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Correspondence

Balanced Multiwavelets Theory and Design verifies a two-scale equation

o(t) =Y M[K]o(2t — k) @)

Jerdome Lebrun and Martin Vetterli

where, now,{M][k]}. is a sequence of x r matrices of real

Abstract—This correspondence deals with multiwavelets, which are C9eﬁlcﬁ,ms' ;]I'he rrlultllresclelutlonhanalyslls StrU(l:ture gl\ﬁ? =
a recent generalization of wavelets in the context of time-varying filter "YD © Wo, where W, is the orthogonal complement ofo in
banks and with their applications to signal processing and especially com- V1. We can construct an orthonormal basis df, generated

pression. By their inherent structure, multiwavelets are fit for processing by o (#), ¥1(t), - -+, ¥»—1(¢) and their integer translates with
multichannel signals. This is the main issue in which we will be interested N T i

> ! 4 : CO () := [tho(t), v, 1 (t derived b
here. The outline of the correspondence is as follows. First, we will review —( ) [Yo(®), r(t)] y
material on multiwavelets and their links with multifilter banks and, () = Z N[k (2t — k) 2)
especially, time-varying filter banks. Then, we will have a close look at - . -

the problems encountered when using multiwavelets in applications, and o . .
we will propose new solutions for the design of multiwavelets filter banks Where {N[k]}. is a sequence of x r matrices of real coeffi-
by introducing the so-called balancedmultiwavelets. cients obtained by completion ofM[k]}; (see [7]). Introducing

1 — 1 _—n - e
Index Terms—Balancing, multifilter, multiwavelet, prefiltering, time- the refinement maskd1(z) := 2 Zn M[n]z and N(z) :=

varying filter bank. ;— >, N[n]=7", (1) and (2) translate in the Fourier domain into
B(2w) = M(e’)®(w) and ¥(2w) = N(/)B(w). (3)
I. INTRODUCTION We can then derive the behavior of the multiscaling function by

Wavelet constructions from iterated filter banks, as pioneerd§rating the first product above. If this iterated matrix product
by Daubechies, have become a standard way to derive orthogdr@ifiverges, we get in the limit
and biorthogonal wavelet bases. The underlying filter banks are
well studied, and thus, the design procedure is well understood.
By the structure of the problem, certain issues are ruled out. The . . . . .
impossibility of constructing orthogonal FIR linear-phase filter ban Sor simplicity and without loss of generality, we will now on

L ; : ncentrate on the case= 2. Furthermore, we will assume that
implies that there is no orthogonal wavelet with compact suppo? .
and symmetry. Nevertheless, by relaxing the requirement of time. s’equenceﬁ.l[k]}k and {N[k]} are finite and, thus, thai(t)

Igd ¥(t) have compact support. We then recall some result obtained

invariance, it is easy to see that new solutions are possible. As0Y . .
Y P [2] and [14] about the convergence of the iterated matrix product

mentioned in [14], such filter banks are closely related to so ) ForM tisfvi trix Smith—B ll orth lit
matrix 2-scale equations leading to multiwavelets. First, we will rec tcor?d(lildgn orM(:) satisfying a matrix Smith-Barnwell orthogonality

the basics about multiwavelets. Then, we will link this to multifilte
banks and time-varying filter banks. Then, we will define under what M EM Y+ M(=)M ' (=2 1) =1 (5)
conditions we can apply systems based on multiwavelets t0 O0ngnecessary condition for uniform convergence of the iterated product

dimensional (1-D) signals in a simple way. That means we will givg 5 scaling matrit. (w) such thaM.. (0) is nonzero and bounded
some natural and simple conditions that should help in the design;@faither

new multiwavelets for signal processing. Finally, we will provide 1) M(1) = I, M(—1) = 0 [note thatM... (w) has rank 2];
some tools in order to construct multiwavelets with the required T o '
properties: the so-calledalancedmultivavelets. 2) M(1) has eigenvaludo(1) = 1 and|; (1)] < 1, andM(-1)
has rank 1 and satisfiagsM(—1) = 0, wherer, is a left
eigenvector ofM (1) for the eigenvalue 1 [note th& .. (w)
Il. MULTIWAVELETS has then rank 1].

