ∆0 ∆1 … ∆n 1–, , , 0 1 … ∞, , ,{ }∈

G e0 ∆0→ … en 1– ∆n 1–→, ,[]

V E e0 e1 … en 1–, , ,{ }–() e0′ e1′ … en 1– ′, , ,{ }∪(),() ei ′

ei ′()src ei()src= ei ′()snk ei()snk= ei ′()delay ∆i= G e0 ∆0→ … en 1– ∆n 1–→, ,[]

ei

∆i G Gipc

G G e()snk e()src e

Gipc

Gs

Z

Z

30

manFord returns .

Function DetermineDelays

Input : Synchronization graphs and , where is the graph computed by Con-

vert-to-SC-graph when applied to . The ordering of source SCCs generated in Step 2 of

Convert-to-SC-graph is denoted . For , denotes the edge

instantiated by Convert-to-SC-graph from a vertex in to a vertex in . The sink-source

edge instantiated by Convert-to-SC-graph is denoted .

Output : Non-negative integers such that the estimated throughput of

 equals the estimated throughput of .

BellmanFord() /* compute the max. cycle mean of */

/* an upper bound on the delay required for any */

For

/* fix the delay on to be */

End For
Return .

Function MinDelay()

Input : A synchronization graph , an edge in , a positive real number , and a positive

integer .

Output : Assuming has estimated throughput no less than , determine the mini-

mum such that the estimated throughput of is no less than .

Perform a binary search in the range to find the minimum value of

 such that BellmanFord() returns a value less than or equal to .

Return this minimum value of .

Gs V E,()= Gs
ˆ Gs

ˆ

Gs

C1 C2 … Cm, , , i 1 2 …m 1–, ,= ei

Ci Ci 1+

e0

d0 d1 … dm 1–, , ,

Gs
ˆ e0 d0→ … em 1– dm 1–→, ,[] Gs

X0 Gs
ˆ e0 ∞→ … em 1– ∞→, ,[]=

λmax= X0 Gs

dub t x()
x V∈
∑ 

  λmax⁄= ei

i 0 1 … m 1–, , ,=

δi MinDelay Xi ei λmax dub, , ,()=

Xi 1+ Xi ei δi→[]= ei δi

δ0 δ1 … δm 1–, , ,

X e λ B, , ,
X e X λ

B

X e B→[] λ 1–

d 0 1 … B, , ,{ }∈ X e d→[] λ 1–

0 1 … B, , ,[]
r 0 1 … B, , ,{ }∈ X e r→[] λ

r

Fig. 8. An algorithm for determining the delays on the edges introduced by Convert-to-SC-
graph. This algorithm assumes the original synchronization graph has only one sink SCC.

∞

31

Algorithm DetermineDelays is based on the observations that the set of IPC sink-source paths

introduced byConvert-to-SC-graphcan be partitioned into nonempty subsets such

that each member of contains 1 and contains no other members of ,

and similarly, the set of fundamental cycles introduced byDetermineDelayscan be partitioned into

 such that each member of contains and contains no other members

of .

By construction, a nonzero delay on any of the edges “contributes to reducing the

cycle means of all members of ”. AlgorithmDetermineDelaysstarts (iteration of theFor loop)

by determining the minimum delay on that is required to ensure that none of the cycles in has a

cycle mean that exceeds the maximum cycle mean of . Then (in iteration) the algorithm

determines the minimum delay on that is required to guarantee that no member of has a cycle

mean that exceeds , assuming that .

Now, if , , and , then for any positive integer ,

units of delay can be “transferred from to ” without violating the property that no member of

 contains a cycle whose cycle mean exceeds . However, such a transformation increases

the path delay of each member of while leaving the path delay of each member of unchanged, and

thus, from Theorem 2, such a transformation cannot reduce the self-timed buffer bound of any IPC edge.

Furthermore, apart from transferring delay from to , the only other change that can be made to

 or — without introducing a member of whose cycle mean exceeds

 — is to increase one or both of these values by some positive integer amount(s). Clearly, such a

change cannot reduce the self-timed buffer bound on any IPC edge.

