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-Channel Compactly Supported Biorthogonal
Cosine-Modulated Wavelet Bases

S. C. Chan, Y. Luo, and K. L. Ho

Abstract—In this correspondence, we generalize the theory of com-
pactly supported biorthogonal two-channel wavelet bases toMMM-channel.
A sufficient condition for the MMM -channel perfect reconstruction filter
banks to constructMMM-channel biorthogonal bases of compactly supported
wavelets is derived. It is shown that the construction of biorthogonal
MMM-channel wavelet bases is equivalent to the design of aMMM -channel
perfect reconstruction filter bank with some added regularity conditions.
A family of MMM -channel biorthogonal wavelet bases based on the cosine-
modulated filter bank (CMFB) is proposed. It has the advantages of
simple design procedure, efficient implementation, and good filter quality.
A new method for imposing the regularity on the CMFB’s is also
introduced, and several design examples are given.

I. INTRODUCTION

Wavelets are functions generated from the dilations and translations
of one basic function called the wavelet function [2], [3], [6]. The
Haar system is considered the earliest example of such wavelet
bases [2]. Grossmann and Morlet [1] were the first to construct a
wavelet function in the square integrable real spaceH2. Recently,
orthonormal wavelet bases have been studied extensively both in
the mathematical and signal processing communities [2]–[8], [18]. In
signal analysis, the wavelet transform [3], which is a representation
of a signal in terms of a set of wavelet basis functions, allows the
signal to be analyzed in different resolutions or scales. The wavelet
transform makes a different tradeoff in the time–frequency plane as
compared with the short-time Fourier transform. It has better time
resolution in high frequency and better frequency resolution in low
frequency. This property is very useful to detect discontinuity in
nonstationary signals, which usually have slowly varying components
with transient high-frequency spikes.

Multiresolution approaches have been popular in the computer
vision community. Mallat defines an important concept of multires-
olution analysis and wavelet bases [4]. The theory of wavelets is
also closely related to that of multirate perfect reconstruction (PR)
filter banks. Daubechies constructed compactly supported dyadic
orthonormal wavelets based on iterations of two-channel PR orthog-
onal filter banks with added regularity condition [2]. Since two-
channel orthogonal PR filter banks cannot have nontrivial linear-phase
solution, more general biorthogonal filter banks were studied [5], [6].
This approach has further been extended toM -channel orthonormal
wavelet bases [7], [8]. It is shown that any square integrable signal
can be expanded in terms of dilations and translations ofM � 1

functions,	(j; k)

i (x); i = 1; 2; � � � ; M�1, which are called theM -
channel wavelets. For a large class of signals,M -channel wavelet
decomposition gives a more compact representation than the dyadic
one [7]. In addition, the discrete wavelet transform provides a good
approximation to the KLT of several processing [17]. Like the dyadic
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case, it is possible to obtainM -channel wavelet bases fromM -
channel PR orthogonal filter banks with added regularity condition.

In this correspondence, we will derive a sufficient condition for
theM -channel PR filter banks to constructM -channel biorthogonal
bases of compactly supported wavelets. It is found that the lowpass
filters in the PR filter bank have to satisfy similar regularity condition
as in the orthogonal case, and the bandpass and highpass filters
have to satisfy the admissibility condition. The design ofM -channel
wavelet bases is considerably more difficult than the two-channel
case due to the large number of design parameters in theM -
channel PR filter bank and the difficulty in meeting the regularity
condition exactly. In this correspondence, we propose to use cosine-
modulated filter banks (CMFB’s) [11]–[13], [16], [19] to construct
such a wavelet basis. The advantages of the CMFB are its low design
and implementation complexities, good filter quality, and ease in
imposing the regularity condition. Nguyen and Koilpillai [13] have
also considered the design of orthonormal cosine-modulated wavelets
using the orthogonal CMFB. The regularity conditions are imposed
as additional constraints in the optimization. Gopinath [14] classified
the modulated filter banks according to the type of the discrete cosine
or sine transform with which they are associated and generalized the
results of modulated wavelet tight frames.

