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M-Channel Compactly Supported Biorthogonal case, it is possible to obtaif/-channel wavelet bases frod-
Cosine-Modulated Wavelet Bases channel PR orthogonal filter banks with added regularity condition.
In this correspondence, we will derive a sufficient condition for
S. C. Chan, Y. Luo, and K. L. Ho the M -channel PR filter banks to construki-channel biorthogonal

bases of compactly supported wavelets. It is found that the lowpass
filters in the PR filter bank have to satisfy similar regularity condition
Abstract—In this correspondence, we generalize the theory of com- as in the orthogonal case, and the bandpass and highpass filters
pactly supported biorthogonal two-channel wavelet bases tdZ-channel. have to satisfy the admissibility condition. The desigméfchannel

A sufficient condition for the M-channel perfect reconstruction filter —\yayelet bases is considerably more difficult than the two-channel
banks to construct M -channel biorthogonal bases of compactly supported . .

wavelets is derived. It is shown that the construction of biorthogonal case due to _the large number (_)f_ des'g“ para_meters the_
M-channel wavelet bases is equivalent to the design of &-channel Cchannel PR filter bank and the difficulty in meeting the regularity

perfect reconstruction filter bank with some added regularity conditions. ~condition exactly. In this correspondence, we propose to use cosine-
A family of M-channel biorthog_onal wavelet bases based on the cosine-modulated filter banks (CMFB’s) [11]-[13], [16], [19] to construct
modulated filter bank (CMFB) is proposed. It has the advantages of gch g wavelet basis. The advantages of the CMFB are its low design
simple design procedure, efficient implementation, and good filter quality. . . . ) . .
A new method for imposing the regularity on the CMFB's is also and implementation complexities, good filter quality, and ease in
introduced, and several design examples are given. imposing the regularity condition. Nguyen and K0|Ip|IIa| [13] have
also considered the design of orthonormal cosine-modulated wavelets
using the orthogonal CMFB. The regularity conditions are imposed
as additional constraints in the optimization. Gopinath [14] classified
Wavelets are functions generated from the dilations and translatiahg modulated filter banks according to the type of the discrete cosine
of one basic function called the wavelet function [2], [3], [6]. Theor sine transform with which they are associated and generalized the
Haar system is considered the earliest example of such wavelgdults of modulated wavelet tight frames.
bases [2]. Grossmann and Morlet [1] were the first to construct aThe outline of the paper is as follows. In Section Il, we shall
wavelet function in the square integrable real spake Recently, briefly review the theory of théZ-channel PR filter banks. Section
orthonormal wavelet bases have been studied extensively bothjlinis devoted to an overview of théZ-channel wavelet bases. In
the mathematical and signal processing communities [2]-[8], [18]. Bection IV, the sufficient condition for th& -channel PR filter banks
signal analysis, the wavelet transform [3], which is a representati@n construct)M -channel biorthogonal bases of compactly supported
of a signal in terms of a set of wavelet basis functions, allows thgavelets is derived. The theory and design of the CMFB is discussed
signal to be analyzed in different resolutions or scales. The waveigtSection V. A new method for imposing the regularity condition
transform makes a different tradeoff in the time—frequency plane @8 the CMFB and several design examples are given in Section VI.
compared with the short-time Fourier transform. It has better tinfnally, we summarize our results in the conclusion.
resolution in high frequency and better frequency resolution in low
frequency. This property is very useful to detect discontinuity in
nonstationary signals, which usually have slowly varying components
with transient high-frequency spikes. Fig. 1 shows the structure of al/-channel uniform filter bank
Multiresolution approaches have been popular in the computith 2i(n) and gi(n) as the analysis and synthesis filters, respec-
vision community. Mallat defines an important concept of multiredively. A filter bank is said to be a PR filer bank if the input and
olution analysis and wavelet bases [4]. The theory of wavelets @§tput are equal except for a delay, [i.¢(n) = x(n — na)l.
also closely related to that of multirate perfect reconstruction (PR)FOr perfect reconstructior, (n) andgi(n) have to satisfy certain
filter banks. Daubechies constructed compactly supported dyaﬁ?B conditions. These conditions can either be expressed in the time
orthonormal wavelets based on iterations of two-channel PR orth@gmain or in theZ-transform domain. For convenience, we shall
onal filter banks with added regularity condition [2]. Since twogdiveé the one in the time domain.
channel orthogonal PR filter banks cannot have nontrivial linear-phasé e filter bank has the PR property if it satisfies
solution, more general biorthogonal filter banks were studied [5], [6]. M—1
This approach has further been extendedfechannel orthonormal Z Z hi(Mn +n1)gi(—=Mn —ny) | = 8(ny —ny).  (2.1)
wavelet bases [7], [8]. It is shown that any square integrable signal =~ | i=
can be expanded in terms of dilations and translationg/of- 1
functions,\Ilgj’ k)(;c), i=1,2,---, M —1, which are called théi-
channel W‘a.velet.s. For a large class of signﬂl&channel wavelet . Z hi(n)g; (=M= n) = 6(0)6(i — j). 2.2)
decomposition gives a more compact representation than the dyadic ~
one [7]. In addition, the discrete wavelet transform provides a good
approximation to the KLT of several processing [17]. Like the dyaditor notion convenience, we shall introduce the mirror image)

