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Abstract—Most second-order moment-based blind channel es-  Existing moment-based blind channel estimators face some
timators belong to two categories: i) optimal correlation/spectral  of the following major difficulties:
fitting techniques and ii) eigenstructure-based techniques. These

two classes of algorithms have complementary advantages and 1) Nonconvex OptimizationOptimal correlation/spectrum

disadvantages. In this paper, a new optimization criterion re- fitting techniques offer superior performance when the
ferred to as thejoint optimization with subspace constrainf§OSC) channel is close to unidentifiable. Unfortunately, such
is proposed to unify the two types of approaches. Based on this optimization requires the search of channel parameters

criterion, a new algorithm is developed to combine the strength

of the two classes of blind channel estimators. Among a number in a high-dimensional parameter space. The existence of

of attractive features, the JOSC algorithm does not require the local mi_n_ima_l often renders such techniques ineffective.
accurate detection of the channel order. When compared with ~ 2) lll-Conditioning of Channels Many eigenstructure-
existing eigenstructure-based techniques, the JOSC performs based techniques involve the optimization of some

better, especially when the channel is close to being unidentifiable.
When compared with correlation/spectral fitting schemes, the
JOSC is less affected by the presence of local minima.

guadratic criteria from which the estimators can be

obtained in closed form. Unfortunately, when the

channel is close to unidentifiable, the performance
of eigenstructure-based algorithms degrades drastically
|. INTRODUCTION (see Section lII).

STIMATING transmission channels is important in many 3) Channel Order DeterminatiorThis issu_e has so far not

communication and signal processing applications. When ~ Peéen addressed adequately. Many eigenstructure-based
the input of the channel is not available for processing at the ~ &lgorithms require the accurate detection of the channel
receiver, channel estimation is blind. The class of techniques ~order, which is very difficult for bandlimited channels.
that exploits either the cyclostationarity of the signal or the Our goal in this paper is to develop a unified approach to
single-input multiple-output structure of the channel is dhe second-order moment-based blind channel estimations. To
significant current interest. In both cases, it has been shoachieve this goal, we propose a new approach referred to as
that the second-order statistics contain sufficient informatidine joint optimization with subspace constraif®SC), which
for the identification and estimation of finite impulse responsnables us to derive most existing moment-based estimators
channels [4], [12], [13]. by specifying several key parameters. Based on this criterion,

Many blind channel estimators developed recently belong&o new algorithm is proposed to combine the strength, in

the class of moment-based estimators. Although they are oth performance and implementation, of the two classes
always efficient, such algorithms are often simple and provid¢ moment-based estimators. The JOSC algorithm has the
good initial estimates. Existing moment-based blind channfellowing attractive features:

estimators can be further classified into two categories: i). The JOSC does not require the accurate determination of
optimal correlation/spectrum fittinmethods [3], [5], [14], and the channel order.

ii) eigenstructure-basedlgorithms [2], [6]8], [10]-{12]. In " . The JOSC is robust with respect to the ill conditioning
[15] and [16] asymptotic performance analysis of second-order ¢ the channel.

moment-based blind channel estimators is presented. The anal- The JOSC involves the search of parameters in a low
ysis shows that there is a gap in performance between the best dimensional space.
moment-based estimator [5] and some of the eigenstructui%—

based algorithms [6], [7]. Such a gap is significant when the < P''c¢ paid by the JOSC is the loss of unbiasedness and
channel is close to unidentifiable. some efficiency. When tested for a class of 500 two-ray mul-

tipath channels, the proposed algorithm shows considerable
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Fig. 1. Two equivalent models: (a) Single-input multiple-output model. (b) Single-input single-output model.

Section V. The simulation results are presented in Sectitm the matrix form, we have
VI, where the class of two-ray multipath channels subject to

random fadings is considered. We conclude in Section VII (i) = H(h)s(i) + n(i) 2
by summarizing advantages and disadvantages of the JOSC
estimator. where
by =[hg, o B (3)
Il. PROBLEM FORMULATION h=[hY, ... KHH e o7+ @)
. (L) [317' *y Si—L— N]t %)
A. Notations (i) = [$(1)7__ 7 (1)N - (T)7 ) (T%\r]t ©6)
Notations used in this paper are standard. Upper- and lower- Z(l) Z(l) (T) Z(T)
i i ([’) [7’L L) Fat Ty Ty ’]t (7)
case bold letters denote matrices and vectors, respectively. i i N> TN
Other notations are listed as follows. ] ] o
()t Transpose. \t/vherfeT, A;za}?d'L Zre;lntgggrs, and the multichannel filtering
() Complex conjugate. ransform74(h) is defined by
(HH Hermitian. om - .
E{} Expectation operator. Hh) =[F (ghl) ' "]:(4)(hT)] (8)
pe L pl
[|B]] 2-norm. 0 L
I.nxn Identity matrix. F(h;) = . 9)
Amin(A)(Amax(4)) Minimum (maximum) singular value h((f) h(Li)
of A.
x(A) Condition number ofA. Equivalent to the above model is the single-input single-output
tr{A} Trace of A. model [see Fig. 1(b)]
cr n-dimensional complex vector space.
diag(ay, -, an) Diagonal matrix with elements i
{a1,--+,a,} on the main diagonal. a(t) = Z skh(t = kT) + n(t) (10)
k=—o0
B. Models where

Second-order moment-based blind channel estimators are(t) channel output;
derived from two equivalent models. The discrete-time single-sx  information sequence;
input multiple-output (SIMO) model [see Fig. 1(a)] is given n(t) noise;
by h(t) unknown channel response.
The relation between the two models is given by

(J) — Z Skh(l)k —i—n(J) j=1,---,T (1) (J)

=S 2T+ -1) (11)
where h§f> ST+ (j—-1), i=0,---,L  (12)
HA . .