Generalizing the wavelet case, one can allow a multiresoluti?W, assuming (5) and 1) or 2), the scaling functions and their integer
analysis{V,}. of L*(R) to be generated by a finite number ofiranslates form an orthonormal basisiof. Thus, fors(t) € Vo, we
scaling functionspo (t), &1 (t), -, é-_1(t) and their integer trans- have
lates. Then, the multiscaling functieitt) := [¢o(%), -- -, b1 (D)]T

B(w) = Mao (w)P(0) = [ ME"“/27) 8(0). @)

=1

s(t) = Z sg[lt]g"(t —n) (6)

n
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Fig. 1. Lossless orthogonal multiwavelet filter bank for= 2.
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Fig. 2. Vectorization and pre/post filtering steps for a multiwavelet filter bank.

and for the synthesis, we get
soln] => MT[n—2k]s 1[k] + NT[n — 2k]d_1[k].  (10)
k

signals to beeigensignal®of the lowpass branch and cancelled by the
highpass. In the orthonormal case, defining the band-Toeplitz matrix
corresponding to the lowpass analysis

These relations enable us to construct a multi-input multi-output

(MIMO) filter bank (which is abbrieviated multifilter bank), as seen L= MJ[0] M[1] M[2] M[3] --- (12)
in Fig. 1. ’ M[o] M1} -
lll. V/ECTORIZATION AND PREFILTERING we then requirer; :=[---, 1, 1,1, 1, ---]T to be preserved by the
We already noticed that a multiwavelet filter bank is fundamentallgwpass synthesis operatlu”, i.e.,
a MIMO system. In case of a 1-D signal, it then requires vectorization T - T
of this input signal to produce an input signal which is two- L[ 1111 -] =[-11LL1L--]". (13

dimensional (2-D). A simple way to do that is to split a 1-D signa]
into its polyphase components (Fig. 2). Introducing

{’"0(/’)} = M(2%) LL} (11)

mi(z)

It is easily seen that this implidsu; = u; andHu;, = 0 whereH

is the band-Toeplitz matrix corresponding to the highpass analysis. It
means thaf---, 1, 1, 1, 1, - - -] is preserved by the lowpass branch
and cancelled by the highpass.

However, most of the multiwavelets constructed so far do not even

and in the same way.,o(z) and n(z), the system can then be . L i . - :
seen as a four-channoe(l 2ime-varly(in)g filter bank (Fig. 3). If th\ée”fy this simple requirement, as illustrated in Fig. 5. A solution

. proposed in [13] and generalized in [4] and [15] is to add some
componentsnq(z) andm (z) of the lowpass branch have different o X . .
spectral behavior, e.g., lowpass behavior for one and highpass %i/post filtering of_the input/output signal to adapt it to the spectral
the other, it then leads to unbalanced channels that complicate |trrrl1ealance of the filter bank.
vectorization. In that case, the polyphase method of vectorization )
leads to a mixing of the coarse resolution and details coefficierfts Critical Sampling
creating strong oscillations in the signal reconstructed from the coarsé\ natural way of prefiltering is to partition the input signal into
resolution only (Fig. 4). This problem is crucial. One of the importantectors chunks of size 2 and apply on the sequence of vectors the
issues with wavelets in subband coding is the behavior of truncatedinement maskA (z) := 3, A[k]z=~*, where A[k] are 2 x 2
series, i.e., the robustness to truncation of the details subbands. Tmestrices. Thus, we get an input sequence of vectors adapted to
one expect some class of smooth signals to be well reprodudbéd spectral imbalance of the multifilter bank. In that case, we can