The outline of the paper is as follows. In Section II, we shall
briefly review the theory of theM -channel PR filter banks. Section
III is devoted to an overview of theM -channel wavelet bases. In
Section IV, the sufficient condition for theM -channel PR filter banks
to constructM -channel biorthogonal bases of compactly supported
wavelets is derived. The theory and design of the CMFB is discussed
in Section V. A new method for imposing the regularity condition
on the CMFB and several design examples are given in Section VI.
Finally, we summarize our results in the conclusion.

II. THEORY OF THEM -CHANNEL PR FILTER BANKS

Fig. 1 shows the structure of anM -channel uniform filter bank
with hi(n) and gi(n) as the analysis and synthesis filters, respec-
tively. A filter bank is said to be a PR filer bank if the input and
output are equal except for a delay, [i.e.,y(n) = x(n � nd)].

For perfect reconstruction,hi(n) andgi(n) have to satisfy certain
PR conditions. These conditions can either be expressed in the time
domain or in theZ-transform domain. For convenience, we shall
give the one in the time domain.

The filter bank has the PR property if it satisfies

n

M�1

i=0

hi(Mn+ n1)gi(�Mn� n2) = �(n1 � n2): (2.1)

Another equivalent condition is given by

n

hi(n)gj(�M`� n) = �(`)�(i� j): (2.2)

For notion convenience, we shall introduce the mirror image~gi(n)

of gi(n) as

~gi(n) = gi(�n): (2.3)

Equations (2.1) and (2.2) can then be rewritten as

n

M�1

i=0

hi(Mn+ n1)~gi(Mn+ n2) = �(n1 � n2) (2.4)
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Fig. 1. (a)M -channel uniform filter bank and (b) Two-levelM -channel tree-structured analysis filter bank.

and

n

hi(n)~gj(M`+ n) = �(`)�(i� j): (2.5)

If the filter bank is orthogonal,hi(n) andgi(n) will be time reverses
of each other. The PR condition is further simplified to

n

M�1

i=0

hi(Mn+ n1)hi(Mn+ n2) = �(n1 � n2) (2.6)

and

n

hi(n)hj(M`+ n) = �(`)�(i� j): (2.7)

III. OVERVIEW OF M -CHANNEL WAVELETS

The theory of wavelets is closely related to that of multirate filter
banks [6], [8]. It has been shown that discrete dyadic wavelets can
be obtained from two-channel PR filter banks [2], [5], [6] with added
regularity condition. Here, we shall consider the general case ofM -
channel biorthogonal wavelet bases. There will be two dual bases,
each generated from a set of wavelet functions. First of all, we start
with the discrete-time Fourier transforms (scaled byM�1=2) of h0(n)
and ~g0(n)

H0(!) =M
�1=2

n

h0(n)e
�jn! (3.1)

G0(!) =M
�1=2

n

~g0(n)e
�jn!

: (3.2)

By iterating these discrete filters, it is possible to define the Fourier
transform�(�) and ~�(�) of the scaling function�(x) and its dual

~�(x) by using the infinite products

�(�) = (2�)�1=2
1

j=1

H0(M
�j
�) (3.3)

and

~�(�) = (2�)�1=2
1

j=1

G0(M
�j
�): (3.4)

These infinite products can only converge if

H0(0) = G0(0) = 1: (3.5)

Equations (3.3) and (3.4) will then converge uniformly and absolutely
on compact sets to�(�) and ~�(�), which are well-definedC1

functions. In addition, from the Paley–Wiener theorem, it can be
shown that the infinite product is an entire function of exponential
type, and it is a Fourier transform of a distribution with support in
[N1; N2] [5]. From (3.3) and (3.4), we also have

�(�) =H0

�

M
� �

�

M
(3.6)

~�(�) =G0

�

M
� ~�

�

M
: (3.7)

Taking the inverse Fourier transform leads to the well-known two-
scale difference equations of�(x) and its dual~�(x) as

�(x) =
p
M

n

h0(n)�(Mx� n) (3.8)

~�(x) =
p
M

n

~g0(n)~�(Mx� n): (3.9)

