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Correspondence

Balanced Multiwavelets Theory and Design

Jérôme Lebrun and Martin Vetterli

Abstract—This correspondence deals with multiwavelets, which are
a recent generalization of wavelets in the context of time-varying filter
banks and with their applications to signal processing and especially com-
pression. By their inherent structure, multiwavelets are fit for processing
multichannel signals. This is the main issue in which we will be interested
here. The outline of the correspondence is as follows. First, we will review
material on multiwavelets and their links with multifilter banks and,
especially, time-varying filter banks. Then, we will have a close look at
the problems encountered when using multiwavelets in applications, and
we will propose new solutions for the design of multiwavelets filter banks
by introducing the so-called balancedmultiwavelets.

Index Terms—Balancing, multifilter, multiwavelet, prefiltering, time-
varying filter bank.

I. INTRODUCTION

Wavelet constructions from iterated filter banks, as pioneered
by Daubechies, have become a standard way to derive orthogonal
and biorthogonal wavelet bases. The underlying filter banks are
well studied, and thus, the design procedure is well understood.
By the structure of the problem, certain issues are ruled out. The
impossibility of constructing orthogonal FIR linear-phase filter banks
implies that there is no orthogonal wavelet with compact support
and symmetry. Nevertheless, by relaxing the requirement of time
invariance, it is easy to see that new solutions are possible. As
mentioned in [14], such filter banks are closely related to some
matrix 2-scale equations leading to multiwavelets. First, we will recall
the basics about multiwavelets. Then, we will link this to multifilter
banks and time-varying filter banks. Then, we will define under what
conditions we can apply systems based on multiwavelets to one-
dimensional (1-D) signals in a simple way. That means we will give
some natural and simple conditions that should help in the design of
new multiwavelets for signal processing. Finally, we will provide
some tools in order to construct multiwavelets with the required
properties: the so-calledbalancedmultiwavelets.

II. M ULTIWAVELETS

Generalizing the wavelet case, one can allow a multiresolution
analysisfVngn of L2(IR) to be generated by a finite number of
scaling functions�0(t); �1(t); � � � ; �r�1(t) and their integer trans-
lates. Then, the multiscaling function�(t) := [�0(t); � � � ; �r�1(t)]

>
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verifies a two-scale equation

�(t) =
k

M[k]�(2t� k) (1)

where, now,fM[k]gk is a sequence ofr � r matrices of real
coefficients. The multiresolution analysis structure givesV1 =
V0 � W0, where W0 is the orthogonal complement ofV0 in
V1. We can construct an orthonormal basis ofW0 generated
by  0(t);  1(t); � � � ;  r�1(t) and their integer translates with
 (t) := [ 0(t); � � � ;  r�1(t)]

> derived by

 (t) :=
k

N[k]�(2t� k) (2)

where fN[k]gk is a sequence ofr � r matrices of real coeffi-
cients obtained by completion offM[k]gk (see [7]). Introducing
the refinement masksM(z) := 1

2 n M[n]z�n and N(z) :=
1

2 n N[n]z�n, (1) and (2) translate in the Fourier domain into

�(2!) =M(ej!)�(!) and 	(2!) = N(ej!)�(!): (3)

We can then derive the behavior of the multiscaling function by
iterating the first product above. If this iterated matrix product
converges, we get in the limit

�(!) =M1(!)�(0) =

1

i=1

M[ej(!=2 )] �(0): (4)

For simplicity and without loss of generality, we will now on
concentrate on the caser = 2. Furthermore, we will assume that
the sequencesfM[k]gk andfN[k]gk are finite and, thus, that�(t)
and (t) have compact support. We then recall some result obtained
in [2] and [14] about the convergence of the iterated matrix product
M1(!). ForM(z) satisfying a matrix Smith–Barnwell orthogonality
condition

M(z)M>(z�1) +M(�z)M>(�z�1) = I (5)

a necessary condition for uniform convergence of the iterated product
to a scaling matrixM1(!) such thatM1(0) is nonzero and bounded
is either

1) M(1) = I; M(�1) = 0 [note thatM1(!) has rank 2];
2) M(1) has eigenvalue�0(1) = 1 andj�1(1)j < 1, andM(�1)

has rank 1 and satisfiesr0M(�1) = 0, where r0 is a left
eigenvector ofM(1) for the eigenvalue 1 [note thatM1(!)
has then rank 1].

