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Adaptive Estimation of HMM
Transition Probabilities
Jason J. Ford and John B. Moore,Fellow, IEEE

Abstract— This paper presents new schemes for recursive
estimation of the state transition probabilities for hidden Markov
models (HMM’s) via extended least squares (ELS) and recursive
state prediction error (RSPE) methods.

Local convergence analysis for the proposed RSPE algorithm is
shown using the ordinary differential equation (ODE) approach
developed for the more familiar recursive output prediction error
(RPE) methods. The presented scheme converges and is relatively
well conditioned compared with the previously proposed RPE
scheme for estimating transition probabilities that perform poorly
in low noise.

The ELS algorithm presented in this paper is computationally
of order N2

N
2

N
2, which is less than the computational effort of order

N
4

N
4

N
4 required to implement the RSPE (and previous RPE) scheme,

where NNN is the number of Markov states.
Building on earlier work, an algorithm for simultaneous es-

timation of the state output mappings and the state transition
probabilities that requires less computational effort than earlier
schemes is also presented and discussed.

Implementation aspects of the proposed algorithms are dis-
cussed, and simulation studies are presented to illustrate conver-
gence and convergence rates.

Index Terms—Hidden Markov models, parameter estimation,
recursive estimation.

I. INTRODUCTION

H IDDEN Markov models (HMM’s) are a powerful tool in
the field of signal processing [1], [2] with applications to

speech processing [6], digital communication systems [3], [4],
and biological signal processing [12]. The major limitations
of schemes for estimating HMM parameters in applications
concern computational complexity and memory requirements.

HMM’s in discrete time can be viewed as having a state
at time belonging to a discrete set that, without loss

of generality, is denoted as , where
is the number of Markov states, and is a vector that is
zero everywhere except for theth element, which is 1. There
are transitions between states described by fixed probabilities
that form a stochastic matrix , where is the
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probability of transferring from state to state . The state
process is measured indirectly via measurements, which
are linear functions of the state denoted in additive
noise.

The Baum–Welch, or so called EM algorithm, for off-line
estimation of the transition probabilities, given a sequence of
observations , is well known and with multiple
passes converges locally to maximum likelihood estimates
(see [6]). However, this linearly convergent, multipass, for-
ward–backward algorithm has computational effort and mem-
ory requirements of O for each pass. Elliott has shown
that the backward pass through the data can be eliminated
at the expense of increasing the computational effort of the
forward pass to being of O (see [2, ch. 2]). One avenue
for improving the computational and memory requirements is
through the investigation of on-line adaptive schemes, which
update parameter estimates at each iteration rather than after
each pass through the data.

Recently, on-line identification of HMM’s exploiting con-
ventional identification theory has been studied [5], [13]. In
[5], an algorithm designed to minimize the Kullback–Leibler
information measure is proposed. This algorithm requires
computational effort of only O per time instant, but
convergence is less than asymptotically optimal. Alternatively,
the recursive prediction error (RPE) algorithm of [13] seeks
to minimize the observation prediction error cost and is
asymptotically optimal but requires computational effort of
O per time instant. The RPE algorithm of [13] ap-
pears attractive, due to its asymptotic optimality and its
mature theoretical basis; however, it is actually ill conditioned
in low noise and is computationally prohibitive for large

.
In [11], new algorithms are proposed for estimating the

state output mapping , via extended least squares (ELS)
and RPE techniques. These algorithms exploit the discrete
state structure of HMM’s in ways for which there is no
parallel in standard state space model identifications. The
computational effort of the algorithms presented in [11] is
also less than that for the algorithm presented in [13]. In
this paper, we exploit and build on the ideas of [11] to
produce algorithms for estimating the stochastic matrix
with similar improvements in computational requirements
and without computational difficulties as the noise level
decreases.

The key contribution of this paper is a new recursive
algorithm based on a state prediction error cost function, rather
than that based on the output prediction error cost function
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used in [13]. The recursive state prediction error (RSPE)
algorithm proposed here is shown to minimize the state
prediction error cost and has fewer computational requirements
than the scheme presented in [13]. An ELS algorithm is also
proposed that requires computational effort of only O
each time instant, compared with the O required for
the RSPE and RPE schemes. Complete ordinary differential
equation (ODE) convergence analysis is presented for the
RSPE algorithm, but convergence analysis for the proposed
ELS algorithm has not been completed. We also show that
the proposed RSPE algorithm evanesces to the ELS algorithm
and, indeed, to the least squares (LS) algorithm as the signal-
to-noise ratio increases.