For orthonormal wavelets, the scaling function�(x) will be identical
to its dual. Equations (3.8) and (3.9) tell us that�(x) and ~�(x) can
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be written as a linear combination of their contracted (byM ) and
shifted versions. Therefore, the space spanned by

�
(j; k)(x) =M�j=2

�(M�j
x� k)

and
~�(j; k)(x) =M�j=2 ~�(M�j

x� k); j; k 2 �Z (3.10)

at a given resolutionj can be viewed as a multiscale approximation
of a signalf(x). To show that�(x) and ~�(x) can be used to generate
a basis, we needM �1 wavelet functions and their duals to describe
the remaining “details” in the approximation

 i(x) =
p
M

n

hi(n)�(Mx� n)

i = 1; 2; � � � ; M � 1 (3.11)

and
~ i(x) =

p
M

n

~gi(n)~�(Mx� n)

i = 1; 2; � � � ; M � 1: (3.12)

The functions i(x) and ~ i(x) can only be candidates for generating
Riesz bases of wavelets if they satisfy the admissibility condition

j	i(�)j2
j�j d� <1 and

j~	i(�)j2
j�j d� <1 (3.13)

where	i(�) and ~	i(�) denote the Fourier transforms of i(x) and
~ i(x), respectively. For i(x); ~ i(x) 2 L1(<); 	i(�), and ~	i(�)
are continuous, and (3.13) implies that

(2�)1=2	i(0) =  i(x) dx = 0

and

(2�)1=2 ~	i(0) = ~ i(x) dx = 0: (3.14)

Taking the Fourier transform of (3.11) and (3.12), we have

	i(�) =
1p
M

n

hi(n)e
�j(�=M)n �

�

M
(3.15)

~	i(�) =
1p
M

n

~gi(n)e
�j(�=M)n ~�

�

M
: (3.16)

Since�(0)and ~�(0) cannot be zero [(3.3)–(3.5)], this leads to the
necessary conditions onHi(z) andGi(z)

1p
M

n

hi(n) =Hi(0) = 0

and

1p
M

n

~gi(n) =Gi(0) = 0

i = 1; 2; � � � ; M � 1: (3.17)

To show that the translated and dilated versions of i(x) and ~ i(x)
in (3.11) and (3.12) generate a Riesz basis, we need to show the
following.

C1) The collection (3.11) and (3.12) constitutes a frame, i.e.,
9 0 < A � B < 1 such that

Akfk2 �
m�1

i=1 j; k

j hf;  (j; k)
i ij2 � Bkfk2

and

~Akfk2 �
m�1

i=1 j; k

jhf; ~ (j; k)
i ij2 � ~Bkfk2

where

~A =
1

A
; ~B =

1

B
: (3.18)

C2) They are linearly independent.

For dyadic orthonormal wavelets, the scaling function�(x) is
identical to its dual. SinceM is equal to two, there is only one
wavelet function (x). For the biorthogonal case, there are two
scaling functions and wavelet functions. The two conditions in C1)
and C2) can be satisfied [5] if the associated multirate filter bank
hi(n) andgi(n) have the PR property and the scaling functions that
satisfy the decay conditions

j�(�)j �C(1 + j�j)�1=2�"
and

j~�(�)j �C(1 + j�j)�1=2�"; for someC

" > 0: (3.19)

It had also been proved in [5] that ifH0(!) andG0(!) satisfy the
“regularity condition”

H0(z) =
1 + z�1

2

L

Q(z)

and

G0(z) =
1 + z�1

2

L

Q
0(z) (3.20)

then the decay condition is satisfied. IfQ(z) (Q0(z)) is bounded
above by an appropriate constant, then the regularity of the scaling
function (and its dual) can be estimated [5]. We shall come to
this decay condition forM -channel wavelets in Section IV. It is
interesting to note that the admissibility condition is automatically
satisfied forM = 2. In this case, we have

G0(z) = H1(�z) andG1(z) = �H0(�z): (3.21)

Therefore, ifH0(z) andG0(z) satisfy the regularity condition, i.e.,
have multiple zeros at! = �, thenH1(z) andG1(z) will have the
same number of zeros at! = 0.