{si} input sequence; HEJ) =n(T+(j—1)) (13)

{hgj)}fzo finite impulse response of thagh subchannel; ) . .
o noise at thejth receiver; for j =1,---,7. We assume throughout this paper that i) the

b ’ input sequencd s, } is zero mean andv{s;s;} = 6(k — 1),

x§f> received signal from thgth receiver. P a don) IS 2 Lowsi } ( )

and ii) the noise(t) is zero-mean and white with variangé.
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C. Problem Formulation Theorem 1: Under the assumptions that 4V (# — r(k..))

We restrict our discussion in this paper to the class of blifPnVerges to a Gaussian random vector W'tg zero mean and
channel estimators using only the second-order statistics. @@varianceX(h.) >0, and 2) Jacobiar§(h) = Or/0h is
functions of the channel vectds, the correlation vectorr(h) Nonsingular for allh in some open neighborhoafl of A,
and thecovariance matrixR(h) are defined, respectively, by then for any estimatoh = g(#) such thatg(r(h)) = h for

all h € &
A A TRORY
r(h) = (rij(r),ris(r) = B{=(" @)} (14) ANMSE(g) > tr{(S” ()5~ (h.)S(h,)) ™}
R(h) = E{z()x(i)"} (15) (S(h))\’
> ATV
>K SNR (21)
where where K is a constant independent of channel parameters
A 2 T @2
o At ottt 16) SNR = (1/To)E{¥;_, |z;’|°}. Moreover, there
(rig(r)) [Tl[l’ (0)’T1T’ (’Ti}j)’]t ’,TZT], (16) exists an optimal g*(-)J such that ANMSEg,) =
L Tij sty Tigh— , 2] — —
rg 2 { [l 12 an S s St
[7”(1)7"'77”(_ )]7 L<J Remarks

1) g.(-) is referred to assymptotic best consiste(ABC)
estimator [5].
2) The condition that the Jacobia(h) is nonsingular is

Given the estimated correlation vectof or the estimated
covariance matrixRR

1 e not obvious. We shall elaborate on this condition below.
P2 (7i5(1)), 745 () 2 N Z 2D (18) When S(h, ) is nonsingular, however, the performance
5 4=1 of all moment-based algorithms is limited &y.S(h.)).
Al It is natural to ask the next questioRor which kinds of
R= N, {z(i)=(0)" } (19)  channels will the moment-based methods be effecBypeif-
=1 ically, when isS(h,) singular? The answer to this gquestion
) ] ] R is simple.
the problem is to estimatk using# or R. Theorem 2: S(h.) is nonsingular if and only if the subchan-
nelsh(®(z) £ $£  hY 2~ do not share common reciprocal
ll. BLIND CHANNEL ESTIMATORS zeros.

Proof: See [15].
It is significant that the above condition is different from
identifiability condition. It is well known that the channel

Many moment-based channel estimators belong to two dif-
ferent categories. The first includes those derived by matchi
the moments or t'he power spectra in some optimal WY jdentifiable from the second-order moments if and only if
The second exploits the eigenstructures of the second-or

ts to obtain closed-f h | identificati Inth subchannels do not share common zeros [12]. When the
moments o obtain closed-form channet Identifications. n gf?annel identifiability condition is satisfied, the bound given
section, we discuss the performance and the limitations :

h | f . b . | iR (21) is achievable. On the other hand, one may &gkat
these two classes of estimators by examining several prens when the identifiability condition is not satisfigthe

swer lies in the specification of the neighborhabdf h..

hen the identifiability condition is violated, there is a finite

d8mber of channel vectors that correspond to the se(fag).

In this case, one must choos$eso that there is an estimator

satisfying g(r(S)) = &. Specifying the neighborhood is

A. Achievable Performance Bound nontrivial. It usually requires additional information about the
We begin by posing the following questiolhat is the best channel. We shall address this issue later. It is important to note

achievable performance among all consistent moment_bame that, when Compared with the |dent|f|ab|l|ty Condition, the

estimators?To answer this question, one must show that gfXistence of the asymptotic best consistent estimator requires

moment-based estimators perform no better than one partic@duch weaker condition: the absence of commemiprocal

estimator. Given the estimated second-order monerthe  Z€r0S.

performance of an estimathr= g(#) of the channel vectd,

can be measured by thesymptotic normalized mean squard3- Correlation/Spectrum Fitting Algorithms

approach proposed in the next section by highlighting trw
differences between the two classes of algorithms. Detail
may be found in [15].

error (ANMSE) In this section, we present two algorithms derived from op-
A . timal fitting of moments or power spectra. The first one is the
ANMSE(g) = Nlim N.E{||h - h.||?}. (20) asymptotic best consistent estimator, presented by Giannakis

and Halford [5], that achieves the performance bound given

Without loss of generality, the channel is assumed to ¥ (21). This estimator, however, is not practical. We present
normalized, i.e.||k. || = 1. The answer to the above questioﬁ‘eXt a suboptimal approach [14] and evaluate its performance.