Thus, we see that the values and computed byDetermineDelaysfor and

, respectively, optimally ensure that no member of has a cycle mean that exceeds

1. See Fig. 8 for the specification of what the s represent.

m P0 P1 … Pm 1–, , ,

Pi e0 e1 … ei, , , e0 e1 … em 1–, , ,{ }

ei

W0 W1 … Wm 1–, , , Wi e0 e1 … ei, , ,

e0 e1 … em 1–, , ,{ }

e0 e1 … ei, , ,

Wi i 0=

δ0 e0 W0

λmax Gs i 1=

δ1 e1 W1

λmax e0()delay δ0=

e0()delay δ0= e1()delay δ1= δ1 0> k δ1≤ k

e1 e0

W0 W1∪() λmax

P0 P1

e1 e0

e0()delay e1()delay W0 W1∪()

λmax

δ0 δ1 e0()delay

e1()delay W0 W1∪()

32

. After computing these values,DetermineDelayscomputes the minimum delay on that is

required for all members of to have cycle means less than or equal to , assuming that

 and . Given the configuration (, ,

), transferring delay from to increases the path delay of all members of , while

leaving the path delay of each member of unchanged; and transferring delay from to

increases the path delay across , while leaving the path delay across unchanged. Thus, by an

argument similar to that given to establish the optimality of with respect to , we can

deduce that (1). The values computed byDetermineDelaysfor the delays on guarantee that no

member of has a cycle mean that exceeds ; and (2). For any other assignment of

delays to that preserves the estimated throughput across ,

and for any IPC edge such that an IPC sink-source path of is contained in , the self-

timed buffer bound of under the assignment is greater than or equal to self-timed buffer

bound of under the assignment computed by iterations ofDetermineDelays.

After extending this analysis successively to each of the remaining iterations

of thefor loop inDetermineDelays, we arrive at the following result.

Theorem 5: Suppose that is a synchronization graph that has exactly one sink SCC; let and

 be as in Fig. 8; let be the result of applyingDetermineDelaysto

 and ; and let be any sequence of non-negative integers such that

 has the same estimated throughput as . Then

, where is the sum

of the self-timed buffer bounds over all IPC edges in induced by the synchronization graph .

Fig. 9 illustrates a solution obtained fromDetermineDelays. Here we assume that , for

λmax δ2 e2

W2 λmax

e0()delay δ0= e1()delay δ1= e0()delay δ0= e1()delay δ1=

e2()delay δ2= e2 e1 P1

P0 P2∪() e2 e0

P0 P1∪() P2

δ0 δ1,() W0 W1∪()

e0 e1 e2, ,

W0 W1 W2∪ ∪() λmax

δ0′ δ1′ δ2′, ,() e0 e1 e2, ,() W0 W1 W2∪ ∪()

e e P0 P1 P2∪ ∪()

e δ0′ δ1′ δ2′, ,()

e δ0 δ1 δ2, ,() i 0 1 2, ,=

i 3 4 … m 1–, , ,=

Gs Gs
ˆ

e0 e1 … em 1–, , ,() d0 d1 … dm 1–, , ,()

Gs Gs
ˆ d0′ d1′ … dm 1– ′, , ,() m

Gs
ˆ e0 d0′→ … em 1– dm 1– ′→, ,[] Gs

Φ Gs
ˆ e0 d0′→ … em 1– dm 1– ′→, ,[]() Φ Gs

ˆ e0 d0→ … em 1– dm 1–→, ,[]()≥ Φ X()

Gipc X

t v() 1=

33

each vertex , and we assume that the set of IPC edges is . The grey dashed edges are the edges

added byConvert-to-SC-graph. We see that is determined by the cycle in the sink SCC of the origi-

nal graph; inspection of this cycle yields . Also, the set — the set of fundamental cycles

that contain , and do not contain — consists of a single cycle that contains three edges. By

inspection of this cycle, we see that the minimum delay on required to guarantee that its cycle mean

does not exceed is 1. Thus, the iteration of theFor loop inDetermineDelays computes

. Next, we see that consists of a single cycle that contains five edges, and two delays must be

present on this cycle for its cycle mean to be less than or equal to . Since one delay has been placed

on ,DetermineDelayscomputes in the iteration of theFor loop. Thus, the solution

determined byDetermineDelays for Fig. 9 is ; the resulting self-timed buffer bounds of

 and are, respectively, and ; and .