For the M -channel orthonormal wavelets,�(x) is identical to
its dual, but there areM � 1 wavelet functions, i(x); i =
1; 2; � � � ; M � 1 [7], [8]. The necessary conditions in (3.17) are
also satisfied because forM -channel orthogonal filter bank, we have

M�1

i=0

jHi(!)j2 = 1: (3.22)

SinceH0(0) = 1, we must haveHi(0) = 0; i = 1; 2; � � � ; M � 1.
It had been shown in [8] that ifH0(!) satisfies the “K-regularity
condition”

H0(z) =
1 + z�1 + � � �+ z�(M�1)

M

K

Q(z) (3.23)

then the decay condition will also be satisfied.

IV. THEORY OFM -CHANNEL BIORTHOGONAL WAVELETS

In this section, we generalize the idea in [5] to theM -channel
biorthogonal bases of compactly supported wavelets. We shall prove
that if the scaling functions of a biorthogonal PR filter bank satisfy
the decay conditions (3.19), then the collection (3.11) and (3.12)
generates a Riesz basis. In particular, we need to establish (3.18),
i.e., they generate a frame, and show that the collection (3.11) and
(3.12) is linearly independent.
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A. The Collection Generates a Frame

Suppose that�(x) and ~�(x) satisfy the decay condition (3.19); it
can be shown that

A1)

j; k

jhf1;  
(j; k)
i ij2 �Ckf1k

2

and

j; k

jhf2; ~ 
(j; k)
i ij2 �C

0kf2k
2 (4.1)

A2)

f(x) =
j; k

M�1

i=1

hf; ~ 
(j; k)
i i 

(j; k)
i

=
j; k

M�1

i=1

hf;  
(j; k)
i i ~ 

(j; k)
i : (4.2)

Due to space limitations, the proof is omitted. Interested readers are
referred to [15]. The proof is similar to the two-channel filter bank
situation [5].

The upper bound in (3.18) is immediate from (4.1). For the lower
bound, we have

kfk = sup
kgk=1

jhf; gij

� sup
kgk=1

j; k

M�1

i=1

jhf;  
(j; k)
i ij jh ~ 

(j; k)
i ; gij

[By (4.2)]

�
j; k

M�1

i=1

jhf;  
(j; k)
i ij2

1=2

� sup
kgk=1

j; k

M�1

i=1

jh ~ 
(j; k)
i ; gij2

1=2

(By Schwartz the inequality)

�C

j; k

M�1

i=1

jhf;  
(j; k)
i ij2

1=2

: [By (4.1)]

B. The Collection Is Linearly Independent

We first show that

B1)  
(j; k)
i and ~ 

(j; k)
i ; j; k 2 Z are linearly independent if and

only if

h 
(j; k)
i ; ~ 

(j ; k )

i i = �(j � j
0)�(k� k

0)�(i� i
0): (4.3)

This is the biorthogonal relation for Riesz bases.
B2) A sufficient condition for (4.3) to hold is

h�(0; `); ~�(0; k)i = �(k � `): (4.4)

That is,�(x � `) and ~�(x� k) are biorthogonal.

In Appendix A, we shall show that (4.4) is satisfied if�(x) and
~�(x) satisfy the decay condition (3.19).

Proof:

B1) If (4.3) is satisfied, then anyf in the closed linear span of the
 
(j; k)
i with (i; j; k) 6= (i0; j0; k0) satisfieshf; ~ 

(j ; k )

i i =

0. It follows that  (j ; k )

i is not in this closed linear span.
From (4.2), we have

 
(j ; k )

i =
j; k

M�1

i=1

h 
(j ; k )

i ; ~ 
(j; k)
i i 

(j; k)
i

and hence, [1 � h 
(j ; k )

i ; ~ 
(j ; k )

i i] 
(j ; k )

i =

j; k

i; j; k 6=i; j ; k

M�1
i=1 h 

(j ; k )

i ; ~ 
(j; k)
i i 

(j; k)
i . If the

 
(j; k)
i are linearly independent, then this implies

h 
(j; k)
i ;  

(j ; k )

i i = �(j � j
0)�(k� k

0)�(i� i
0):