is given by the following theorem whose proof is given in [15]. A zeroz of h(z) is a reciprocal zero ih(1/z) = 0.
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1) The Asymptotic Best Consistent (ABC) EstimatonssumingR, 2 E{s(¢)s(i)!} > 0, the singular value decom-
Giannakis and Halford [5] are perhaps the first to derivgosition (SVD) of R(h) has the form
the optimal estimator for the blind channel estimation using
second-order moments. The asymptotic best consistent (ABC)
estimator given in [5] is equivalent to

R(h) = [U.U,] <% I I) U (26)

hapc = argmin(# — r(h)) TS~ 1R (# — 7(h)) (22) Moulineset al. showed [8] that if the subchannels do not share
h common zerogh is uniquely determined by the noise subspace

wherer(h) is computed from (14)Z(h) can be computed in Iﬁ" g{?&;?:deﬁggzti? Zﬁﬁ;{%ﬂme_ﬂztrlx.éhddts] c?r:;esép)sond—
closed form. It can be shown [9, pp. 82-85] that the esnmatgﬁimator is given b 9 — Undy 7t Ball

given above is strongly consistent and the ANMSE achieves 9 y
the bound given in (21). s . Ho o7 fro\WH
2) Correlation Fitting (CF) Estimator: In practice, it is dif- hss =arg ”1}1{1”11:11 R HU))TUU ) R

ficult to optimize the nonlinear objective function in (22) Q;
where it involves the computation af~*(h). A suboptimal _ L HA h
approach may be obtained by fitting correlation or the power =arg ”1}1{1”11:11 " Qssh 27)

spectrum with a fixed weighting (see [14]). For example,
one simple criterion may involve fitting the autocorrelation\%,here oy

directly: (U,) = [H(@n1),---,H(@n)]. We note here that

the channel parameter vector is estimated via a quadratic
optimization whose solution can be obtained in closed form
by using the SVD.

3) The Least-Squares (LS) Estimator [6Derived in a de-
It is again easy to show thditcr is strongly consistent. In terministic setting, the LS estimator has the same form as that
Appendix A, we derive the ANMSE okcr of the SS estimator. FAf = 2, the LS estimator is given by

hcr = arg win [[# = r(A)||* (23)

ANMSE(hcr) =tr{(ST(h,)S(h,))~ ST (h,) his = arg le}?”inl TR T"h = arg Hgluinl h'Qush (28)
S(he)S(h)(ST (hi)S(h)) ™'} (24)

Similar to the ABC estimator, the CF estimator is consistemthereT” is a matrix made of blocks of identity matrices [17].

when S(h.) is nonsingular. ForT > 2, hs has the similar quadratic form [17]. Again, the
When compared to the eigenstructure-based algorithms, cvannel parameter is obtained by a quadratic optimization.

ABC estimator offers better performance [5]. The performance4) Performance: Although Q54 and @y 5 are different, the

of the ABC and the CF estimator is determined in part byS and the SS estimators are identical for the important case

S(h.). Thus, they are robust to the ill conditioning of thevhenT =2 andN = L[16]. In such a case, the performance

channels. However, they also share important disadvantagé#fsthe LS and SS estimators is given by [15]

Since the optimizations in (22) and (23) are both nonlinear,

achieving the global minimum is nontrivial. Such difficulties

are avoided by eigenstructure-based estimators discussed neffNMSErs/ss =

2L41
i O I G L)
()\z)Q = BLS/SS TgNR

(29)

k=1

C. Eigenstructure-Based Algorithms

Eigenstructure-based algorithms provide closed-form idewhere Apax = A1 > A2 > -+ > Aoy = Amin are the singu-
tifications of the channel, which has the advantage over tle values of theH(h.), and K1g/ss is a constant decided
correlation/spectrum fitting algorithms. The question is hotwy L.
much loss in performance is associated with the eigenstructureWe make the following observations:

based algorithms. . . 1) The performance of the LS/SS estimators is limited by
1) The Subspace and Least Squares Estimat8isce the r(H(h.)). In contrast, the performance of the ABC

publication of [13], a number of eigenstructure-based  estimator is limited byx(S(h.)).

algorithms have been proposed that have shown promising?) When the channel is not identifiabl&,(k.) is singular

performance in various simulation scenarios. The so-called [12], and the LS and SS approaches fail. This is not

subspace (SS) algorithm [8] and the least-squares (LS) necessarily true for the optimal correlation/spectra fitting
algorithm [6] are representatives of such ideas that exploited  approaches.

the algebraic structure of the channel. 3) Both LS and SS estimators do not require the knowledge
2) The Subspace (SS) Estimator [8Dne form of the SS of source covariance as long #& >0. On the other
estimator is given by a quadratic optimization. From (2) hand, optimal correlation/spectra fitting approaches re-

quire the knowledge of the source statistics and take
R(R) 2 E{z(Dz()"} = HR)RHMR)Y + 521, (25) advantage of such information.
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IV. THE JOINT OPTIMIZATION WITH
SUBSPACE CONSTRAINTS (JOSC)