A second contribution of this paper is a scheme that allows
simultaneous estimation of the state output mappingsand
the state transition probability matrix. The proposed scheme
requires less computational effort than the simultaneous es-
timation scheme presented in [13] but still requires O
calculations per time instant.

This paper is organized as follows. In Section II, the signal
model, conditional state estimates, and a parameterized infor-
mation state model are introduced. In Section III, we initially
focus on a simplified estimation problem, namely, when the
state sequence is measured directly, and apply the familiar least
squares approach. Some convergence results are presented.
When the state sequence is not measured directly, the least
squares approach leads to the proposal of an ELS algorithm.
We then generalize the ELS algorithm by introducing a RSPE
scheme and demonstrate convergence via ODE analysis. In
Section IV, an algorithm for the simultaneous estimation of
transition probabilities and state output mappings is
presented. In Section V, some simulation studies that show
relative performance of these algorithms are presented. Finally,
conclusions are presented in Section VI.

II. PROBLEM FORMULATION

In this section, we introduce the HMM in state space form.
Conditional state estimates and a parameterized information
state model are also introduced.

A. HMM State Space Model

Let be a discrete-time homogeneous, first-order Markov
process belonging to a finite set. The state space, without
loss of generality, can be identified with a set of unit vectors

with 1 in the th position. We consider this process to be
defined on the probability space , with

and with complete filtration . The state
space model is then defined, for , by

(2.1)

(2.2)

where is a sequence of martingales; hence,
. In addition, the are continuous

valued belonging to (although generalization to is

straightforward), and is i.i.d. with zero mean
and of known density, such as when is Gaussian, i.e.,

, or a mixture of Gaussians. In addition,
is a vector of state values termed thestate

output mappingsof the Markov chain. The termstate levels
is commonly used for the vector when the observations

are scalar. We also define and as the
complete filtration generated by . As a consequence

(2.3)

Due to the Markov nature of , we can write

where and .
Obviously, , and for all . We also
assume that or its distribution is known.

We shall define the vector of parameterized
probability densities (or symbol probabilities) as

for . In the special
case when , we can write

(2.4)

We also write the initial state probability vector for the Markov

chain with . The HMM is denoted
.

B. Conditional State Estimates and Information State Model

Let denote the conditional filtered state estimate of
, given measurements and . In addition, let

denote the one-step-ahead prediction of, given measure-
ments and . That is

(2.5)
The forward recursion for obtaining conditional filtered state

estimates for an HMM is given in [2]

(2.6)

where is a scalar
normalization factor.

We now proceed to introduce an information state model.
An information statetells us all the information we know about
the state from the observations and is here simply the state
estimate . Consider the following lemmas.

Lemma 1: The one-step-ahead predictions
are given by

Proof:
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Hence, the following lemma now holds.
Lemma 2: The error term is

orthogonal to , and the error term is
orthogonal to . Moreover, the HMM can be reorganized
as an information state model; see [22, p. 79]. The state
estimates can be written as

(2.7)

(2.8)

where and are orthogonal to .
Proof: From (2.1), we see that

We next show that each term on the right is orthogonal to
.

From optimality, the estimation error is
orthogonal to , and since , then is
orthogonal to . Similarly,
is orthogonal to and because ,
then is orthogonal to . Finally,

is orthogonal to from (2.2) and because
is orthogonal to . The result (2.7) follows, and (2.8) follows
likewise by noting that

.
Lemma 2 shows that the orthogonality property required for

convergence of standard recursive identification is satisfied;
see [14].

III. ESTIMATION OF TRANSITION PROBABILITIES

In this section, we develop algorithms for estimating the
HMM transition probability matrix from observations .
Initially, we investigate the simplified problem of estimating

from a known state sequence using a least squares
(LS) algorithm. In the following subsection, we use conditional
state estimates in an extended least squares (ELS) algorithm
to produce estimates of when the state sequence is not
measured directly. Finally, we introduce a state prediction
error cost and propose a RSPE algorithm.