Now, assuming (5) and 1) or 2), the scaling functions and their integer
translates form an orthonormal basis ofV0. Thus, fors(t) 2 V0, we
have

s(t) =
n

sss
>

0 [n]�(t� n) (6)

and then, fromV0 = V�1 �W�1, we get

s(t) =
n

sss
>

�1[n]�
t

2
� n + ddd

>

�1[n] 
t

2
� n (7)

and we have the well-known relations between the coefficients at the
analysis step

sss�1[n] =
k

M[k � 2n]sss0[k] (8)

ddd�1[n] =
k

N[k � 2n]sss0[k] (9)
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Fig. 1. Lossless orthogonal multiwavelet filter bank forr = 2.

(a)

(b)

Fig. 2. Vectorization and pre/post filtering steps for a multiwavelet filter bank.

and for the synthesis, we get

sss0[n] =
k

M
>[n� 2k]sss

�1[k] +N
>[n� 2k]ddd

�1[k]: (10)

These relations enable us to construct a multi-input multi-output
(MIMO) filter bank (which is abbrieviated multifilter bank), as seen
in Fig. 1.

III. V ECTORIZATION AND PREFILTERING

We already noticed that a multiwavelet filter bank is fundamentally
a MIMO system. In case of a 1-D signal, it then requires vectorization
of this input signal to produce an input signal which is two-
dimensional (2-D). A simple way to do that is to split a 1-D signal
into its polyphase components (Fig. 2). Introducing

m0(z)
m1(z)

:=M(z2)
1

z
�1 (11)

and in the same wayn0(z) and n1(z), the system can then be
seen as a four-channel time-varying filter bank (Fig. 3). If the
componentsm0(z) andm1(z) of the lowpass branch have different
spectral behavior, e.g., lowpass behavior for one and highpass for
the other, it then leads to unbalanced channels that complicate the
vectorization. In that case, the polyphase method of vectorization
leads to a mixing of the coarse resolution and details coefficients
creating strong oscillations in the signal reconstructed from the coarse
resolution only (Fig. 4). This problem is crucial. One of the important
issues with wavelets in subband coding is the behavior of truncated
series, i.e., the robustness to truncation of the details subbands. Thus,
one expect some class of smooth signals to be well reproduced
using only the coarse resolution coefficients, i.e., one expects these

signals to beeigensignalsof the lowpass branch and cancelled by the
highpass. In the orthonormal case, defining the band-Toeplitz matrix
corresponding to the lowpass analysis

L :=

� � �

M[0] M[1] M[2] M[3] � � �

M[0] M[1] � � �

� � �

(12)

we then requireu1 := [� � � ; 1; 1; 1; 1; � � �]> to be preserved by the
lowpass synthesis operatorL>, i.e.,

L
>[� � � ; 1; 1; 1; 1; � � �]> = [� � � ; 1; 1; 1; 1; � � �]>: (13)

It is easily seen that this impliesLu1 = u1 andHu1 = 0 whereH
is the band-Toeplitz matrix corresponding to the highpass analysis. It
means that[� � � ; 1; 1; 1; 1; � � �] is preserved by the lowpass branch
and cancelled by the highpass.

However, most of the multiwavelets constructed so far do not even
verify this simple requirement, as illustrated in Fig. 5. A solution
proposed in [13] and generalized in [4] and [15] is to add some
pre/post filtering of the input/output signal to adapt it to the spectral
imbalance of the filter bank.