1923

TABLE |
CLASSIFICATION OF MOMENT-BASED ALGORITHMS BY THE JOSC

) ) ) CRITERION. ABC: AsYMPTOTIC BEST CONSISTENT ESTIMATOR; CSF:
In the previous section, we discussed the performance of two Cvcuic SpecTRAL FITTING ESTIMATOR; CF: GORRELATION FITTING

classes of blind channel estimators. Of particular importance _ ESTIMATOR; LS: LEAST-SQUARES ESTIMATOR; SS: S/BSPACE

. . " . ESTIMATOR; ESRM: EXTENDED SUBCHANNEL RESPONSEMATCHING
is that correlation/spectra fitting schemes may still work when  Esmvaror; CSLS: GreLic SPECTRA LEAST-SQUARES ESTIMATOR
the channel is close to unidentifiable as long as the parameter

space is restricted to the neighborhood of the true channel. Algorithm || W a S Q

The most important disadvantage of this approach is that

the optimization is nonlinear. The search for the channel ABC [5] || Z7'(h) | Amas | 74D

parameters in a high-dimensional parameter space often fails CSF [14] || Tosr | Amas | CTEH)

due to the existence of local minima. As shown in the

previous section, the main shortcoming of eigenstructure-based CF [14] I | Amas | CTUAD

algorithms is the significant performance deterioration when LS 6] s | CTEHD TROTH

the channel is close to being unidentifiable. The question at

this point is: How do we combine the strength of these two 85 [8] Amin | CTER | H(O)H(G,)H

classes of approaches? .,
The key observation made here is that the two types of ESEM [10 Amin | Sssri TRTT

optimization criteria are not the same. Optimizing one criterion CSLS [12] Amin | CTEH) Qoses

does not automatically optimize the other. Motivated by this
observation, we propose a joint optimization approach that also
unifies most existing moment-based blind channel estimators. criterion is equivalent to the optimization ofgz(h).
When & = Auax(Q), Je(h) becomes ineffective,
the optimization of the new criterion is equivalent to
the optimization ofJr(h), which leads to algorithms
including the asymptotic best consistent estimator. What

is interesting is the case @f € [Apin(@), Amax(Q)],

A. The New Criterion

Moment-based algorithms are based on either one of the
following two optimization criteria:

min K7 Qh (30) which enables us to tune the algorithm to different
Ihl=1 channels.
Ir;in || = 7(h)||% - (31) 3) How do we selec§? A key element of the new criterion

is the restriction of the parameter & This comes from
the fact that the asymptotic best consistent estimator is
defined only in the neighborhood of the true channel
parameter (see Theorem 1). The specificationSof
requires additional knowledge of the true channel. In
Section V, S is defined by exploiting the statistical
structures of the channel.

In summary, the new optimization aims to achieve a com-
promise between the performance of the estimation and the
complexities of the implementation. Although optimization of
Jr(h) alone may lead to the best consistent estimator when
the channel is close to unidentifiable, without the constraint
involving Jg(h) and the specification of, it is difficult to
achieve the global minimum in the optimization &f(h).

Various eigenstructure-based algorithms are derived based
on (30) with differentQ’s. The class of optimal correla-
tion/spectral fitting schemes is defined by (31) through the
selection of weighting functio®¥. Our approach rests on the
idea of optimizing (30) and (3%pintly. Specifically, the joint
optimization can be defined by

min Jr(h) subjectto Jg(h) < okl (32)
hes
where «v is a given threshold, and

Je(h) =h"Qh
Tr(h) = (7 = r(h) "W (# — r(h))

(33)
(34)

where W is some weighting matrix, and is a restricted
parameter set.
Remarks: The new criterion proposed in this paper provides a frame-
1) Whatis the advantage of including;(h)? The inclusion work from which most existing second-order moment-based
of Je(h) enables us to exploit various eigenstructures @stimators can be derived by specifying differén@, W, and
the second-order statistics. Indeed, for many channels, Table | lists several key algorithms proposed recently.
the eigenstructure-based algorithms are effective. Thelt is obvious that the selections &, Q, W, and « lead to
constraint involving/z (k) can be satisfied by restrictingthe ABC, LS, and SS estimators discussed in Section Ill. The
the search of channel parameters in a subspace specif@ghnique of JOSC is the new algorithm presented in Section
by the eigenstructures a@. More discussions will be V. We present next the selections of key parameters for several
given in Section V. other algorithms proposed in recent years.
How do we selecty? The selection ofx reflects the 1) Cyclic Spectra Fitting (CSF) Method [14]The kth cyc-
degree of emphasis on different aspects of the chanrﬁii.spectruml“;’“)(w) of the outputz(-) in (10) is the kth
When o = )\min(Q), the optimization of the new Fourier coefficient of the Fourier series expansiongft, 7)

B. Classification of Existing Blind Channel Estimators

2)
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with respect tot, where for channel responsg(t — ¢). Therefore, the channel vector
A h is in the space
re(t,7) = E{x(t)a”(t - 1)} (35)
ol Spsrm = spapy, - -+, Pr)- (43)
I (w) 2 Z Z ra(t, T)e I e IMERD - (36) The advantage of incorporating such information is twofold.
t=0 7 First, it reduces the dimension of the parameter space from

CT(+1) to CX, Second, it considerably improves the perfor-

It can be shown [12] that the transform ofl“;’“)(w) satisfies S ,
mance in simulations [10].