. INTRODUCTION

Il. THEORY OF THE M -CHANNEL PR HLTER BANKS

Another equivalent condition is given by

of gi(n) as
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Fig. 1. (a)M-channel uniform filter bank and (b) Two-levalf-channel tree-structured analysis filter bank.

and ¢(x) by using the infinite products
Z hi(n)g;(MC+n) = 6(0)8(i — j). (2.5) B(¢) = (27) "1/ H Ho(M77¢) @3)

n Jj=1

If the filter bank is orthogonak.(n) andg;(n) will be time reverses and )
of each other. The PR condition is further simplified to [I)(E) _ (27)_1/2 ﬁ Gol Wf_jE) (3.4)

= 7 0\ 4V . .
M—1 j=1
Z ZO hi(Mn +na)hi(Mn +n2) | = 8(n —n2)  (26)  1pege infinite products can only converge if

and Ho(0) = Go(0) = 1. (3.5)

, . i L Equations (3.3) and (3.4) will then converge uniformly and absolutely
D i) hs (M n) = 6(08( = j). (27) on compact sets t@(¢) and (¢), which are well-defined”™
" functions. In addition, from the Paley—Wiener theorem, it can be
shown that the infinite product is an entire function of exponential
type, and it is a Fourier transform of a distribution with support in
The theory of wavelets is closely related to that of multirate filteqv,, N, [5]. From (3.3) and (3.4), we also have
banks [6], [8]. It has been shown that discrete dyadic wavelets can

IIl. OVERVIEW OF A -CHANNEL WAVELETS

be obtained from two-channel PR filter banks [2], [5], [6] with added $(¢) = Ho <i) ) <£) (3.6)
regularity condition. Here, we shall consider the general casd of M M
channel biorthogonal wavelet bases. There will be two dual bases, B(6) =Gy <£) @(i) 3.7)
each generated from a set of wavelet functions. First of all, we start M M

- iscrete-ti : 7172 _ . .
with the discrete-time Fourier transforms (scaled#y '*) of ha(n)  Taking the inverse Fourier transform leads to the well-known two-

and go(n) scale difference equations ofz) and its duals(z) as
Ho(w) =M '/? Z ho(n)e 7™ (3.1 o(x) =vVM Z ho(n)o(Mz —n) (3.8)
Go(w)=M"""? Z Jo(n)e ™. (3.2) o(x) =vVM Z Go(n)o(Mx —n). (3.9

By iterating these discrete filters, it is possible to define the FouriEor orthonormal wavelets, the scaling functiofr) will be identical
transform®(¢) and ®(¢) of the scaling functions(z) and its dual to its dual. Equations (3.8) and (3.9) tell us thdt) and¢(z) can
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be written as a linear combination of their contracted ({iy and where
shifted versions. Therefore, the space spanned by R T 1
- o A==, B==. (3.18)
Pk )(T) — A]L[—J/—é(ﬂf—]x — k) A B
and C2) They are linearly independent.