B2) First, we shall show that

h�(0; k); ~�(0; `)i = �k` iff h�(j; k); ~�(j; `)i = �k`: (4.5)

Equation (4.5) follows from the definition ofh�(0; k); ~�(0; `)i

h�(0; k); ~�(0; `)i = �(x� k)~�(x� `)dx

and the changing of variablex =M�ju. Using the relation-
ship between�(x), [ ~�(x)], and (x), [ ~ (x)], we have

�
(j; k)(x) =

n

h0(n)�
(j�1;Mk+n)(x) (4.6)

 
(j; k)
i (x) =

n

hi(n)�
(j�1;Mk+n)(x): (4.7)

We shall verify that (4.3) holds forj = j0. From (4.6) and
(4.7), we have

h 
(j; k)
i ; ~ 

(j; `)

i i

=
n;m

hi(n)~gi (m)h�(j�1;Mk+n)
; ~�(j�1;M`+m)i

=
n

hi(n)~gi [M(k � `) + n] = �(k � `)�(i� i
0)

[from (2.5) and (4.5)]. (4.8)

Similarly, from (4.6) and (4.7)

h 
(j; k)
i ; ~ (j; `)i

=
n;m

hi(n)g0(m)h�(j�1;Mk+n)
; ~�(j�1;M`+m)i

=
n

hi(n)~g0[M (k � `) + n] = �(k � `)�(i) = 0:

[from (2.5) and (4.5)]. (4.9)

Since, for j < j0; ~ 
(j ; k )

i can be written as a linear
combination of~�(j; `), it follows that

h 
(j; k)
i ; ~ 

(j ; k )

i i = 0; if j < j
0
: (4.10)

Similarly, since forj > j0;  
(j; k)
i can be written as a linear

combination of the�(j; `), it follows that

h 
(j; k)
i ; ~ 

(j ; k )

i i = 0; if j > j
0
: (4.11)

This proves B2).

C. K-Regularity

In this section, we shall show that if the lowpass analysis and
synthesis filters satisfy some regularity condition (K-regularity [7],
[8]), then the scaling functions and wavelets will satisfy the decay
conditions in (3.19).
H0(!) is said to beK-regular if it can be factored as

H0(z) =
1 + z�1 + z�2 + � � �+ z�(M�1)

M

K

Q(z) (4.12)
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(a) (b)

(c)

Fig. 2. Four-channel orthogonal CMFB wavelet bases. Filter length is 40. (a) Prototype filter in frequency domain. (b) In time domain. (c) Analysis filter bank.

wherez = ej!, andQ(z) is a trigonometric polynomial. The precise
relationship betweenK-regularity of the scaling filters [h0(n) and
g0(n)] and the smoothness of the scaling functions and wavelets is
unknown even in the two-channel case. Using the techniques in [5], it
is possible to estimate the regularity of the scaling function. In fact,
we can prove the following [15].

If for some valuek � 0

Bk = max
�

jQ(�)Q(M�) � � �Q(M
k�1

�)j
1=k

< M
L�1=2 (4.13)

then�(�) satisfies the decay condition

j~�(�)j � C(1 + j�j)
�(1=2)�"

; with " = L�
1

2
�

log Bk

log M
> 0:

(4.14)

The proof will be given in Appendix B.
In summary, to constructM -channel biorthogonal bases of com-

pactly supported wavelets, the lowpass filters of the associatedM -
channel PR biorthogonal filter banks should satisfy theK-regularity
condition, and the highpass and bandpass filters should satisfy the
admissibility condition.

V. THEORY OF THE COSINE-MODULATED FILTER BANK

In this section, we shall introduce the theory of the CMFB and its
design procedure. The design procedure will be used in Section VI
to constructM -channel wavelet bases. More details of CMFB theory
can be found in [11]–[13], [16], and [19]. In the CMFB, the analysis
filter bank fk(n) and synthesis filter bankgk(n) are obtained by
modulating the prototype filtersh(n)

fk(n) =h(n)ck; n; gk(n) = h(n)ck;n

k = 0; 1; � � � ; M � 1

n = 0; 1; � � � ; N � 1 (5.1)

whereM is the number of channels, andN is the length of the filters.
The cosine modulation that we use is

ck;n = 2 cos (2k+ 1)
�

2M
n�

N � 1

2
+ (�1)

k �

4
:

(5.2)

This modulation is also closely related to the extended lapped
transform (ELT) proposed in [12]. It is noted that ifh(n) is a linear-
phase filter, namely,h(n) = h(N � 1 � n), thenfk(n) and gk(n)
will be time reverses of each other, and we obtain the orthogonal
CMFB. On the other hand, ifh(n) is not a linear-phase filter, then
we obtain a biorthogonal CMFB.
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(a) (b)

(c) (d)

Fig. 3. Scaling and wavelet functions of four-channel orthogonal CMFB wavelet bases. (a) Scaling function. (b) Wavelet function-1. (c) Wavelet function-2.
(d) Wavelet function-3.

Letting H(z) =
2M�1

k=0
z�kGk(z

2M
) be the type-I polyphase

decomposition [9] of the prototype filter, it can be shown [16], [19]
that the PR conditions are given by

Gk(z)G2M�k�1(z)+GM+k(z)GM�k�1(z) = �z
��
: (5.3)

For orthogonal CMFB, the PR conditions are further simplified to

~Gk(z)Gk(z) + ~GM+k(z)GM+k(z) = 1 (5.4)

where ~Gk(z) = zm�1G2M�1�k(z). It can be seen that the PR
conditions in (5.3) and (5.4) depend only on the prototype filterh(n).
There will beM=2 PR conditions whenM is even andbM=2c when
M is odd. Therefore, the design and implementation complexities
can be greatly reduced. In the orthogonal case, the number of free
parameters is further reduced by half due to the linear-phase property
of the prototype filter.

Since the filter banks are frequency-shifted versions of the proto-
type filter, the objective function in the optimization is

� =

�

!

jH(e
i!
)j2 d! (5.5)

where!s is the stopband cutoff frequency whose value should be
chosen between�=2M and�=M . It is also possible to replace the
integral in (5.5) by a summation. It has the advantage of being able

to put different weightings to different parts of the stopband and
provides more control over the stopband attenuation.

The design problem is formulated as the constrained optimization

min
h

�

!

jH(e
j!
)j2 d! (5.6)

subjected to the PR conditions in (5.3) or (5.4) for orthogonal and
biorthogonal CMFB.

The design procedure is similar to the one that we had introduced in
[16] and the optimization is performed using the NCONF (DNCONF)
subroutine of the IMSL library. In the case of biorthogonal CMFB, the
linear-phase requirement of the prototype filter is relaxed. Therefore,
we have more freedom in choosing its coefficients. In particular,
biorthogonal CMFB can be used to realize filter banks with different
delays.

VI. THE DESIGN OFM -CHANNEL CMFB WAVELET BASES

In this section, we are going to construct a family ofM -channel
wavelet bases called cosine-modulated wavelet bases using the
CMFB. According to the conditions derived in Section IV, the
lowpass analysis (synthesis) filter should satisfy theK-regularity
condition

F0(z) = C[1 + z�1 + � � � + z
�(m�1)

]
K
B(z) (6.1)
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(a) (b)

(c) (d)

Fig. 4. Four-channel biorthogonal CMFB wavelet bases. Filter length is 40. (a) Prototype filter in frequency domain. (b) In time domain. (c) Analysis
filter bank. (d) Synthesis filter bank.

whereB(z) is a polynomial inz, andC is a constant. Moreover,
all the highpass or bandpass filters should have at least one zero at
! = 0. Due to the low design and implementation complexities of the
CMFB, it has been used to design compactly supported orthonormal
cosine-modulated wavelet bases [13]. Our approach is to decompose
the prototype filterH(z) into two parts:

H(z) = Q(z)P (z) (6.2)

and determine the polynomialP (z) such that after modulationF0(z)
will have the required zeros at!` = (2�`)=M; ` = 1; 2; � � � ; M�1.
From (5.1), we note thatf0(n) is derived fromh(n) using the cosine
modulation

f0(n) =h(n)c0; n = 2h(n) cos
�

2M
n�

N � 1

2
+
�

4

=2h(n) cos
�

2M
n+ '

where

' =
(M �N + 1)�

4M
; n = 0; 1; � � � ; N � 1: (6.3)