'™ (2) = H(z)H <e—jk<‘“/T> i) + Ta?6(k)

<

V. JOSC A GORITHMS

k=0, T-1 (37) In this section, we present a new class of blind channel
estimators based on the JOSC. As mentioned earlier, the
optimization of the new criterion hinges upon three factors:
i) the specification ofS;
ii) the quadratic constraint involvingg(h) by specifying

a,
iii) the minimization of Jx(h).
We present in this section one special implementation of the
JOSC criterion that exploits two subspace structures. The
C HOAH aoe first subspace that defings is associated with the principal
=arg m}in(T —7(h)) évé(T —7(h)).  (38) component structure of the channel. The second subspace is

where H(z) is the z transform ofhA(t). It is easy to verify
that the coefficients OF;k)(z) (cyclic correlations) are linear
combinations of the correlation vecter(h) in (14), i.e.,
~v(h) = Ar(h), wherey(h) is the vector of cyclic correlations,
and A is a nonsingular matrix. The cyclic spectra fitting (CSF)
is obtained by the optimization

iLCSF =arg m}iln v — ’Y(h)H2

w obtained by the constraint involvingz (k). Jointly, these two
2) Cyclic Spectra Least-Squares (CSLS) Method [1 _ub_spaces form_ the co_nstraint in the optimiz_atiqn]@(_h). _
Whena? = 0, it is easy to verify from (37) that eriving the_o_ptlmal estimator from _the new criterion given in
(32) is nontrivial. Our strategy here is to develop a suboptimal
F;kl)(z)H <Cjk2(27r/T) i) algorithm that is relatively easy to implement.
Z*

. A. The Principal Component Analysis of Channel Statistics
_ 10 () <eﬂk1<2w/T> i) —0. (39) pal Comp y

z* The first element of the new algorithm involves specifying

a neighborhood of the channel vector. In general, describing

S requires additional knowledge of the channel. Here, we con-
G(k1,k2)h =0 (40) sider an approach that specifi§sby exploiting the principal

components of the channel. This is particularly appropriate in

whereG(k1, k2) can be obtained from;;(7) [12]. The cyclic- wireless communication.

spectra least-squares method is then obtained by Wireless channels can be modeled by random parameters.

Consider the case when the channel vediois zero-mean

with known covariance matrix

Recasting the above equation in the matrix form, we have

hcsLs =arg Iﬁlin |G(k1, k2)h])?
llr|l=1

=arg min RYG(EL, k2) R G(KL, k2)h.  (41) Ry, 2 {hn'}. (44)
thi=1

Qs s Let the SVD of R;, be

3) Extended Subchannel Response Matching (ESRM) Rn =VAVY
Method [10]: The extended subchannel response matching =[v1 - vp] diag(Ag, -, Ao - v (45)
(ESRM) was derived by Schedit al. The cost function used . ] )
in the ESRM is the same as that of the LS. The differendderem = T'(L + 1) is the dimension of channel vectors.
is the specification of the parameter gktPerhaps the most Hence, k can be expressed as a'I|n_ear combination of the
significant contribution of this approach is the exploitaltioig?”hc’gOnal basigw; } through the principal component vector

of the fact that in communication applications, the impulsé = [91, -+ gm]”

response is not arbitrary. The knowledge of the waveform of h=Vg. (46)

the transmitted pulses should be incorporated. Suppose that

the channel impulse response satisfies the model One advantage of the principal components analysis is that

the best approximation (in the sense of minimum variance)
_ of h by any d-dimensional vector is achieved by taking the
h(t) = Z ap(t — k) (42) linear combination of the firs{ eigenvectors. The variance of
k=1 . . . .
the approximation error is given by, = 7* ;. A;. When
wherep(t) is theknownimpulse response of the shaping filtero. is small with somed less than the dimension &, one
Similar to the definition of, we definep, as a channel vector can approximaté: by the firstd principal components. The

K
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important observation at this point is that the dimension of thi& The Quadratic Constraint
channel vector is replaced lal which can be determined off \\e make a heuristic argument to further simplify the

line as long asky, is either known or can be estimated. Tq,himization in (50). To incorporate the quadratic constraint,

illustrate this idea, we consider the case of a multiray fadinde josc searches the solution in a special subspace that

channel. _ _contains most information aboyg. This subspace is obtained
1) The Principal Component Structure of Multi-ray Fadlnqrom the eigenstructure ob.

Channels: A multiray channel model is described by Ideally, g, is in the noise subspace b A B7QB.

However, the noise subspace is often not easy to obtain

h(t) = aop(t —to) + arp(t — to — 1) accurately when@ is estimated using a finite number of

+ ot anp(t —to — ) (47)  samples. This is especially the case when the channel is close
to unidentifiable and the smallest several eigenvalues afe
where clustered. In such a case, the eigenvector associated with the
p(t) knownshaping filter, which is a continuous functionsmallest eigenvalue can no longer be used to form a reliable
lasting L, T" (integer" is the symbol interval); channel estimator. Indeed, most eigenstructure-based schemes

{a;} independent zero-mean complex Gaussian variablése only t_his eigenvector to form the channgl estimate, which
to  timing uncertainty assumed to be uniformly disis the main cause of performance degradation.

tributed in [—(7/2),T/2]; In contrast, the JOSC uses tleatended noise subspace
and the delayg;} are independent and uniformly distributedh@t includes additional eigenvectors & associated with
iN [0, Twax] (Taax IS the maximum delay). several of the the smallest eigenvalues. The idea is that