U () =M PG(M e — k), i, keeZ (3.10) For dyadic orthonormal wavelets, the scaling functioqr) is
identical to its dual. SinceM is equal to two, there is only one
at a given resolutiori can be viewed as a multiscale approximatiogyayelet functiont(z). For the biorthogonal case, there are two
of a signalf (). To show that)(«) ande(x) can be used to generatescajing functions and wavelet functions. The two conditions in C1)
a basis, we need/ — 1 wavelet functions and their duals to describeyng C2) can be satisfied [5] if the associated multirate filter bank

the remaining “details” in the approximation hi(n) andg,(n) have the PR property and the scaling functions that
Ui(x) =VM Z hi(n)o(Mz — n) satisfy the decay conditions
" 3 —1/2—¢
i=1.2, -, M—-1 (3.11) |(I>(€)| SO(1+|£|)
and and
- T ) —1/2—e
Yi(w) = VM Z gi(n)¢ H( Mz — n) [ 2O < C(L+[E]) , for someC”
n e > 0. (3.19)
i=1,2, -+, M—1. (3.12)

3 It had also been proved in [5] that f(w) and Gy (w) satisfy the
The functionsy; («) andy; («) can only be candidates for generatindregularity condition”
Riesz bases of wavelets if they satisfy the admissibility condition

14 27"
| Hy(z) =
WiOF e o o and/ 2P € < o0 (3.13) o) { } Q@)
€] €] and
where¥; (¢) and ¥, (¢) denote the Fourier transforms ¢f(z) and 1+
¢:(x), respectively. Fow; (), ¢;(x) € L*(R), ¥;(¢), and ¥;(£) Go(z) = {T} Q'(2) (3.20)

are continuous, and (3.13) implies that
. then the decay condition is satisfied. df(z) (Q’(z)) is bounded
(2/7)1/2\111(0) = / Yi(x)dx =0 above by an appropriate constant, then the regularity of the scaling
function (and its dual) can be estimated [5]. We shall come to
and . this decay condition ford-channel wavelets in Section IV. It is
(2m)'/20,(0) = /’uzi(w)dw =0. (3.14) interesting to note that the admissibility condition is automatically
satisfied ford = 2. In this case, we have

Go(z) = Hi(—2) andG1(z) = —Ho(~2).  (3.21)

Taking the Fourier transform of (3.11) and (3.12), we have
e 1 i (E/M)n £
Vi) = [1/_M Z hi(n)e S (B15)  Therefore, ifH, (=) and Go(z) satisfy the regularity condition, i.e.,
" have multiple zeros at = =, thenH,(z) and G, (z) will have the

= 1 ~ —j(&/Mn | F =
J,(¢) = [\/W Z Gi(n)eIE/AD F,(%) (3.16) Same number of zeros at = 0.

For the A -channel orthonormal waveletg () is identical to

) . its dual, but there areM — 1 wavelet functions,v;(x), i =
Since ®(0)and ©(0) cannot be zero [(3.3)~(3.5)], this leads to thq 5 ... 37 _ 1 [7], [8]. The necessary conditions in (3.17) are

necessary conditions off;(z) and Gi(z) also satlsfied because faf-channel orthogonal filter bank, we have
1 M—1
— hi(n)| =H;(0)=0 .
[\/M Z ( )} © > Hi(w)P =1 (3.22)
and i=0
Since Hy(0) = 1, we must have;(0) =0,:=1,2,---, M — 1.
\/— Z gi(n)| =Gi(0)=0 It had been shown in [8] that ifo(w) satisfies the K -regularity
condition”

i=1,2,--, M—1. (3.17)

. _ , - LTz e g o= "
To show that the translated and dilated versions gf:) and; () Ho(z) = { i Q(2) (3.23)
in (3.11) and (3.12) generate a Riesz basis, we need to show the -
following. then the decay condition will also be satisfied.

C1) The collection (3.11) and (3.12) constitutes a frame, i.e.,

30 < 4 < B < oc such that IV. THEORY OF M-CHANNEL BIORTHOGONAL WAVELETS

G» z,) In this section, we generalize the idea in [5] to thé-channel
AP < 21 ZA| Ry “ < BIfIF biorthogonal bases of compactly supported wavelets. We shall prove
= that if the scaling functions of a biorthogonal PR filter bank satisfy
and the decay conditions (3.19), then the collection (3.11) and (3.12)
. ml . . ) generates a Riesz basis. In particular, we need to establish (3.18),
AP <0 > S DO < BlIFI”° i.e., they generate a frame, and show that the collection (3.11) and

=1k (3.12) is linearly independent.
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A. The Collection Generates a Frame

Suppose thad(x) andgz;(x) satisfy the decay condition (3.19); it
can be shown that

Al)
ST eSO <P
7, k
and
3 Ko 0P < o) 4.1)
7, k
A2)
M—-1 o .
Fa) =3 3 (fo
gk i=1
M—1
— Z f L,(J,k)>w(1 1-) (4.2)
J, k=1

Due to space limitations, the proof is omitted. Interested readers are

referred to [15]. The proof is similar to the two-channel filter bank
situation [5].