Therefore, the frequency response ofF0(e
j!), is given by

F0(e
j!) = e

j'
H[ej(!��=2M)] + e

�j'
H[ej(!+�=2M)]: (6.4)

It means thatH(ej!) is shifted along the frequency axis by�=2M
and�(�=2M . If !` are zeros ofF0(ej!), then the right-hand side

of (6.4) should also be zero. This will be the case ifH(ej!) have
zeros at!`� (�=2M). Therefore, for theM -channel CMFB to have
theK-vanishing moment,H(ej!) should have zeros of orderK at
!m = (4m � 1)�=2M, m = 1; 2; � � � ; M � 1.

Hence the polynomialP (z) is given by

P (z) =

M�1

m=1

[z�1 � e
j(4m+1=2M)�]

� [z�1 � e
j(4(M�m)�1=2M)�]

K

: (6.5)

By multiplying P (z) with Q(z) that contains the free parameters,
the prototype filterH(z) will always satisfy the regularity condition
of a M -channel wavelet.

This design procedure can be used in both orthogonal and biorthog-
onal cases because the regularity condition is identical in both cases.
It is interesting to note that due to the frequency shift property of
CMFB, all the highpass and bandpass filters will have the same
number of zeros at! = 0 and satisfy (3.17) automatically. A number
of orthogonal and biorthogonal cosine-modulated wavelet bases with
different values ofM and K were designed. Fig. 2(a)–(c) shows
an example of the prototype filter and analysis filter bank of an
orthogonal wavelet bases. The length of the filters isN = 40 with
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(a) (b)

(c) (d)

Fig. 5. Scaling and wavelet functions of four-channel biorthogonal CMFB wavelet bases. (a) Scaling function. (b) Dual scaling function. (c) Wavelet
function-1. (d) Wavelet function-2.

M = 4 andK = 1. Fig. 3 shows the corresponding scaling and
wavelet functions. Figs. 4 and 5 show another example of a four-
channel biorthogonal CMFB and its corresponding wavelet bases.
It can be seen from Figs. 2(a) and 4(a) that the prototype filters
have the desired zeros at3�=8; 5�=8; 7�=8 and their conjugates.
Due to the regularity condition, the degree of freedom inQ(z) is
reduced (for the same filter length), and the cutoff frequency of
the prototype filter is enlarged. As a result, the overlap between
adjacent analysis/synthesis filters is also increased. The scaling and
wavelet functions in Figs. 3 and 5 are obtained from iterating the
corresponding two-level tree-structured filter bank [Fig. 1(b)].

It should be noted thatK-regularity is only a sufficient condition to
satisfy the decay condition in (3.19). Therefore, wavelets with higher
K-regularity are not necessarily smoother than other wavelets with
lowerK-regularity if the filter lengths of both systems are the same.
Hence, there is a tradeoff between the number of free parameters in
the polynomialQ(z) and the order of zeros that are imposed.

VII. CONCLUSION

In this correspondence, a theory ofM -channel biorthogonal bases
of compactly supported wavelets constructed fromM -channel PR
filter banks is presented. It is found that the lowpass filters in the
PR filter bank have to satisfy a similar regularity condition as in
the orthogonal case, and the bandpass and highpass filters have to
satisfy the admissibility condition. The cosine-modulated filter bank

(CMFB) is used to construct a family of such wavelet bases that has
the advantages of low design and implementation complexities, good
filter quality, and ease in imposing the regularity and admissibility
condition. A new method for imposing the regularity on the CMFB
is also introduced, and several design examples are given.

APPENDIX A

Here, we shall show that if bothH0(�) and G0(�) satisfy the
condition (3.19), then�(x � `) and ~�(x� `) are biorthogonal. The
proof is similar to the two-channel case in [5].