For example, whep(¢) is the raised-cosine waveform with@lthough the estimate of the eigenvector asso.ciated with the
roll-off factor 0.25,L, = 6,7 = 2,7 = 1.5T,n = 2, ;mallest elgenvalug may have large perturbation vyhen there
the maximum length ofi(¢) is 16, or the maximum order of 'S @ small sgparatlon between the last several eigenvalues,
channels is 7. The corresponding channel vedtds a 16- the perturbation of thesubspacespanned t_))_/ the last several
dimensional complex vector obtained according to (12). Tigenvectors can be made small. Specifically, éixéended
covariance matri®;, of k is given by taking expectation overN0iseé subspacés defined by the singular vectors;,i =
random variableqr}, {au.}, and . 1,---,d of @

12

range(C),

Ry, = Ery fany o {RR ). (48)
[’a'd—k-l-lv e 7{"(1]7 1 S k S d. (51)

Sn
c2
Computlnth analyucally is difficult and hgrdly necessary satisfy the constrainf;(Bg) < a, the parametek in (51)
Using Monte Carlo techniqued?;, can be estimated as accu-__,. .

. e : ﬁa%lsﬁes
rately as possible. The principal component analysis shows tha
with only five principal components, i.ed, = 5, the relative S\d—k-i—l < a. (52)
error is given by

VB

With such a small approximation error, it is reasonable
define the parameter subspae= spavy,---,v4} and to
assume thah = Bg € S, where B = [vy,---,v4] and
g =[g1, -, g4]"- Therefore, the optimization (32) becomes

Asymptotically, the extended noise subsp&;econtains the
true channel vector. For example, when channel matrix is
column rank deficient by’, there arek’ repeated smallest
singular values, and the true channel vector is in the range of
m the corresponding singular vectors. From (52) angd A\.;,,

Z Ai the extended noise subspage will include all these singular

i=1 vectors. Thus, the true channel isdly. For finite data case,
the constrainty is chosen so that there is a good separation
BetweenXy_x and As_zt1. In summary, as a suboptimal
approach to the optimization proposed in Section IV, a JOSC
algorithm optimizes/r (k) subject to two subspace constraints
derived from the principal component analysis and the noise
subspace of data covariance. The JOSC estimator is given by

> A

i=d+1

113

e =0.0133.  (49)

min Jr(Bg) subjectto ¢? BYQBg < a|jg||>. (50) .
gece —~ hiosc = BC arg min |# — r(BCF)|?. (53)
@ feck

One of the advantages of the principal component analysisRemarks:
is the reduction of complexity in optimization. In the above ¢ When noise and input are Gaussian signals, it can be
example, instead of performing a search in 16-dimensional shown that the extended noise subspace contains the most
space, the search of five-dimensional space is sufficient with information about the channel. See Appendix B.
approximation error knowra priori. As a result of this ¢ Since the JOSC algorithm (53) imposes two subspace
restriction in parameter space, the ill effects of local minima constraints, there is an approximation error that makes
and singularity are reduced. the estimator biased. Although the exact bias cannot be
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The JOSC Algorithm

Channel Subspace (Off-line)

1. From the channel model, obtain the channel covariance Rj.

2. Compute the SVD of Ry,

Ry = VAVE = [vy - -vpldiag(Ay, - - -, Am) [V - Vi)

3. Obtain the principal component subspace S from Rj: given the relative error €, the dimension

d is chosen according to

Let B = [vy---vy4], S is given by

8 = range(B) = span{vy,---,v4}.

Channel Estimation (On-line)

1. Estimate the covariance matrix by
, 1 X
R = o S x(x()7).
g =1

2. Obtain & from the transform:

& = BETR*TYB.

3. Compute the SVD of &

& = UAUH =[iy,---, 04ldiag(Ay, - - -, Ag)[0y, - - -, 4] .

4. Obtain the extended noise subspace S, from U: given the threshold level a, the dimension k
of S, is chosen according to

Ad—k41 < a.

Fig. 2. JOSC algorithm.

controlled, it can be reduced by increasing the dimeffermed off line, and the on-line channel estimation. In the

sionality of the two subspaces. A tradeoff needs to Wellowing, we discuss some implementation issues.

made in practice between the bias of the estimator andl) Dimension ofS: The dimension ofS depends on the

the complexity of the optimization. acceptable approximation errer This approximation results

in a biased estimation. There is a tradeoff between the bias

and the high dimensionality of parameter space. The latter
The JOSC is summarized below and illustrated in Fig. Znay cause the existence of excessive local minima.

The algorithm involves the specification of channel parameter2) Thresholdx: The parametery is used to tune the al-

subspace by the analysis of the principal components, pgorithm to different types of channels. The choicecofor,

C. Algorithm Implementation
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equivalently, the choice af in (52), depends on the singular VI. SIMULATION RESULTS
values{ Ay, -, Ay} of &. When the smallest several singular
values are clustered, the eigenstructure-based schemes doAr."?-Ierformance Measure

perform well. The JOSC uses the extended noise subspace. )
On the other hand, if there is a good separation betweenVe evaluated the performance of the JOSC algorithm by

As and 41, the eigenstructure-based methods have gobpnte Carlo simulation using two examples. By, indepen-
performance. Witht = 1, the minimization of Jp(h) is dent trials, the normalized root mean square error (NRMSE)

inactive. was defined by

3) Channel Order: The JOSC does not require the accurate
detection of the channel order. To obtain the channel subspace A 1 N m)
(off line), one needs the maximum length of a class channels. NRMSE = NohE Z lh " — hy|? (59)
In channel estimation (on line), the dimensionaliyof the m[hel
parameter space is determined by the analysis of the quadratic
constraint.