A. Critical Sampling

A natural way of prefiltering is to partition the input signal into
vectors chunks of size 2 and apply on the sequence of vectors the
refinement maskA(z) :=

k
A[k]z�k, whereA[k] are 2 � 2

matrices. Thus, we get an input sequence of vectors adapted to
the spectral imbalance of the multifilter bank. In that case, we can
maintain critical sampling, with the only restriction that the input
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Fig. 3. Multiwavelet filter bank seen as a time-varying filter bank.

signal must be of size2K for someK. The reconstruction is easily
processed by applying the refinement maskB(z) inverse ofA(z)

onto the output signal (Fig. 2). A simple way of understanding
prefiltering is then to see it as a transform such that the input signal
[� � � ; 1; 1; 1; 1; � � �] is mapped to some genuine vector eigensignal
associated with the eigenvalue 1 ofL>. For example, with the DGHM
multiwavelet [3], we have

L
>

[� � � ;
p
2; 1;

p
2; 1; � � �]> = [� � � ;

p
2; 1;

p
2; 1; � � �]>: (14)

The results obtained (Fig. 4) using thistrick are of the same order
as the ones obtained using a plain Daubechies filter bank with four
taps. However, the prefilters constructed so far are destroying either
the orthogonality [15] or the linear phase [4] of the system, thus
reducing the interest of multiwavelet-based filter banks against usual
biorthogonal wavelet-based filter banks.

B. Noncritical Sampling

Another way of doing pre/post filtering is to allow noncritical
sampling and to construct some projection of the input signal onV0.
For example, with the DGHM multiwavelet, when starting from an
input signal[x[0]; � � � ; x[2K ]], we transform it into some redundant
vector-valued input sequence

x[0]

p
2

1
; � � � ; x[2K ]

p
2

1
: (15)

This preprocessing is often called therepeated signalapproach.
It doubles the size of the input signal but allows us to maintain
the orthogonality and linear phase of the system. However, by the
redundancy it creates, one cannot use this approach in the framework
of signal compression.

As mentioned in [15] and [16], an issue of prefiltering is then
to maintain orthogonality, linear phase, and critical sampling at the
same time. However, one may rather directly design orthogonal
multiwavelets with good balance between the two scaling functions.

IV. BALANCING

In [8], we gave the definition of a first-order balanced multiwavelet.
We impose the condition (13) that the lowpass synthesis operatorL

>

of the time-varying filter bank based on this multiwavelet preserve
the eigensignal[� � � ; 1; 1; 1; 1; � � �]. One then proves the following
theorem.

Theorem: The following conditions are equivalent.

B0) L>u1 = u1.
B1) [1, 1] is a left eigenvector ofM(1) for �0(1) = 1.
B2) �(0) = [1; 1]

>.
B3) m0(z) +m1(z) has zeros1 on the unit circle atj; �1; �j.

Proof: [B0 ) B1]: Assuming B0, we haveu>1 L = u
>

1

so that we trivially get condition B1. [B1) B2]: From (3) at
! = 0, using (5) and necessary condition 2), we get that�(0)

is a left and right eigenvector associated to the eigenvalue 1 of
M(1); hence, we have the result. [B2) B3]: �(0) is a left
and right eigenvector associated with the eigenvalue 1 ofM(1),
and from condition 2) in the convergence of the iterated matrix
product, we get�>(0)M(�1) = 0. Since�(0) = [1; 1]>, we
get thatm0(z) +m1(z) = [1; 1]M(z2)[1; z�1]> has roots atz =

j; �1; �j. [B3 ) B0]: Finally, takingu[n] = [� � � ; 1; 1; 1; 1; � � �]
and v[n] = [� � � ; 0; 0; 0; 0; � � �] in Fig. 3, we get that the four
possible outputŝx[4n + p] =

k
m0[4k + p] + m1[4k + p] for

p = 0; 1; 2; 3 are equal [12]. Therefore,[� � � ; 1; 1; 1; 1; � � �] is an
eigensignal of the operatorL>. Thus, we have the equivalence of
B0, B1, B2, and B3. }