Proof: First, we define the sequence

Un(�) =
1

p
2�

n

j=1

H0(M
�j
�) �[��; �](M

�n
�)

~Un(�) =
1

p
2�

n

j=1

~H0(M
�j
�) �[��;�](M

�n
�):

It can be proved that

un(x)~un(x� `)dx = �`0:
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(e) (f)

(g) (h)

Fig. 5. (Continued.) Scaling and wavelet functions of four-channel biorthogonal CMFB wavelet bases. (e) Wavelet function-3. (f) Dual wavelet function-1.
(g) Dual wavelet function-2. (h) Dual wavelet function-3.

To prove �(x)~�(x� `)dx = �`0, it suffices to proveL2
�

limn!1 Un(�) = �(�) andL2
� limn!1

~Un(�) = ~�(�). Now

jUn(�)j = 1p
2�

sin(�=2)

Mn sin(M�n�=2)

L

�
1

`=1

jQ(M
�`
�)j�[��; �](M�n

�):

On the other hand

j sin �j � 2

�
j� for j�j � �=2:

Hence, jsin(M�n�=2)j�1�[��;�](M
�n�) � �Mnj�j�1, which

implies

sin(�=2)

Mn sin(M�n�=2)
�[��;�](M

�n
�)

� 2�
sin(�=2)

�=2
� C(1 + j�j)�1

:

Writing n = kn0 + q with 0 � q < k,

n

`=1

Q(M
�`
�) � sup

�

jQ(�)j
q n

` =0

j#(Mk`
�)j

� sup
�

jQ(�)j
q

C(1 + j�j)log B = log M
:

Putting it all together, we have

jUn(�)j � C
0

(1 + j�j)�L+log B = log M

whereC 0 is independent ofn. SinceUn(�) converges pointwise to
�(�), the Lebesgue dominated theorem implies thatUn(�) tends to
�(�) in L2

(<). TheL2-convergence of~Un(�) is proved analogously.
Therefore,�(x � `) and ~�(x � `0) are biorthogonal.

APPENDIX B

Here, we shall prove that�(�) satisfies the decay condition (4.17)
if H0(!) hasK-regularity. We will consider the casej�j � 1 and
j�j � 1 separately

1
� j�j � 1:

Consider

j�(�)j =
1

j=1

H0(M
�j
�) �

1

j=1

(1 + CM
�j j�j)

�
1

j=1

exp(C
0

M
�j j�j) = exp

C 0j�j
M � 1

which is uniformly bounded forj�j � 1. Sinceexp[Cj�j=M � 1]

is monotonic increasing in the range [0, 1] andj�(�)j � C(1 +



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 4, APRIL 1998 1151

j�j)�(1=2) � " is monotonic decreasing in the same range, we can
always choose a proper value ofC such that the decay condition is
satisfied. Therefore, we need only to consider the casej�j � 1.

2� j�j � 1:

Since

1 + e�i� + e�2j� + � � �+ e�(M�1)j�

M

=
1

M

1� e�jM�

1� e�j�
=
e�j(M�1)�=2

M

sin(M�=2)

sin �=2

we have
1

`=1

1

M

1� e�jM(M �)

1� e�j(M �)

=

1

`=1

e�j(M�1)M �=2

M
�
sin[M�(`�1)�=2]

sin M�`�=2

= e
�j�=2

1

`=1

sin[M�(`�1)�=2]

M sin M�`�=2
= e

�j�=2 sin(�=2)

�=2
:

Hence, we have

�(�) = (2�)�1=2
1

j=1

H0(M
�j
�)

= exp(�jL�=2)
sin(�=2)

(�=2)

L 1

`=0

#(M�k`
�)

with #(�) = Q(�=M)Q(�=M2) � � �Q(�=Mk). Sincej�j > 1, there
exists`0 � 0 so thatMk` � j�j �Mk(` +1). By the same argument
as in the casej�j � 1

1

`=` +1

#[M�k`
�] =

1

i=0

#[M�ki
M

�k(` +1)
�]

is bounded independently of� since jM�k(` +1)�j � 1. On the
other hand

1

`=` +1

#(M�k`
�) �B

k(` +1)

k � B
k+log j�j= log M
k

�C
0(1 + j�j)log B = log M

:

Finally, we have the desired resultj�(�)j � C(1 +
j�j)�L+log B = log M .
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