using only the coarse resolution coefficients, i.e., one expects thesaintain critical sampling, with the only restriction that the input
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Analysis IV. BALANCING
N s } /T ~ In [8], we gave the definition of a first-order balanced multiwavelet.
me(2) {4 | 2/ We impose the c_ondl_tlon (13) that the Iowpa}ss syn_the5|s opéidtor
S o } uln]  of thg tlmg-varylng filter bank based on this multiwavelet preserve
m,(z) ( = /Tz/ |z the eigensigna}---, 1, 1, 1, 1, - --]. One then proves the following
N — D e theorem. . N .
o] SN ’/TW\ Theorem: The following conditions are equivalent.
mE) A N, BO) LTu; = w.
PR N ; vinl B1) [1, 1] is a left eigenvector oM(1) for Ao(1) = 1.
n(z) } {\¢4/\: 1 ‘\Tz/‘:»r -z B2) ®(0) = [1,1]".
I B3) mo(z) + m1(z) has zeroson the unit circle af, —1, —j.
Synthesis Proof: [B0O = B1]: Assuming BO, we haveu/L = u{
| N so that we trivially get condition B1. [BE B2]: From (3) at
—~~~~A—Wﬂ{\u/}' e ﬁ\T{ﬁ*w m.(z) w = 0, using (5) and necessary condition 2), we get tfa0)
u[n]4( } is a left and right eigenvector associated to the eigenvalue 1 of
, | ://¢2\\1 | "/T4\,: m@) | M(l);_ henge, we have the_ result._ [B2- B3_]: ®(0) is a left
| NN N and right eigenvector associated with the eigenvalue 1VKfl),
N e XM and from condition 2) in the convergence of the iterated matrix
42 ‘ ,(\\T4/j, n{z) product, we getd ' (0)M(—-1) = 0. Since®(0) = [1, 1], we
v[n]—‘ } get thatmo(z) + m1(z) = [1, 1IM(2?)[1, =~']" has roots at =
z | ,j/¢2\) | (/T4 ) ndz) j, —1, —j. [B3 = BO]: Finally, tal.<|ng1.:,[n] =[-,1, 11,1,
I N N - andv[n] = [--+,0,0,0,0, -] in Fig. 3, we get that the four
) ] ) . o possible outputsi[4n + p] = >, mol4k + p] + m1[4k + p] for
Fig. 3. Multiwavelet filter bank seen as a time-varying filter bank. p = 0,1,2.3 are equal [12]. Thereford;--, 1,1, 1, 1. --] is an
eigensignal of the operatd: ' . Thus, we have the equivalence of
signal must be of size” for some K. The reconstruction is easily BO, B1, B2, and B3. %

processed by applying the refinement makz) inverse of A(z)

onto the output signal (Fig. 2). A simple way of understanding We also remark that condition B2 implies thai(t), ¢1(t) are
prefiltering is then to see it as a transform such that the input Sig,QQna-fide scaling functions, i.e., that the initialization rule on which
[---.1,1,1, 1, ---] is mapped to some genuine vector eigensigndte Mallat algorithm is based apply:

associated with the eigenvalue 1Iof . For example, with the DGHM -

multiwavelet [3], we have /x(t)gi),-,(t —n)dt = z(n). (16)

LTl V2, 1 V2 LT = V2.1, V2, 1.7, (14 For p-order balancing, we impose the condition that the lowpass
[ V2, 1, V2, ] L V2,1, V2 L, ] (14) branch of a time-varying filter bank based on this multiwavelet

preserves the sampled versions of polynomials of degree pp-tb.
The results obtained (Fig. 4) using thisck are of the same order por degree 2, it means tht--, —1, 0, 1, 2, --+] has also to be
as the ones obtained using a plain Daubechies filter bank with fQyfeserved byL ™.
taps. However, the prefilters constructed so far are destroying either
the orthogonality [15] or the linear phase [4] of the system, thu,

R Direct Construction
reducing the interest of multiwavelet-based filter banks against usual

biorthogonal wavelet-based filter banks. A s_imple way to construct balanced multiwav_elets_ of arbitrary
order is to derive them from the complex Daubechies filters [6], [10].
- ) Daubechies filters are constructed using the halfband filter
B. Noncritical Sampling N .
- ..71 J) / = l, N
Another way of doing pre/post filtering is to allow noncritical Plz)=c(l+= )7 (142)" R(2) an
sampling and to construct some projection of the input signdlon h thatP P(—-) = 1 with PN jon
For example, with the DGHM multiwavelet, when starting from ari'%u(i,jtwftogfe) ;ets (thg)us_ual I;Vzlatubelz?c(heies) Ic;w;)asa:?ilg(n;v)) ;
input signal[«[0], - -, «[2"]], we transform it into some redundant(l + 27")VB(z), where B(z) is a spectral factor oR(z) with real

vector-valued input sequence coefficients. We cannot achieve orthogonality and symmetry with real
coefficients; however, by allowing complex coefficients in the spectral
|:x[0] {‘f} e 2[25] {‘/15” (15) factorization, one can construct symmetric, orthogonal FIR filters.
Writing [a[0], - -+, a[N], a[N], -+ -, a[0]] for the lowpass filter, we
construct the matrix coefficients

Imali] Reali] }
Reali] Imali]

This preprocessing is often called thmepeated signalapproach.

It doubles the size of the input signal but allows us to maintain Ali] := {
the orthogonality and linear phase of the system. However, by the

redundancy it creates, one cannot use this approach in the framewatly the refinement mask is then
of signal compression.