A. Least Squares

In this subsection, we consider the signal model (2.1)
and (2.2) and the simplified estimation problem. Estimate
the state transition probability matrix from the state se-
quence . Subsequently, we will consider the
more difficult estimation problem where the state sequence

must be estimated from .
Lemma 3: Once each state has been active at least once,

that is exists, the optimal off-line least
squares estimate of the transition probability matrix, given

, is

(3.1)

Moreover

exists a.s. (3.2)

Furthermore, under the excitation condition assumption
, then

a.s. (3.2)

Proof: Standard least squares algorithms are concerned
with minimization with respect to of the following cost:

(3.3)

Standard manipulations give (3.1). Now, since
diag , where diag is

the diagonal matrix with on its diagonal when is a
vector, then

In addition, since , then on the subse-
quence of for which , which is de-
noted with integers (where

), then

where

First, we prove the second lemma result (3.2), where the
excitation condition that for all holds.
Consider the error term, which follows from algebraic manip-
ulation of (3.1) and (2.1)

Now, we define , whose
elements are scalar martingales adapted to since

for all . In addition,
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is bounded in for each since

for all

Here, we have used that for all

and for some .
Now, under the excitation condition for all and

martingale convergence results [7], [8], we have that
converges almost surely. Hence, by the Kronecker Lemma [8],
[9], we have that

a.s. for all

and the lemma result (3.2) follows.
To obtain the first lemma result, we note that if

is finite, then is also finite, and hence, clearly,

is finite. The existence of when
is proven by the second lemma result;

hence, the first lemma results follow as claimed.
Consider now on-line estimation via recursive least squares

(RLS) algorithms. Simple manipulations of (3.1) give the
on-line recursions

or

(3.4)

where can be thought of as related to the energy of the
input sequence.

The indicator vectors have the property that nonlinear
functions of an indicator vector are linear functions

of the indicator vector . Exploiting
this property, it is possible to rewrite (3.4) so that the right-
hand sides are linear in .

We now proceed to consider the more realistic case when
is not measured directly but must be estimated from

observations. We first examine extended least squares (ELS)
algorithms.

B. Extended Least Squares

This subsection proposes an ELS algorithm for estimat-
ing HMM transition probabilities. Extended least squares
algorithms aread hoc algorithms in which conditional state
estimates are used in lieu of actual states in an LS
implementation; see [23] for more details.

Consider the ELS version of the LS recursion (3.4) obtained
by replacing the state by conditional state estimates, that is

diag (3.5)

where , diag is the diagonal matrix
with on its diagonal when is a vector, and the recursion
below is used to generate state estimates

(3.6)

where is a scalar normalization factor as in
(2.6).

Remarks:

1) Note that is not orthog-

onal to unless for all . Hence,
standard theory no longer applies.

2) The computational cost of the ELS recursion (3.5) at
each iteration is O .

Since we are unable to proceed with further analysis of
the convergence properties of this ELS algorithm, we proceed
in the next subsection by taking the ELS concepts one step
further. The RSPE algorithm that follows appears to naturally
generalize this ELS algorithm. These RSPE algorithms are
developed with the view of achieving asymptotic efficient
convergence (in the sense of almost surely to a local minimum
of the appropriate cost function) with rate of order .

C. RSPE Method

There exists mature theory for recursive identification of
discrete-time models with states in based on the min-
imization of the observation prediction error cost; see [14].
This RPE theory provides asymptotic quadratic convergent
algorithms (admittedly to a local minimum) for linear and
certain nonlinear models.

In this section, we proceed by applying this theory to obtain
asymptotic convergent algorithms (in a local sense) for HMM
identification that generalize the ELS scheme of the previous
subsection.

Lemma 2 motivates the use of a state prediction error cost
[see (3.3)], rather than the observation prediction error cost that
is used in the standard RPE theory. Consider the cost function

(3.7)

where is used to parameterize the unknown transition
probability matrix such that , where

.
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Thus, the RSPE recursions that seek to minimize the cost
(3.7) are

diag

(3.8)

where for

, and

column vector of all ones;
Kronecker product;
some large constant.