4) Computation ComplexityWe briefly derive the compu-
tation complexity for the JOSC algorithm in Fig. 2. Only th
on-line part is considered. If JOSC us@sg in its quadratic

N s T
cost, thenN = L. Thus, (i) is aT(L + 1) x 1 vector, and SNR 2 % E{Z |$§])|2} (60)
g

m=1

Wherefz(m) was the estimated channel from theh trial. The
esignal—to—noise ratio (SNR) was defined and given by

THBis aT(L + 1) x d matrix. The first and second steps in
Fig. 2 are matrix multiplication and additions, which require
O(NT?(L+1)?) andO(dT?(L+1)?) flops, respectively. The _ _
third step involves the SVD of dx d matrix, which hago(43) ~where o? was the noise variance.
operations. For each iteration of the gradient search, it needs

the computation of the correlation functiat{h), the error B, Effects of Channel Condition Number
vector and cost, the derivative of/r/Jh, and the gradient
update as

i=1

The performance of the JOSC and the LS/SS estimators was
compared for the class of two-ray multipath channels

rij(m) =Y hi(k)}(k = m) + 026;;6m
k

h(t) = a1p(t) + czp(t — 7) (61)
ivj:]-v"'vTv m:()v"'vL (54)
cij(m) =ri;(m) = #i;(m) where p(¢t) was the continuous-time raised-cosine function
9 with roll-off factor 0.1 and finite support o677 (I" = 2
Jr(h) = Z 1.5 (m)] (55) Wwas the symbol interval), and [0,27). The corresponding
o channel vectoth was obtained from (12). In order to reduce
0Jr = Z eij(m)hi(l —m) the effect of approximation, we chose a smeadt 1.25x 107%.
ak; (1) m ’ Accordingly, & was spanned by the 12 vectors obtained
" from the principal components analysis. With fixed strength
+ 2 cia(m) hi(l +m) a1 = 1, a2 = 0.7 and varying delayr, a set of channels was
T R S (56) used to evaluate the performance. The input signal was an
oy T i.i.d. sequence of +1}.
VJp :(BC)H<8J€> The JOSC estimator assumes only the knowledge of the
of maximumchannel order. The LS estimator, on the other hand,
Fin+1)=F(n)— uVip. (57) requires an accurate detection of the actual channel order. In

this simulation, we assume that the actual channel order is
These four steps requireO(T%(L + 1)),0(T?(L + known to the LS estimator (the actual performance of the
1)), O(T?*(L 4+ 1)?), and O(kdT(L + 1)) flops, respectively. LS/SS estimator is worse than the one shown in this example).
Thus, the total flops for one iteration ©(T?(L + 1)?) Fig. 3 shows the comparison results. The JOSC algorithm
flops. In summary, suppose the JOSC neddsterations, the generally performs better than the LS method. The peak of
overall computation load of the JOSC is then given by NRMSE g at 7 = 17 is caused by the violation of the

identifiability condition. Fig. 4 shows the condition number of

O(N,THL +1)%) + O(dT?*(L +1)%) the channel matrig{(k). It is evident that the performance of
+ O(d®) + O(N,T*(L + 1)) the LS estimator correlates strongly withi+((k)). The JOSC
= (N, +d + N)O(T*(L + 1)?). (58) estimator shows considerable improvement near 17.

The smaller peak of NRMSksc is due to the fact that the
For the SS and the LS methods, a SVDBR T is used restriction of the channel parameter space may not always be
to determine the channel order. The computation of this S\gyfficient to exclude multiple solutions.
is the main load for the LS/SS methods, and its complexity
is order T3(L + 1)3. 2 The inherent ambiguity was removed before the computation of NRMSE.
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TABLE I
EFFECTS OF THETHRESHOLD ao. SNR = 25 dB, Ny = 100, NV,,, = 50

LS | ESRM | JOSC(a = Amin) | JOSC(a = 33 min) | JOSC(a = 103 min)

NRMSE | 0.8105 | 0.6496 0.6559 0.2112 0.4659
0.6 ¥ T T T T v T - T 10° Y Y - - .
b
M — JOSC
1 - - LS/SS O lambda_i
05 N 1 — lambda_min
: \ - —~ 3%lambda_min
T " .
0.4} : ' . -=-- 10*lambda_min
10
)
1
w ' o
203 v
[ R 1 7
z '
]
]

104 A 1 A 1 1 1 i
1 2 3 4 5
i
Fig. 5. Singular values and thresholds.
18
15| 1 Il shows the NRMSE results for 50 Monte Carlo trials. It
b | appears that = 3\,;;, (k = 2) is the best. This is consistent

with the observation (Fig. 5) that the last two singular values
are clustered. For LS, ESRM, and JOSE = 1) methods,
one singular vector is used to determine the channel; thus,
they have large errors.

- -
-] =} N
T T T

log10{condition number)

L]
T

D. Performance of A Class Multipath Channels

] In this experiment, we examined the performance of the
/———/\—/L*/k_/ JOSC for the channel model given by (47). Five vectors from
L the principal components analysis were used to construct the
Gy 282 S with relative errore = 0.0133. In the simulation, 500
randomly generated channels were tested. The performance
comparison was made against the LS/SS algorithm [6].