We also remark that condition B2 implies that�0(t); �1(t) are
bona-fide scaling functions, i.e., that the initialization rule on which
the Mallat algorithm is based apply:

x(t)�i(t� n) dt �= x(n): (16)

For p-order balancing, we impose the condition that the lowpass
branch of a time-varying filter bank based on this multiwavelet
preserves the sampled versions of polynomials of degree up top�1.
For degree 2, it means that[� � � ; �1; 0; 1; 2; � � �] has also to be
preserved byL>.

A. Direct Construction

A simple way to construct balanced multiwavelets of arbitrary
order is to derive them from the complex Daubechies filters [6], [10].
Daubechies filters are constructed using the halfband filter

P (z) := c(1 + z
�1

)
N
(1 + z)

N
R(z) (17)

such thatP (z) + P (�z) = 1 with R(ej!) � 0 and R(ej!) =

R(e�j!). One gets the usual Daubechies lowpass filtersDN(z) :=

(1 + z�1)NB(z), whereB(z) is a spectral factor ofR(z) with real
coefficients. We cannot achieve orthogonality and symmetry with real
coefficients; however, by allowing complex coefficients in the spectral
factorization, one can construct symmetric, orthogonal FIR filters.
Writing [a[0]; � � � ; a[N ]; a[N ]; � � � ; a[0]] for the lowpass filter, we
construct the matrix coefficients

A[i] :=
Im a[i] Rea[i]
Rea[i] Im a[i]

(18)

and the refinement mask is then

M(z) := 1

2

N

k=0

A[k]z
�k

+ z
�(N+1)

N

k=0

A[N � k]z
�k

: (19)

1Condition B3 was first given by Selesnick in [12].
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(a) (b)

Fig. 4. Truncation of the first-order detail subband in a DGHM multiwavelet filter bank (i.e., we forcev[n] = 0 in the time-varying implementation).
The input signal is symmetric and composed of a constant, a linear, a quadratic, and a cubic parts with a step. (a) Poor robustness of a system based on
DGHM without pre/post filtering. (b) Results are greatly improved by using pre/post filtering.

(a) (b)

Fig. 5. (a) Reproduction of the input signal[� � � ; 1; 1; 1; 1; � � �] by a DGHM multiwavelet-based filter bank without prefiltering. (b) Reproduction of the
eigensignal[� � � ;

p
2; 1;

p
2; 1; � � �] by the same system. The mapping of[� � � ; 1; 1; 1; 1; � � �] to this eigensignal is the key idea of prefiltering.

The multifilter bank is clearly orthogonal. Moreover, defining that
� has approximation power ofm if one can exactly decompose
polynomials up to degreem � 1 using only�0(t); �1(t) and their
integer translates and that� has smoothnessp if �0(t); �1(t) havep
continuous derivatives, then it is easily seen that the smoothness and
approximation power of the Daubechies complex scaling functions
and wavelets transfer to the multiscaling functions and multiwavelets.
Namely, by defining'(t) := �1(t) + j�0(t), where[�0(t); �1(t)]
is the multiscaling function associated withM(z), we get that'(t)
verifies the two-scale equation

j'(t) =

N

k=0

a[k]'(2t� k)+

2N+1

k=N+1

a[2N +1� k]'(2t� k) (20)

so that '(t) is a scaling function associated with the complex
Daubechies filters; hence, we get the same smoothness and approx-
imation power for the multiscaling functions and the multiwavelets.
We also easily derive that the multiscaling functions and multi-
wavelets are symmetric/antisymmetric, as seen in Fig. 6. However,
this refinement mask when iterated does not converge properly
becauseM(1) has eigenvalues 1,�1 with left eigenvectors [1, 1], [1,
�1]. We get only constrained [5], i.e., nonuniform convergence of the
Mallat algorithm; hence, the poor behavior of these multiwavelets in
applications as seen in Fig. 7.