Here, is an approximation to the second derivative of
. Note that a projection operation can be implemented

at each time step to ensure that is a valid stochastic
matrix, and the convergence results presented in the following
discussion still hold.

The recursion (3.8) can also be written as the scalar recur-
sion

(3.9)

where . Here, is the usual modulo
operation, except that .

Gradient Calculations:

where , and . Now

(3.10)

Here, is defined in Section II-A, and

diag

if

diag

if (3.11)

Convergence Proof:Convergence of (3.8) and (3.9) is
shown by considering the ordinary differential equation (ODE)
associated with (3.8) and (3.9). That is

(3.12)

Here, is fixed, and is a small constant. Let us define for
(3.8) and (3.9) with abbreviated as

(3.13)

and

diag (3.14)

The following lemma now holds.
Lemma 4: The recursions (3.8) and (3.9) will converge a.s.

to the set (or
possibly the boundary of the valid A region if a projection
step is performed). Moreover, under the excitation condition

as , then convergence of is at the rate .
Proof: The ODE associated with (3.8) and (3.9) for fixed

, under (3.13) and (3.14), is (3.12).
Now, a Lyapunov function for (3.12) under (3.13) and (3.14)

is

(3.15)

so that

(3.16)

Thus, converges for all and , and
converges to the set (for discussion of
convergence when a projection is performed, see Ljung [14]).

Here, the recursions (3.8) and (3.9) and intermediate steps
are stable; hence, together with the results of [18]–[20], the
various regularity conditions required by the ODE theory of
Ljung [14] are satisfied, and the first result claimed follows.
Note that the conditions given in [18]–[20] ensure that HMM
filters forget initial conditions exponentially.

Observe from (3.16) that if is of the order ,
as under suitable excitation, then converges to
zero as . Since, asymptotically, the stochastic difference
equation behaves as the ODE, then rates of convergence
translate across.

This leads to the convergence rate result of the lemma.
Remarks:

1) The theory is not a global convergence theory. It is not
excluded that the set may contain locally optimal,
but not globally optimal, parameterizations to which the
recursions can converge. Simulation studies suggest that
with reasonable initializations, converges to , as
desired.
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2) The lemma excitation condition as is
not particularly restrictive. It can be interpreted as an
ergodicity requirement on the state sequence. That is, the
Markov state sequence must visit each state (uniformly)
as .

3) The existence of parameter estimates and/or convergence
of these estimates (possibly only for a subset of the
parameters) can be shown when the lemma excitation
condition is relaxed, but this is not done here.

4) To reduce the number of calculations, the second half
of (3.8) and (3.9) can be replaced by a stochastic
approximation given by

diag

Convergence can still be proven with a slight modifica-
tion of Lemma 4.

5) The concept of using a cost function (3.7) that measures
the state prediction error has been introduced previously
in other contexts by Bryson; see [10, p. 349]. However,
we believe this concept has not been used previously
for HMM identification.

6) The state prediction error cannot be driven to zero for
all by a particular choice of due to the nature of
Markov sequences; however, the expected value of the
error will tend to zero as .

7) The number of calculations required to estimatein
(3.8) and (3.9) is of O .

In [13], the observation prediction cost function is used to
identify transition probabilities, that is

To understand the difficulty in using this type of cost
function to estimate the transition probabilities of an HMM,
consider the following lemma.

Lemma 5: As the measurement noise approaches zero in
variance, that is, , then

Proof: From (2.6) we see that

where , and is de-
fined in (2.4).

As , then for all that
and for the that . Hence,

a.s. for the that .

Therefore, for all that ,

and for the that , i.e.,

The lemma result follows.

Lemma 5 implies that as . That
is, as , the cost function becomes invariant
of . Hence, it is clear that is not a good criterion for

identifying . Lemma 5 correctly predicts that the performance
of the RPE algorithm presented in [13] will deteriorate as

.
Our choice of cost function (3.7) does not suffer from the

same difficulties as . In fact, from (3.10), it is clear that
as , the RSPE algorithm reduces to the ELS algorithm
(3.5). Similarly, as , then , and
hence, the ELS algorithm, and, likewise, the RSPE algorithm,
simplifies to the LS algorithm (3.4).