The upper bound in (3.18) is immediate from (4.1). For the lower

bound, we have

171l = sup 1(7. o)
i
M—1
< sup Z > £ 00D 9P, g)
[lgll=1 i=
By (4.2)]
M—1 1/2
< [Z ST r¢)§f””>|z}
gk =1
M—1 1/2
- S [Z 3 aﬂ
gll=1 7,k =1

(By Schwartz the inequality)
M—1 1/2
<c|z ¥ weeor|

B. The Collection Is Linearly Independent
We first show that
B1) ¢ " andy"", j, k € Z are linearly independent if and
only if

@O GGy = 5 = ek = )8 = ). (43)

[By (4.1)]

This is the biorthogonal relation for Riesz bases.
B2) A sufficient condition for (4.3) to hold is

<¢(o,e)7 5(0%)) =6(k —1). (4.4)

That is,¢(x — £) andé(x — k) are biorthogonal.
In Appendix A, we shall show that (4.4) is satisfiedgifz) and
(,7’)(1») satisfy the decay condition (3.19).
Proof:

1145

and hence, [1 (wf,’““ (;,k)m(a K

Tk X0 e the
g kA gk
¢ B are linearly independent, then this implies

wymﬁwﬁ”bzéu—fww—ywa_f)
First, we shall show that

(61, 61 9) = by iff (611,

oy = 6. (4.5)
Equation (4.5) follows from the definition gf® *), $(°:©)

(0, 500 = [ ota = Wit = 0)ds

and the changing of variable= M 7«. Using the relation-
ship betweens(z), [¢(z)], and ¢ (z), [¢'(x)], we have

Z ho(n) (] N AMJrn)( ) (4.6)
Z hi(n)pl = MEE) (). (4.7)

(J k) (x) =
o () =

We shall verify that (4.3) holds fof = j'. From (4.6) and
(4.7), we have

W9 G0y

_ Z hi(/L)g,:’(”b)((,/)(j71’]MkJrn), J)(j*l,l\l€+m)>

n,m

= > hi(n)gur [M(k =€) +n] = 6(k — 0)5(i —i')
[frZ)m (2.5) and (4.5)]. (4.8)

Similarly, from (4.6) and (4.7)
<1/,(J k) gl 4))

= Z hz'(n)go('rn)((/’(jil’ﬁ/[wrn): G;(jil"Wer»

= > hi(n)go[M(k =€) +n] = 8(k — 0)8(i) =
[frgm (2.5) and (4.5)]. (4.9)

Since, forj < j'. 9" *) can be written as a linear
combination of¢" 9, it follows that
WER Uy =0, i<y (4.10)

Similarly, since forj > j', v"%"* can be written as a linear
combination of thes 9, it follows that

@O Gy =0, i > (4.11)

This proves B2).

C. K-Regularity
In this section, we shall show that if the lowpass analysis and

B1) If (4.3) is satisfied, then ang in the closed linear span of the Synthesis filters satisfy some regularity conditidki-tegularity [7],

9B with (i, j, k) # (i, j', k') satisfies(f, 0 F)y =
0. It follows that ¢} **)is not in this closed linear span.
From (4.2), we have

M—1

(JJﬂ) Z Z(U'U’k)

TG k) (5 K)
(GH Y

H(J(Z) =

[8]), then the scaling functions and wavelets will satisfy the decay
conditions in (3.19).
Ho(w) is said to beK -regular if it can be factored as

14z 2. g =MD K

y Q) (412)
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Fig. 2. Four-channel orthogonal CMFB wavelet bases. Filter length is 40. (a) Prototype filter in frequency domain. (b) In time domain. (c) Aealyaig«filt

wherez = ¢/“, andQ(z) is a trigonometric polynomial. The precise V. THEORY OF THE COSINEMODULATED FILTER BANK
relationship betweer -regularity of the scaling filtershp(n) and | this section, we shall introduce the theory of the CMFB and its
go(n)] and the smoothness of the scaling functions and waveletsqgsjgn procedure. The design procedure will be used in Section VI
unknown even in the two-channel case. Using the techniques in [Sldtconstructis-channel wavelet bases. More details of CMFB theory
is possible to estimate the regularity of the scaling function. In fagtgn pe found in [11]-[13], [16], and [19]. In the CMFB, the analysis
we can prove the following [15]. filter bank f.(n) and synthesis filter bank(n) are obtained by