B. Balancing the Nonbalanced

Another interesting way of constructing balanced multiwavelets is
to balance already existing multiwavelets like the ones constructed



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 4, APRIL 1998 1123

(a) (b)

Fig. 6. Balanced multiwavelet derived from the complex Daubechies filters (same approximation power and smoothness as D14). (a) Scaling functions.
(b) Multiwavelets.

(a) (b)

Fig. 7. Robustness to truncation of the first order detail subband with (a) a 6 2� 2 taps Daubechies based multiwavelet filter bank and (b) with a
Chui based balanced multiwavelet with 8 2� 2 taps filter bank.

in [1] or [3]. The point is that we want [1, 1] to be a left eigenvector
associated with eigenvalue 1 ofM(1). The way to achieve this is to
use a unitary matrixR such that

[1; 1]R>M(1)R = [1; 1]: (21)

Defining the new refinement mask

P(z) := R
>

M(z)R (22)

and the new two-scale equation

�P (2!) = P(e
j!)�P (!) (23)

we get that [1, 1] is a left eigenvector ofP(1) for �0(1) = 1 and
since the transformation is unitary,P verifies (5), and therefore,
�P (0) = [1; 1]>. We notice that in the iteration,R> and R

cancel, except for the first and last term. The convergence of the
iterated matrix product (5) forM imply the convergence forP,
and the smoothness and approximation power are also unchanged.
Moreover, the whole orthogonality of the filter bank is maintained,
and although the symmetry of the scaling functions is usually lost, the

symmetry/antisymmetry of the multiwavelets can be maintained by
taking for the highpass refinement maskQ(z) := N(z)R. Namely

	P (!) =N e
j(!=2)

R

1

i=2

R
>

M[ej(!=2 )]R
1
1

=N(ej!=2)M1(!=2)�M(0) = 	M(!): (24)

Balancing Chui’s multiwavelets [1], we obtained orthogonal, com-
pactly supported multiscaling functions/multiwavelets with symmet-
ric/antisymmetric wavelets (Fig. 8). Moreover, the scaling functions
are flipped versions of one another, verify the [1, 1] left eigenvector
condition, and have the interesting sampling property

x(t)�i(t� n) dt �= x n+
i

2
: (25)

These balanced multiwavelets (which are abbrieviatedBat) have
shown very good robustness in compression algorithm without any
pre/post filtering (Fig. 7).
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(a) (b)

Fig. 8. Balanced multiwavelet with approximation power of 2. (a) Scaling functions. (b) Multiwavelets. The scaling functions are flipped version of one
another. They are orthogonal and have good sampling properties. The wavelets are orthogonal and symmetric/antisymmetric.

(a) (b)

Fig. 9. Second-order balanced multiwavelet derived from DGHM. Sampled versions of 1 andt are eigensignals of the lowpass branch of the multiwavelet
filter bank. (a) Scaling functions. (b) Multiwavelets. The system is still orthogonal but in a weaker sense: the lowpass and highpass branches are mutually
orthogonal (u[n] and v[n] are uncorrelated) and the highpass branch is orthogonal (the coefficientsv[n] are uncorrelated). Furthermore, the linear phase
of the highpass branch is maintained (symmetry/antisymmetry of the wavelets).

C. Higher Order Balancing

One can generalize what was previously done for balancing non-
balanced multiwavelets to higher order polynomial input signals.
Namely, in the case of DGHM, we have approximation power of
2, i.e.,

1 =

k

p
2�0(t� k) + �1(t� k) (26)

t =

k

p
2 k + 1

2
�0(t� k) + (k + 1)�1(t� k): (27)

Therefore, if we want to preserve the sampled version of 1 andt

as input signals, we should transform them into eigensignals of the
DGHM based filter bank. Therefore, we get the equations

A
1

1
=

p
2

1
; A

n

n+ 1

2

=

p
2 n+ 1

2

n+ 1
(28)

leading to

A =
0
p
2

�1 2
: (29)