N N
As mentioned in [15] and [16], an issue of prefiltering is then pp(.).— %{ZA[L’]Zk 4+ o~ (VHD ZA[N _ k]zk}_ (19)
k=0 k=0

(18)

to maintain orthogonality, linear phase, and critical sampling at the
same time. However, one may rather directly design orthogonal
multiwavelets with good balance between the two scaling functions.! Condition B3 was first given by Selesnick in [12].
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@) (b)

Fig. 4. Truncation of the first-order detail subband in a DGHM multiwavelet filter bank (i.e., we fgrde= 0 in the time-varying implementation).
The input signal is symmetric and composed of a constant, a linear, a quadratic, and a cubic parts with a step. (a) Poor robustness of a system based on
DGHM without pre/post filtering. (b) Results are greatly improved by using pre/post filtering.
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Fig. 5. (a) Reproduction of the input signat-, 1,1, 1, 1, - -] by a DGHM multiwavelet-based filter bank without prefiltering. (b) Reproduction of the
eigensignal- - -, v/2, 1, V2, 1, - - -] by the same system. The mapping[of-, 1, 1, 1, 1, - -] to this eigensignal is the key idea of prefiltering.

The multifilter bank is clearly orthogonal. Moreover, defining thaso that »(¢) is a scaling function associated with the complex

¢ has approximation power ofn if one can exactly decomposeDaubechies filters; hence, we get the same smoothness and approx-
polynomials up to degree: — 1 using onlyé(t), ¢1(t) and their imation power for the multiscaling functions and the multiwavelets.
integer translates and thathas smoothnegsif ¢o(t), ¢1(¢t) havep We also easily derive that the multiscaling functions and multi-
continuous derivatives, then it is easily seen that the smoothness amdelets are symmetric/antisymmetric, as seen in Fig. 6. However,
approximation power of the Daubechies complex scaling functiotisis refinement mask when iterated does not converge properly
and wavelets transfer to the multiscaling functions and multiwaveletsecauséV (1) has eigenvalues %1 with left eigenvectors [1, 1], [1,

Namely, by definings(¢) := &1 () + joo(t), where[oo(t), ¢1(t)] —1]. We get only constrained [5], i.e., nonuniform convergence of the
is the multiscaling function associated wiNI (=), we get thatp(¢) Mallat algorithm; hence, the poor behavior of these multiwavelets in
verifies the two-scale equation applications as seen in Fig. 7.

N IN+1 B. Balancing the Nonbalanced

Jjot) = Z alkle(2t — k) + Z a[2N + 1 - E]p(2t — k) (20) Another interesting way of constructing balanced multiwavelets is
k=0 k=N+1 to balance already existing multiwavelets like the ones constructed
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Fig. 6. Balanced multiwavelet derived from the complex Daubechies filters (same approximation power and smoothness as D14). (a) Scaling functions.
(b) Multiwavelets.
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Fig. 7. Robustness to truncation of the first order detail subband with (a) ax62taps Daubechies based multiwavelet filter bank and (b) with a
Chui based balanced multiwavelet with 8 2 2 taps filter bank.

in [1] or [3]. The point is that we want [1, 1] to be a left eigenvectosymmetry/antisymmetry of the multiwavelets can be maintained by
associated with eigenvalue 1 M(1). The way to achieve this is to taking for the highpass refinement ma@Xz) := N(z) R. Namely
use a unitary matrix? such that

[1, 1] R" M(1)R = [1. 1].

o) > /o 1
(21) T p(w) :N(M /2)) R{HRTM[e]( /2 >]R}H
Defining the new refinement mask N =
d = N(7*/2) Moo (w0/2) P11 (0) = T 1 (w). (24)
P(z):=R'M(z)R (22)
and the new two-scale equation

Balancing Chui's multiwavelets [1], we obtained orthogonal, com-

pactly supported multiscaling functions/multiwavelets with symmet-

(23) ric/antisymmetric wavelets (Fig. 8). Moreover, the scaling functions
. . are flipped versions of one another, verify the [1, 1] left eigenvector

we get that [1, 1] is a left eigenvector & (1) for Ao(1) = 1 and  ;qition, and have the interesting sampling property

since the transformation is unitar® verifies (5), and therefore,

$p(0) = [1,1]"T. We notice that in the iterationR’ and R

" o o~ | i
cancel, except for the first and last term. The convergence of the /éb‘(f)q’)i(t —n)dt =z <n + 5).
iterated matrix product (5) foM imply the convergence foP,

and the smoothness and approximation power are also unchan@ésese balanced multiwavelets (which are abbrieviaBad) have

Moreover, the whole orthogonality of the filter bank is maintainedgshown very good robustness in compression algorithm without any
and although the symmetry of the scaling functions is usually lost, thee/post filtering (Fig. 7).