If for some valuek > 0 modulating the prototype filters(n)

. _ ” _1/92 fe(n) =h(n)ek, n; gru(n) = h(n)ek »

By = MEY--- QML * < ATV (41 fr(n)

% 111?X|Q(E)Q( £) - Q( OI"" < (4.13) Fo 0.1 e, M —1
n=01---,N—-1 (5.1)

then ®(¢) satisfies the decay condition
whereM is the number of channels, aid is the length of the filters.

: W) 1 log By The cosine modulation that we use is
|26 <CA+[E)™ 77, withe =L - 5 — ——2 > 0. ; N — ;
2 logM Ch,n = 2 COS |:(2k* +1) _T/ <n - u) +(-1)* I:|
(4.14) 2M 2 4
(5.2)
The proof will be given in Appendix B. This modulation is also closely related to the extended lapped

In summary, to construck/-channel biorthogonal bases of com-ransform (ELT) proposed in [12]. It is noted thattif») is a linear-
pactly supported wavelets, the lowpass filters of the associated phase filter, namelyi(n) = A(N — 1 — n), then fi(n) and gi.(n)
channel PR biorthogonal filter banks should satisfy Eheegularity will be time reverses of each other, and we obtain the orthogonal
condition, and the highpass and bandpass filters should satisfy @dFB. On the other hand, if(n) is not a linear-phase filter, then
admissibility condition. we obtain a biorthogonal CMFB.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 4, APRIL 1998 1147

Scaling Function Wavelet Function

0.25

0.2}

0.15}

01t

0.05¢

0 50 100 150 200 0 50 100 150 200
(@ (b)

Wavelet Function Wavelet Function

0.3r 3 0.3}
0.21 1 0.2}
0.1} 1 0.1}
0 0
-0.1 0
-0.2
-0.2
-0.3
0 50 100 150 200 0 50 100 150 200

© (d)

Fig. 3. Scaling and wavelet functions of four-channel orthogonal CMFB wavelet bases. (a) Scaling function. (b) Wavelet function-1. (c) Waiaie? func
(d) Wavelet function-3.

Letting H(z) = ifo’l 7RG (z*M) be the type-l polyphase to put different weightings to different parts of the stopband and
decomposition [9] of the prototype filter, it can be shown [16], [19provides more control over the stopband attenuation.
that the PR conditions are given by The design problem is formulated as the constrained optimization

Gr(2)Ganvi—p—1(2) + Grrgr (2)Grr—i—i1 (2) = 8277 (5.3) min / |H((3‘]‘°J)|2 dw (5.6)
b S,

For orthogonal CMFB, the PR conditions are further simplified to subjected to the PR conditions in (5.3) or (5.4) for orthogonal and

Gr(2)Gr(2) + Grrn (2)Grrgr(2) = 1 (5.4) biorthogonal CMFB.

. The design procedure is similar to the one that we had introduced in
where Gi.(z) = 2" 'Gam—1-x(z). It can be seen that the PR[16] and the optimization is performed using the NCONF (DNCONF)
conditions in (5.3) and (5.4) depend only on the prototype fiiter).  subroutine of the IMSL library. In the case of biorthogonal CMFB, the
There will beM /2 PR conditions whed{ is even and A/ /2| when linear-phase requirement of the prototype filter is relaxed. Therefore,
M is odd. Therefore, the design and implementation complexitig® have more freedom in choosing its coefficients. In particular,
can be greatly reduced. In the orthogonal case, the number of figerthogonal CMFB can be used to realize filter banks with different
parameters is further reduced by half due to the linear-phase propeigjays.
of the prototype filter.