Defining the new refinement mask

P(z) := A
T
M(z)A

�T (30)

and the new two-scale equation

�P (2!) = P(e
j!
)�P (!) (31)

the time-varying filter bank based on this refinement mask keeps
constant and linear input signals unchanged. Again, the convergence
of the matrix product forM implies the convergence forP, and
the smoothness and approximation power are, therefore, unchanged.
However, this time, the symmetry and orthogonality by shifts of
the scaling functions are lost. Nevertheless, the system remains
orthogonal in the sense that the scaling functions are orthogonal
to the wavelets; therefore, it still decorrelates coarse resolution and
details. Moreover, as seen in Fig. 9, the symmetry/antisymmetry and
orthogonality by shifts of the multiwavelets can be maintained by
taking for the highpass refinement maskQ(z) := N(z)A�T.

V. CONCLUSION

After recalling some basic facts about multiwavelets, we reviewed
some of the problems that appear when applying multiwavelets in
signal processing. We proposed a new way to solve these problems:
the balancedmultiwavelets. By imposing the balancing conditions,
we have been able to construct robust multiwavelet filter banks for
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processing 1-D signals in a simple way. Thus, we obtained orthogonal
(sometimes in a weaker sense), linear-phase FIR systems preserving
sampled versions of polynomials. We have now new tools to process
images and sounds in an orthogonal linear-phase FIR environment
available for further experiments. Some issues remain open, however.
We still have to develop some systematic and simple way to construct
orthogonal symmetric balanced multiwavelets with any desired ap-
proximation power and order of balancing (preservation of sampled
versions of higher order polynomial). Since the submission of this
correspondence, important new results in that direction have been
obtained [9]. We have linked the concept ofhigh-order balancingto
a very natural factorization of the lowpass refinement mask that is
the counterpart of the well-knownzeros at� condition for wavelets.
This enabled us to clarify the subtle relations between approximation
power, smoothness, and balancing order. Using these new results, we
have been able to construct a new family of orthogonal multiwavelets
with symmetries and compact support that is indexed by the order
of balancing. More details (filters coefficients, drawings of the whole
family, frequency responses,. . .) can be obtained on the World Wide
Web athttp://lcavwww.epfl.ch/ ~ lebrun .
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On the Least Asymmetric Wavelets

Milo š I. Doroslovǎcki

Abstract— The asymmetry of Daubechies’ scaling functions and
wavelets can be diminished by minimizing a special second moment
in time for the wavelet-generating discrete-time filter. The moment
is involved in an uncertainty relation for discrete-time signals. Other
measures of asymmetry are addressed as well, and corresponding
results are compared.

I. INTRODUCTION

Daubechies’ wavelets are continuous-time functions whose mother
wavelet has a finite support width. They constitute an orthonormal
basis for the functions of finite energy [1], [2]. Moreover, the mother
waveletw(�) has the highest number of vanishing moments for a
given support width, whereN vanishing moments mean
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for i = 0; 1; . . . ; N � 1. The corresponding scaling functions are
orthonormal within the same scale and orthogonal to wavelets of the
same and lower scales. The basic scaling function is defined [2] as
one having the spectrum
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For the mother wavelet, we have [2]
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G(!) and H(!) are transfer functions of special finite impulse
response digital filters. First, they are conjugate quadrature and power
complementary filters [3], [4], i.e.,H(!) = �G�(!+�)e�j(2L+1)!,
and jG(!)j2 + jG(! + �)j2 = 2. Second, in order to satisfy the
vanishing moment requirement,G(!) has the form [2]
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where
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N�1
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The impulse responseg(t) has2N coefficients. It can be chosen to
be causal [5] and to start att = 0. In that case, we can choose
L = N � 1 and obtain thath(t) is also causal and starts att = 0,
i.e., we haveh(t) = (�1)tg�(2N � 1 � t).
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