Algorithm DetermineDelays can easily be modified to optimally handle general graphs that have

only onesourceSCC. Here, the algorithm specification remains essentially the same, with the exception

that for , denotes the edge directed from a vertex in to a vertex in

, where is the ordering of sink SCCs generated in Step 2 of the corresponding

invocation ofConvert-to-SC-graph(still denotes the sink-source edge instantiated byConvert-to-SC-

graph). By adapting the argument of Theorem 5, it is easily verified that when it is applicable, this modi-

fied algorithm always yields an optimal solution.

Fig. 9. An example used to illustrate a solution obtained by algorithm DetermineDelays.

D

D

D

eo

e1

ea
eb

v ea eb,{ }

λmax

λmax 4= W0

e0 e1 c0

e0

λmax i 0=

δ0 1= W1

λmax

e0 δ1 1= i 1=

δ0 δ1,() 1 1,()=

ea eb 1 2 Φ 2 1+ 3= =

i 1 2 … m 1–(), , ,= ei Dm i–

Dm i– 1+ D1 D2 … Dm, , ,

e0

34

As far as we are aware, there is no straightforward extension ofDetermineDelaysto general

graphs (multiple source SCCs and multiple sink SCCs) that is guaranteed to yield optimal solutions. Some

fundamental difficulties in deriving such an extension are explained in [3].

However,DetermineDelays can be extended to yield heuristics for the general case in which the

original synchronization graph contains more than one source SCCandmore than one sink SCC. For

example, if denote edges that were instantiated byConvert-to-SC-graph “between” the

source SCCs — with each representing the th edge created — and similarly, denote

the sequence of edges instantiated between the sink SCCs, then algorithmDetermineDelayscan be applied

with the modification that , and ,

where is the sink-source edge fromConvert-to-SC-graph.

It should be noted that practical synchronization graphs frequently contain either a single source

SCC or a single SCC, or both — such as the example of Fig. 7. Thus,DetermineDelays,together with its

counterpart for graphs that have a single source SCC, form a widely-applicable solution for optimally

determining the delays on the edges created byConvert-to-SC-graph.

If we assume that there exist constants and such that , for all , and

for all edges , then it can be shown thatDetermineDelays— and any of the variations ofDetermineDe-

laysdefined above — has time complexity.

Although the issue of deadlock does not explicitly arise inDetermineDelays,the algorithm does

guarantee that the output graph is not deadlocked, assuming that the input graph is not deadlocked. This is

because (from Lemma 1) deadlock is equivalent to the existence of a cycle that has zero path delay, and is

thus equivalent to an infinite maximum cycle mean. SinceDetermineDelaysdoes not increase the maxi-

mum cycle mean, the algorithm cannot convert a graph that is not deadlocked into a deadlocked graph.

Gs

a1 a2 … ak, , ,()

ai i b1 b2 … bl, , ,()

m k l 1+ += e0 e1 … em 1–, , ,() es a1 a2 … ak bl bl 1– … b1, , , , , , , ,()≡

es

T D t v() T≤ v e()delay D≤

e

O V
4

log2 V()()2()

35

10. Complete Algorithm

In this section we outline our complete synchronization optimization algorithm. The input is a

DFG and a parallel schedule for it, and the output is an IPC graph , which represents

buffers as IPC edges; a strongly connected synchronization graph , which represents syn-

chronization constraints; and a set of shared-memory buffer sizes ,

which specifies the amount of memory to allocate in shared memory for each IPC edge.

The pseudocode for the complete algorithm is given in Fig. 10. Here,RemoveRedundantSynchsis

invoked twice, once at the beginning, and once again afterConvert-to-SC-graphandDetermineDelays. It

is possible that the edge(s) added byConvert-to-SC-graph can make some of the existing synchronization

edges redundant, and thus, applyingRemoveRedundantSynchsafterConvert-to-SC-graphmay be benefi-

cial.