Remark:

1) Even without , it is possible to see the simi-
larities between the ELS recursion (3.5) and the RSPE
recursion (3.8). In fact, if we were to approximate the
gradient by the first term in (3.10), then the
RSPE recursions would reduce to the ELS recursions
(3.5).

IV. ESTIMATION OF TRANSITION

PROBABILITIES AND STATE OUTPUT MAPPINGS

This section proposes an algorithm for simultaneous estima-
tion of the state output mapping matrix and the transition
probability matrix , given a set of observations and
knowledge of the measurement noise variance. Local con-
vergence results are presented. Stronger convergence results
are neither shown nor excluded from our theory.

A. Dual Cost Function Approach

To obtain simultaneous estimates forand , we consider
the coupled subproblems of estimating, given an estimate
of and estimating , given an estimate of . Each of these
subproblems can be solved, respectively, via RPE and RSPE
techniques after setting up appropriate cost functions. The
estimates from the recursion and recursion can be fed
back into the recursion and recursion, respectively, to
couple the recursions.

Consider the minimization of the two separate cost functions
(4.1) and (4.2).

(4.1)

(4.2)

Here, the two parameterizations

and have been introduced, and

denotes the history of estimation.
The cost functions and are
coupled through the and terms.
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We proceed by introducing recursions in and before
establishing convergence results.

diag

(4.3)

where , and

diag (4.4)

where is the same as defined in (3.10).
Convergence Proof:To demonstrate local convergence of

the coupled algorithm, we first show that recursion (4.3)
converges locally independently of [or recursion (4.4)].
Next, we show local convergence of recursion (4.4).

Lemma 6: If the parameterized probability densities are
independent of , then the cost function (4.1) is independent
of , .

Proof: The lemma condition implies that
[as distinct from ] is independent of ;
hence, the cost in (4.1) is independent of .

It follows from Lemma 6 that the recursions (4.3) are
independent of ; hence, convergence of (4.3) can be
established as follows.

Consider the ODE (3.12) and with abbreviated as
, and let us redefine for (4.3) the

(4.5)

and

diag (4.6)

The following lemma holds.
Lemma 7: If the parameterized probability densities are

independent of , then the recursion (4.3) will converge a.s.
to the set .
Moreover, under the excitation condition as , then
convergence of is at the rate .

Proof: A similar approach to Lemma 4 can be taken. See
also [13].

Lemma 7 demonstrates local convergence results for the
recursion (4.3). We now present convergence results for (4.4)
under the assumption that (4.3) converges to the true value
of . Again, consider the ODE (3.12), and with now
abbreviated as , let us redefine for (4.4)

(4.7)

and

diag (4.8)

The following lemma now holds.
Lemma 8: Given that converges a.s. as
, then the recursion (4.4) will converge a.s. to the set

(or possibly
the boundary of the valid region if a projection step is
performed). Moreover, under the excitation condition
as , then convergence of is at the rate .

Proof: Because as , then likewise,
the cost as . Now, by
inspection, it is clear that is equivalent to
given in Section III. Hence, the rest of the proof follows
Lemma 4.

Together, Lemmas 6–8 imply local convergence of parame-
ter estimates and . However, note that Lemma 8 holds if
and only if (4.3) has converged to the true value ofrather
than locally as Lemma 7 provides. In particular, for noise
processes that are multimodal such as mixtures of Gaussian,
this may not always occur.

Remarks:

1) Alternative cost functions for estimating have been
proposed elsewhere; see [11] and [13].

2) The Lemma 6 conditions are not very restrictive. For ex-
ample, Gaussian noise models and mixtures of Gaussians
noise models both satisfy the lemma condition.

3) can be replaced by
in the cost function (4.1); however, convergence is no
longer guaranteed. In simulations, it is found that a
scheme with replacing
converges for all but the worst initial guesses. Note that
if , then

, making a
good initialization for the modified scheme if no other
a priori information is available.