Since the filter banks are frequency-shifted versions of the proto-

) S L T THE DESIGN OF M -CHANNEL CMFB WAVELET BASES
type filter, the objective function in the optimization is

_ In this section, we are going to construct a family Adf-channel
P :/" |H ()2 dw (5.5) wavelet bases called cosine-modulated wavelet bases using the
ws ’ CMFB. According to the conditions derived in Section 1V, the
where w; is the stopband cutoff frequency whose value should tl)gwpa_ss analysis (synthesis) filter should satisfy fieregularity
: - condition
chosen between/2M and 7 /M. It is also possible to replace the

integral in (5.5) by a summation. It has the advantage of being able Fo(2)=C[l42=1+ --- +2 ™ VEB(2) (6.1)
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Fig. 4. Four-channel biorthogonal CMFB wavelet bases. Filter length is 40. (a) Prototype filter in frequency domain. (b) In time domain. (c) Analysis
filter bank. (d) Synthesis filter bank.

where B(z) is a polynomial inz, and C' is a constant. Moreover, of (6.4) should also be zero. This will be the caséHife’*) have
all the highpass or bandpass filters should have at least one zeraeabs atu, + (n/2M). Therefore, for thel/-channel CMFB to have
w = 0. Due to the low design and implementation complexities of thiae K -vanishing momentH (¢’*) should have zeros of ordér at
CMFB, it has been used to design compactly supported orthonormal = (4m + V)x/2M, m = 1,2, ---, M — 1.

cosine-modulated wavelet bases [13]. Our approach is to decomposkence the polynomiaP(z) is given by

the prototype filterH (=) into two parts:

M-—1
H(z) = Q(2)P(2) (6.2) P(z) = { [T (7" = etttz
and determine the polynomiél(=) such that after modulatiofy ( ») = X
will have the required zeros at = (2n()/M, ¢ =1,2,---, M —1. 1 A(M—m)—1 /20
From (5.1), we note thaf,(n) is derived fromh(n) using the cosine T e ]} : 6.5
modulation
N oo N1 T By multiplying P(z) with Q(z) that contains the free parameters,
fo(n) = hinjco,n = 2h(n) cos {W <" 2 ) + ﬂ the prototype filtetH (=) will always satisfy the regularity condition
—92h(n) cos (L " 90) of a M-channel wavelet.
2M This design procedure can be used in both orthogonal and biorthog-
where onal cases because the regularity condition is identical in both cases.
o= (M -N+ 1)7"* =01 e N1, (6.3) Lis interesting to note that due to the frequency shift property of
M ’ o ' CMFB, all the highpass and bandpass filters will have the same
Therefore, the frequency responseff(¢’*), is given by number of zeros at = 0 and satisfy (3.17) automatically. A number

of orthogonal and biorthogonal cosine-modulated wavelet bases with
different values ofAf and K were designed. Fig. 2(a)—-(c) shows

It means thatH (¢’) is shifted along the frequency axis by2M  an example of the prototype filter and analysis filter bank of an
and —(7/2M. If w, are zeros ofF, (e’*), then the right-hand side orthogonal wavelet bases. The length of the filtersVis= 40 with

F(J(Efjw) _ 6]»§9H[ej(wv77r/2]b[)] + efj;pH[ej(wﬁ»ﬂ/ZJW)]. (64)
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Fig. 5. Scaling and wavelet functions of four-channel biorthogonal CMFB wavelet bases. (a) Scaling function. (b) Dual scaling function. (c) Wavelet
function-1. (d) Wavelet function-2.

M = 4 and K = 1. Fig. 3 shows the corresponding scaling angCMFB) is used to construct a family of such wavelet bases that has
wavelet functions. Figs. 4 and 5 show another example of a fouhe advantages of low design and implementation complexities, good
channel biorthogonal CMFB and its corresponding wavelet basé#ter quality, and ease in imposing the regularity and admissibility
It can be seen from Figs. 2(a) and 4(a) that the prototype filtecsndition. A new method for imposing the regularity on the CMFB
have the desired zeros at /8, 57/8, 7w /8 and their conjugates. is also introduced, and several design examples are given.

Due to the regularity condition, the degree of freedomifr) is

reduced (for the same filter length), and the cutoff frequency of

the prototype filter is enlarged. As a result, the overlap between APPENDIX A

adjacent analysis/synthesis filters is also increased. The scaling anflere e shall show that if bothio(¢) and Go(¢) satisfy the

wavelet functions in Figs. 3 and 5 are obtained from iterating the . jition (3.19), thems(x — () and (g(r — 1) are biorthogonal. The
corresponding two-level tree-structured filter bank [Fig. 1(b)]. proof is similar ’to the two-channei case in [5].
It should be noted thak -regularity is only a sufficient condition to Proof: First, we define the sequence

satisfy the decay condition in (3.19). Therefore, wavelets with higher
K -regularity are not necessarily smoother than other wavelets with
lower K -regularity if the filter lengths of both systems are the same. . 1 i . .