Gipc V Eipc,()=

Gs V Es,()=

Function SynchronizationOptimize
Input: A DFG and a self-timed schedule for this DFG.

Output: , , and .

1. Extract from and the given parallel schedule (which specifies actor assignment to
processors and the order in which each actor executes on a processor)

2. Set /* Initially, each IPC edge is also a synchronization edge */

3.

4.

5.

/* Remove the synchronization edges that have become redundant as a result of Step 4. */
6.

7. Calculate buffer sizes for each IPC edge in (to be used for BBS):

— Compute , and set .

G

Gipc Gs Bfb e() e is an IPC edge inGipc{ }

Gipc G

Gs Gipc=

Gs RemoveRedundantSynchs Gs()=

Gs Convert-to-SC-graph Gs()=

Gs DetermineDelays Gs()=

Gs RemoveRedundantSynchs Gs()=

Bfb e() e Gipc

ρGs
e()snk e()src,() Bfb e() ρGs

e()snk e()src,() e()delay+=

Fig. 10. The complete synchronization optimization algorithm.

Bfb e() e is an IPC edge inGipc{ }

36

A code generator can then accept and , and allocate a buffer in shared memory for each

IPC edge specified by of size , and generate synchronization code for the synchronization

edges represented in . These synchronizations may be implemented using BBS. The synchronization

cost in the final implementation is equal to , where is the number of synchronization edges in .

11. Conclusions

We have presented techniques to reduce synchronization overhead in self-timed, multiprocessor

implementations of iterative dataflow programs. We have introduced a graph-theoretic analysis framework

that allows us to determine the effects on throughput and buffer sizes of modifying the points in the target

program at which synchronization functions are carried out, and we have used this framework to extend an

existing technique — removal of redundant synchronization edges — for noniterative programs to the iter-

ative case, and to develop a new method for reducing synchronization overhead that converts a feedforward

DFG into a strongly connected graph in such a way as to reduce synchronization overhead without slowing

down execution. We have shown how our techniques can be combined, and how the result can be post pro-

cessed to yield a format from which IPC code can easily be generated.

Perhaps the most significant direction for further work is the incorporation of timing guarantees —

for example, hard upper and lower execution time bounds, as Dietz, Zaafrani, and O’keefe use in [7]; and

handling of a mix of actors some of which have guaranteed execution time bounds, and some that have no

such guarantees, as Filo, Ku, Coelho Jr.,and De Micheli, do in [8].

References

[1] S. Banerjee, D. Picker, D. Fellman, P. M. Chau, “Improved Scheduling of Signal Flow Graphs onto Multiproces-

sor Systems Through an Accurate Network Modelling Technique,”VLSI Signal Processing VII, IEEE Press, 1994.

[2] A. Benveniste, G. Berry, “The Synchronous Approach to Reactive and Real-Time Systems,”Proceedings of the

IEEE, September, 1991.

Gipc Gs

e Gipc Bfb e()

Gs

2ns ns Gs

37

[3] S. S. Bhattacharyya, S. Sriram, E. A. Lee,Optimizing Synchronization in Multiprocessor Implementations of Iter-

ative Dataflow Programs, Memorandum No. UCB/ERL 95/2, University of California at Berkeley, January, 1995.

WWW URL: http://ptolemy.eecs.berkeley.edu/~ptdesign/Ptolemy/papers/synch_optimization.ps.Z.

[4] J. T. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: A Framework for Simulating and Prototyping Heter-

ogeneous Systems,”Intl. Jo. of Computer Simulation, 1994.

[5] L-F. Chao, E. H-M. Sha,Static Scheduling for Synthesis of DSP Algorithms on Various Models, technical report,

Department of Computer Science, Princeton University, 1993.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest,Introduction to Algorithms, McGraw-Hill, 1990.

[7] H. G. Dietz, A. Zaafrani, M. T. O’keefe, “Static Scheduling for Barrier MIMD Architectures,”Jo. of Supercom-

puting, February, 1992.

[8] D. Filo, D. C. Ku, C. N. Coelho Jr., G. De Micheli, “Interface Optimization for Concurrent Systems Under Timing

Constraints,”IEEE Trans. on VLSI Systems, September, 1993.