The cumulative percentage of channels versus NRMSE are
C. Effects of the Threshold shown in Figs. 6-8. For most channels, the JOSC algorithm
. . . . erforms better than the LS method. Increasing the number

An important parameter in the JOSC algorithm is tth symbols from 100 to 500, the performance of the JOSC

thresholda, which determines the subspace for the correlatidh

fitting. Whene is small, the dimension of the extended nois Proves as shown in Fig. 9, whereas the LS method does not

subspace is reduced. The correlation fitting search is mosrréOW visible improvement.

restricted. Thus, the eigenstructure-based cbhstis more

IS
T

A

o n 1 " "
[+] 0.2 0.4 0.6 08

Fig. 4. Two-ray channels: condition numbers of channel matrices.

effective in the joint optimization. In implementation, the VII. CONCLUSION
choice of« is according to the singular value distribution as In this paper, we studied the two classes of existing moment-
discussed in the previous section. based blind channel estimation algorithms. A new optimization

In this simulation, we study the effects @f. The test criterion, referred to as the joint optimization with subspace
channel is two ray with delay8.137",0.897". The transmitted constraints (JOSC), was established to form a common frame-
signal is 8-PSK, SNR= 25 dB, and N, = 100. Fig. 5 shows work from which existing algorithms can be derived. The
the singular value distribution and thresholds for a Mont#8OSC algorithm aims to combine the strength of the two
Carlo trial. We choosey as 1, 3, and 10 times,,,. The types of approaches. Through correlation fitting, the JOSC
corresponding dimensiorisare 1, 2, and 3, respectively. Tableéhas better performance than the eigenstructure-based methods,
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Fig. 8. 500 channels: SNR 25 dB, N, = 500, N,,, = 50.
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Fig. 7. 500 channels: SNR 25 dB, Ny = 200, N,,, = 50. Fig. 9. Performance of the JOSC for 500 channels: SNR25 dB,
: N, = 100,200,500, N,, = 50.

especially when the channel is ill conditioned. By exploitin ) _ . _
both the statistical and algebraic structure of the channel, tH8d€r certain mild conditions [9, Th. 3.16], the asymptotic
JOSC searches the channel vector in the subspace contaififignalized covariance dicr is given by

the most information about the channel, which reduces th o A - T
ill effects of the local minima. By selecting parameterthe A covther) 2 i N covihor) = G(re)%(h. ) G(r.)
JOSC can be tuned to different channels. One disadvantage (64)

of the JOSC is the biasedness of the estimator. Although

the simulations demonstrate the superior performance of t{Bere X(h.) is the asymptotic normalized covariance of
JOSC, the performance analysis of this algorithm needs to'be G(#) is the Jacobian ofy(#) with respect to#, and

investigated in the future. . = r(h.).
Now, we compute JacobiaB(r.). Note that the nonlinear
APPENDIX A cost functionJ(h,#) satisfies the regularity conditions [9,
ANMSE FOR CORRELATION FITTING (CF) ESTIMATOR Lemma 3.2], and Jacobiafi(r.) is given by
Consider a cost function d& and 7: 2 1 g2
J(h,#) = (r(k) = )" (r(h) = 7). (62) Oh "

Since

aJ(h,#) _ (Or(h
oh  ~ \_oh

The CF estimator is given by

her = arg m}}'n J(h,7) 2 g(). (63)

))<ﬂm—ﬂ=smﬂwmww>@a
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where S(h) is the Jacobian of-(h), and thus

02J(he,rs) .
g =S(h) S (k) (67)
2 J(hy,r.)

Substituting the above into (65) and (64), we have
ANMSEcr = A cov(hcr)
= (ST (h)S(h)) ST (h)X(R)S(hy)
(ST(h)S(h))TL (69)
Hence, we complete the proof of (24). O

APPENDIX B
PROPERTIES OF THEEXTENDED NOISE SUBSPACE
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We show that the extended noise subspace contains the most D. Slock, “Blind fractionally-spaced equalization, perfect reconstruction
information about the channel under Gaussian assumption. filterbanks, and multilinear prediction,” ifProc. ICASSP’94 Conf.

Specifically, assume that the noise is independent Gaussian
that the input signal§s; } are jointly independent Gaussian an
independent of the noise. To study the information property

the extended noise subspace, let us consider the S\ of
dAs = [ﬂl, e ,ﬂd] dlag(j\l, T, S\d)[ﬂl, e ,ﬂd]H. (70)
Note thatg, = uy4 (w;'S eigenvectors of$) can also be
represented by the orthogonal bais }{, i.e.,

d
g =us=) ol (71)
=1

whereq; = 'u,fI g, is the projection coefficient. Observe tha

not all ;’s carry the same amount of information abgyt
One can argue, by evaluating the variance ogf that «;
carries more information thar; when <> j. According to
the asymptotic analysis in [1]

A var(a,) 2 lim N, var(a;)

Vs —00

= Avarag,) = g A co(i;)g,

d
=97 >
k=1k#i
Ad i

ETEET A

(72)

Ak
m 'U'k'u'ng* (73)

(74)

where \;’s are eigenvalues. Note that var(«;) decreases as
A; increases. This implies that the extended noise subspace

o
ol

[14]
[15]

[16]

E17]

S, defined in (51) contains the most information about the

channel. O
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