Hence, there is a tradeoff between the number of free parameters in ~ Un(&) = Vo3 [H Ho(M 'lf)} X—r, = (M7"E)
the polynomial@(z) and the order of zeros that are imposed. =1
1

Un(§) =
VII. CONCLUSION Vor
In this correspondence, a theory &f-channel biorthogonal bases

of compactly supported wavelets constructed fréfiichannel PR |t can be proved that
filter banks is presented. It is found that the lowpass filters in the
PR filter bank have to satisfy a similar regularity condition as in i
the orthogonal case, and the bandpass and highpass filters have to /un(ﬁ)'ﬁn(ﬁ — () dz = 8.
satisfy the admissibility condition. The cosine-modulated filter bank

[H Ho (M_"'E)} X—m. =] (MT"E).
J=1
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Fig. 5. (Continued) Scaling and wavelet functions of four-channel biorthogonal CMFB wavelet bases. (e) Wavelet function-3. (f) Dual wavelet function-1.

(g) Dual wavelet function-2. (h) Dual wavelet function-3.

To prove fd)(:c)c;(w— O de = b, it suffices to_ provel? —
limy,—oo Un(€) = P(E) and L2 — lim, —o U, (&) = ®(&). Now

sin I
U,.(8)] = 1{ sin(¢/2)

V2 | M7 sin(M—7¢/2)
JTIROL O x—r, < (M "),
=1

On the other hand

2
|sin €] > = |¢ for J¢| < 7 /2.

Hence, [sin(M "€/2)|  x(_r..) (M "€) < xM"[¢]"", which
implies
sin(&/2) _—
‘m‘x[_w,ﬂu[ €)
<2 ey | SCaFED

Writing n = kn' + ¢ with 0 < ¢ < &,

H QM8 < [sgpm(z)@ H (M)
=1

£'=0

< |:sup |Q(§)|} qc(l + |€|)log By/log M
3

Putting it all together, we have
|U“ (£)| S O/(l + |E|)—L+lug By /log M

whereC' is independent of:. Sincel,, (£) converges pointwise to
d(¢), the Lebesgue dominated theorem implies até) tends to
®(¢) in L*(R). The L*-convergence of’,, (¢) is proved analogously.
Therefore,¢(x — () and¢(x — (') are biorthogonal.

APPENDIX B

Here, we shall prove thak(¢) satisfies the decay condition (4.17)
if Ho(w) has K -regularity. We will consider the cad¢| < 1 and
|€] > 1 separately

1° ¢ < 1.

Consider

|D(&)] =

[[H o) < T+ CM)e)
=1 Jj=1

. ! -
which is uniformly bounded fot¢| < 1. Sinceexp[C|¢|/M — 1]
is monotonic increasing in the range [0, 1] aji(¢)| < C(1 +
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e~/
always choose a proper value ©f such that the decay condition is
satisfied. Therefore, we need only to consider the ¢gse 1.

2°[¢] > 1.

Since
T4e ™ 4e @8 .. g e (M-I
M
11- e—J U€ eI M —1)E/2 sin(M¢/2)
T M 1-—c" M sin £/2
we have

oo 1 _ iM—)
° —i(M=1)M~fe/2 sin[M ™ (= ﬂf/z]
M sin M—¢€/2
_ —se/2 sin(E/2)
£/2

_ s [ S/
] L M sin M—tg/2

Hence, we have

@m)~ 2 ] Ho(M~7¢)

®(¢) = |
= exp(—jLE/2) rm ¢/2) r ﬁ M)
L E/2)
with 9(¢) = Q(&/M)Q(e/M?)---Q(¢/M"). Since|¢| > 1, there

exists(y > 0 so thatdM 0 < |¢| < M’““OH). By the same argument
as in the casd¢| > 1

[T viar*e =] ol a ety
(=041 i=0

is bounded independently af since [M ~“‘“0+D¢| < 1. On the
other hand

H 0(]\[*“5) §B5(40+1) < B}’:Jrlog\ﬁ\/loﬁ; M

(=lp+1
< Cl(l + |£|)log By /log N[.
Finally, we have the desired result®(¢)] < C(1 +
|£|)7L+log By /log AI.
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