[9] R. Govindarajan, G. R. Gao, P. Desai, “Minimizing Memory Requirements in Rate-Optimal Schedules,”Proc. of

the Intl. Conf. on Application Specific Array Processors, August, 1994.

[10] J. A. Huisken et al., “Synthesis of Synchronous Communication Hardware in a Multiprocessor Architecture,”Jo.

of VLSI Signal Processing, December, 1993.

[11] A. Kalavade, E. A. Lee, “A Hardware/Software Codesign Methodology for DSP Applications,”IEEE Design

and Test, September 1993.

[12] W. Koh, “A Reconfigurable Multiprocessor System for DSP Behavioral Simulation”, Ph.D. Thesis, Memoran-

dum No. UCB/ERL M90/53, Electronics Research Laboratory, University of California at Berkeley, June, 1990.

[13] S. Y. Kung, P. S. Lewis, S. C. Lo, “Performance Analysis and Optimization of VLSI Dataflow Arrays,”Jo. of

Parallel and Distributed Computing, December, 1987.

[14] R. Lauwereins, M. Engels, J.A. Peperstraete, E. Steegmans, J. Van Ginderdeuren, “GRAPE: A CASE Tool for

Digital Signal Parallel Processing,”IEEE ASSP Magazine, April, 1990.

[15] E. Lawler,Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, 1976.

38

[16] E. A. Lee, D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs for Digital Signal Pro-

cessing,”IEEE Trans. on Computers, February, 1987.

[17] E. A. Lee, S. Ha, “Scheduling Strategies for Multiprocessor Real-Time DSP,”Globecom, November, 1989.

[18] G. Liao, G. R. Gao, E. Altman, V. K. Agarwal,A Comparative Study of DSP Multiprocessor List Scheduling

Heuristics, technical report, School of Computer Science, McGill University.

[19] D. R. O’Hallaron,The Assign Parallel Program Generator, Memorandum CMU-CS-91-141, School of Com-

puter Science, Carnegie Mellon University, May, 1991.

[20] K. K. Parhi, D. G. Messerschmitt, “Static Rate-Optimal Scheduling of Iterative Data-Flow Programs via Opti-

mum Unfolding,”IEEE Trans. on Computers, February, 1991.

[21] J. L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice-Hall Inc., 1981.

[22] J. Pino, S. Ha, E. A. Lee, J. T. Buck, “Software Synthesis for DSP Using Ptolemy,”Jo. of VLSI Signal Process-

ing, January, 1995.

[23] H. Printz,Automatic Mapping of Large Signal Processing Systems to a Parallel Machine, Ph.D. thesis, Memo-

randum CMU-CS-91-101, School of Computer Science, Carnegie Mellon University, May, 1991.

[24] R. Reiter, “Scheduling Parallel Computations,”Jo. of the Association for Computing Machinery, October 1968.

[25] S. Ritz, M. Pankert, H. Meyr, “High Level Software Synthesis for Signal Processing Systems,”Proc. of the Intl.

Conf. on Application Specific Array Processors, August, 1992.

[26] P. L. Shaffer, “Minimization of Interprocessor Synchronization in Multiprocessors with Shared and Private

Memory,” Intl. Conf. on Parallel Processing, 1989.

[27] G. C. Sih, E. A. Lee, “Scheduling to Account for Interprocessor Communication Within Interconnection-Con-

strained Processor Networks,Intl. Conf. on Parallel Processing, 1990.

[28] S. Sriram, E. A. Lee, “Statically Scheduling Communication Resources in Multiprocessor DSP architectures,”

Proc. of the Asilomar Conf. on Signals, Systems, and Computers, November, 1994.

[29] S. Sriram, E. A. Lee, “Design and Implementation of an Ordered Memory Access Architecture,”Proc. of the

Intl. Conf. on Acoustics Speech and Signal Processing, April, 1993.

39

[30] V. Zivojnovic, H. Koerner, H. Meyr, “Multiprocessor Scheduling with A-priori Node Assignment,”VLSI Signal

Processing VII, IEEE Press, 1994.