4) The dual cost function approach of this section has
been found in simulations to converge more rapidly
than a composite single cost function approach, e.g.,
minimization of ,
for some .

5) Implementation of recursions (4.3) and (4.4) requires
O O calculations per time instant, which
is less than the O O required using a
composite single cost function approach. Further reduc-
tion in computational requirements can be achieved by
implementing ELS versions of (4.3) and (4.4); however,
convergence results are not yet established in this case.

V. SIMULATIONS

A. Implementation Considerations

In [11], several implementation issues are discussed, includ-
ing the following:

• the use of step sequences and Polyak acceleration to
improve transients performance;

• the modification of the parameter estimate recursions to
include the variance of Markov state estimates and vice
versa;

• modifications to allow tracking of slowly time-varying
parameters.

The discussion in [11] equally applies to the algorithms
presented in this paper.
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Fig. 1. Comparison of convergence rates.

Fig. 2. Convergence in low noise.

B. Simulation Results

We present results of simulation examples using computer-
generated finite, discrete-state Markov chains to demonstrate
features of the algorithms proposed in this paper.

Estimation of Transition Probabilities:A two-state Markov
chain embedded in WGN is generated with parameter values

for ,
assuming and known. The transition probability matrix
is estimated using both the ELS and RSPE algorithms (3.5) and
(3.8), respectfully. Fig. 1 shows a comparison of the estimation
errors. This figure shows that convergence toward the true
value occurs for both schemes and suggests that the RSPE
scheme converges more rapidly that the ELS scheme.
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Fig. 3. Convergence of a fast chain.

Fig. 4. Convergence of higher order chain.

Estimation in Low Noise:A two-state Markov chain em-
bedded in WGN is generated with parameter values

for ,
assuming and are known. The transition probabilities
of the chain are estimated in low noise using the ELS algo-
rithm, i.e., (3.5). For this noise level, the recursive schemes

presented in [13] do not converge. Fig. 2 shows the error in
estimation of (3.5) over time. This figure demonstrates that
(3.5) convergence occurs in this low-noise environment.

Estimation of Fast Markov Chains:A two-state Markov
chain embedded in WGN is generated with parameter values

for ,
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Fig. 5. Simultaneous estimation—Transition probabilities.

Fig. 6. Simultaneous estimation—State levels.

assuming and are known. The transition probabilities of
the chain are estimated using the RSPE algorithm, i.e., (3.8).
Fig. 3 shows the size of the estimation error over time and
demonstrates that convergence occurs.

Higher Order Chain: A three-state Markov chain embed-
ded in WGN is generated with parameter values

for ,
assuming and are known. The transition probabilities of
the chain are estimated using the RSPE algorithms; see (3.8).
Fig. 4 shows the time evolution of the transition probabilities
estimates. This figure demonstrates that estimates converge to
the correct values.
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Fig. 7. Simultaneous estimation—Estimation error.

Simultaneous Estimation:A two-state Markov chain em-
bedded in WGN is generated with parameter values

for
with and . The transition
probabilities and the state output mappings of the chain are
estimated simultaneously using (4.3) and (4.4). Figs. 5 and
6 show the time evolution of the transition probabilities and
state level estimates, respectively. Fig. 7 show the estimation
error in and the transition probability . These figures
demonstrate that estimates converge to the correct values.
Comparison with the results presented in [13] suggest that
the convergence is considerably more rapid.

VI. CONCLUSIONS

In this paper, we have proposed new algorithms for recur-
sive estimation of the state transition probabilities for HMM’s
based on ELS and RSPE techniques. These algorithms avoid
the ill conditioning in low noise of the schemes in [13].
Convergence analysis for the RSPE algorithm is provided via
an ODE approach, but no convergence results are presented
for the ELS algorithm. Despite the lack of convergence results,
the ELS algorithm is attractive because it has computational
complexity of only O per time instant, compared with
the RPE scheme (of [13]) and the RSPE scheme of this paper
which have computational complexity O .

This paper also proposes a scheme for the simultaneous
estimation of state output mapping levels and the state tran-
sition probabilities. Local convergence results are presented.
The simulation studies presented demonstrate that the schemes
proposed in this paper converge from reasonable initializations
and are effective in low noise levels.
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