Pp(2w) =P (") Pp(w)

(25)
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Fig. 8. Balanced multiwavelet with approximation power of 2. (a) Scaling functions. (b) Multiwavelets. The scaling functions are flipped vens&n of o
another. They are orthogonal and have good sampling properties. The wavelets are orthogonal and symmetric/antisymmetric.
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Fig. 9. Second-order balanced multiwavelet derived from DGHM. Sampled versions of tLlaaaceigensignals of the lowpass branch of the multiwavelet
filter bank. (a) Scaling functions. (b) Multiwavelets. The system is still orthogonal but in a weaker sense: the lowpass and highpass branchallyare mutu

orthogonal {¢[n] and v[n] are uncorrelated) and the highpass branch is orthogonal (the coeffieleritare uncorrelated). Furthermore, the linear phase
of the highpass branch is maintained (symmetry/antisymmetry of the wavelets).

C. Higher Order Balancing and the new two-scale equation

One can generalize what was previously done for balancing non- Bp(2w) = P(?)Bp(w) (31)
balanced multiwavelets to higher order polynomial input signals.

Namely, in the case of DGHM, we have approximation power dhe time-varying filter bank based on this refinement mask keeps

2, ie., constant and linear input signals unchanged. Again, the convergence
of the matrix product forM implies the convergence fdP, and
— 4 / — L 0 A
1= Z V264 (t— k) +o1(t = k) (26) the smoothness and approximation power are, therefore, unchanged.
k . . . .
N However, this time, the symmetry and orthogonality by shifts of
t=> V2(k+3)o0(t — k) + (k+ o (t — k). (27)  the scaling functions are lost. Nevertheless, the system remains
]\»

orthogonal in the sense that the scaling functions are orthogonal
Therefore, if we want to preserve the sampled version of 1{ando the wavelets; therefore, it still decorrelates coarse resolution and

as input signals, we should transform them into eigensignals of thetails. Moreover, as seen in Fig. 9, the symmetry/antisymmetry and
DGHM based filter bank. Therefore, we get the equations orthogonality by shifts of the multiwavelets can be maintained by

1 V3 n VZ(n+3) taking for the highpass refinement ma@kz) := N(z) A™".
A = N A 1 = 2 (28)
1 1 n+ 3 n+1

leading to V. CONCLUSION

0 V2 After recalling some basic facts about multiwavelets, we reviewed
A= {_1 9 } (29)  some of the problems that appear when applying multiwavelets in
- . signal processing. We proposed a new way to solve these problems:
Defining the new refinement mask

the balancedmultiwavelets. By imposing the balancing conditions,

P(z):=A"M(z)A™ " (30) we have been able to construct robust multiwavelet filter banks for
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processing 1-D signals in a simple way. Thus, we obtained orthogoiied] X.-G. Xia, “A new prefilter design for discrete multiwavelet transforms,”
(sometimes in a weaker sense), linear-phase FIR systems preserving preprint, 1996.

sampled versions of polynomials. We have now new tools to process

images and sounds in an orthogonal linear-phase FIR environment

available for further experiments. Some issues remain open, however.

We still have to develop some systematic and simple way to construct On the Least Asymmetric Wavelets
orthogonal symmetric balanced multiwavelets with any desired ap-
proximation power and order of balancing (preservation of sampled Milo§ I. Doroslovaki

versions of higher order polynomial). Since the submission of this

correspondence, important new results in that direction have been

obtained [9]. We have linked the concepthigh-order balancingo Abstract— The asymmetry of Daubechies’ scaling functions and

a very natural factorization of the lowpass refinement mask thatf@veléts can be diminished by minimizing a special second moment
in” time for the wavelet-generating discrete-time filter. The moment

the counterpart of the well-knowzeros atr condition for wavelets. is involved in an uncertainty relation for discrete-time signals. Other

This enabled us to Clarlfy the subtle relations between apprOleatlﬂféasures of asymmetry are addressed as well, and corresponding

power, smoothness, and balancing order. Using these new resultsyeselts are compared.

have been able to construct a new family of orthogonal multiwavelets

with symmetries and compact support that is indexed by the order |. INTRODUCTION

of balancing. More details (filters coefficients, drawings of the whole

family, frequency responses,.) can be obtained on the World Wide

Web athttp://lcavwww.epfl.ch/ “lebrun

Daubechies’ wavelets are continuous-time functions whose mother
wavelet has a finite support width. They constitute an orthonormal
basis for the functions of finite energy [1], [2]. Moreover, the mother
waveletw(r) has the highest number of vanishing moments for a
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