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Adaptive Estimation of HMM
Transition Probabilities

Jason J. Ford and John B. Mooieellow, IEEE

Abstract—This paper presents new schemes for recursive probability of transferring from state; to statee;. The state

estimation of the state transition probabilities for hidden Markov process is measured indirecﬂy via measurem%tswhich

models (HMM's) via extended least squares (ELS) and recursive 5re |inear functions of the state denotétX;, in additive
state prediction error (RSPE) methods. noise

Local convergence analysis for the proposed RSPE algorithm is ) )
shown using the ordinary differential equation (ODE) approach ~ The Baum-Welch, or so called EM algorithm, for off-line
developed for the more familiar recursive output prediction error  estimation of the transition probabilities, given a sequence of
(RPE) methods. The presented scheme converges and is relativelyphservationsyg, 41, - - -, yr, is well known and with multiple
well conditioned compared with the previously proposed RPE 5504 converges locally to maximum likelihood estimates
scheme for estimating transition probabilities that perform poorly o .
in low noise. (see [6]). However, this linearly convergent, multipass, for-

The ELS algorithm presented in this paper is computationally Ward—backward algorithm has computational effort and mem-
of order N*, which is less than the computational effort of order ory requirements of QV27’) for each pass. Elliott has shown
N required to implement the RSPE (and previous RPE) scheme, that the backward pass through the data can be eliminated

where N is the number of Markov states. . . .
Building on earlier work, an algorithm for simultaneous es- at the expense of increasing the computational effort of the

timation of the state output mappings and the state transition forward pass to being of @QV*T’) (see [2, ch. 2]). One avenue
probabilities that requires less computational effort than earlier for improving the computational and memory requirements is
schemes is also presented and discussed. through the investigation of on-line adaptive schemes, which
Cu'sns‘g(ljergﬁgt";‘ﬂgﬂl a?t?opnegttz d(i);st:\?epp:?eps%snetgdatlg(ijlmgtrpasteaé?)n(\j/iesr- update parameter estimates at each iteration rather than after
: " each pass through the data.
gence and convergence rates. Recently, on-line identification of HMM’s exploiting con-
Index Terms—Hidden Markov models, parameter estimation, yentional identification theory has been studied [5], [13]. In
recursive estimation. [5], an algorithm designed to minimize the Kullback-Leibler
information measure is proposed. This algorithm requires
computational effort of only QV2?) per time instant, but
convergence is less than asymptotically optimal. Alternatively,
IDDEN Markov models (HMM's) are a powerful tool in the recursive prediction error (RPE) algorithm of [13] seeks
the field of signal processing [1], [2] with applications tqo minimize the observation prediction error cost and is
speech processing [6], digital communication systems [3], [Hsymptotically optimal but requires computational effort of
and biological signal processing [12]. The major Iimitation@(N4) per time instant. The RPE algorithm of [13] ap-
of schemes for estimating HMM parameters in applicatiofears attractive, due to its asymptotic optimality and its
concern computational complexity and memory requirementgature theoretical basis; however, it is actually ill conditioned
HMM's in discrete time can be viewed as having a staigy |Jow noise and is computationally prohibitive for large
X, at time k& belonging to a discrete set that, without losgy
of generality, is denoted a8 = {¢y, ez, -+, en}, WhereN — |n [11], new algorithms are proposed for estimating the
is the number of Markov states, ang is a vector that is state output mapping’, via extended least squares (ELS)
zero everywhere except for thith element, which is 1. There and RPE techniques. These algorithms exploit the discrete
are transitions between states described by fixed probabilitig§te structure of HMM's in ways for which there is no
that form a stochastic matrid = (A“), where A” is the parallel in standard state space model identifications. The
computational effort of the algorithms presented in [11] is
also less than that for the algorithm presented in [13]. In
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used in [13]. The recursive state prediction error (RSPBjraightforward), andw, € IR is i.i.d. with zero mean
algorithm proposed here is shown to minimize the statnd of known density, such as whes, is Gaussian, i.e.,
prediction error cost and has fewer computational requirements ~ N[0, 2], or a mixture of Gaussians. In addition,
than the scheme presented in [13]. An ELS algorithm is al§d ¢ R'*" is a vector of state values termed titate
proposed that requires computational effort of onlyA3) output mappingof the Markov chain. The terrstate levels
each time instant, compared with the(/D*) required for is commonly used for the vectaf’ when the observations
the RSPE and RPE schemes. Complete ordinary differentigé scalar. We also defiri, £ (o, - -+, yx) and Y, as the
equation (ODE) convergence analysis is presented for th@mplete filtration generated hy, ¢ < k. As a consequence
RSPE algorithm, but convergence analysis for the proposed

ELS algorithm has not been completed. We also show that Elwpy1|Fr vV Y] = 0. (2.3)
the proposed RSPE algorithm evanesces to the ELS algorithm

and, indeed, to the least squares (LS) algorithm as the signalDue to the Markov nature ok}, we can write

to-noise ratio increases.

A second contribution of this paper is a scheme that allows
simultaneous estimation of the state output mappifigand A
the state transition probability matrit. The proposed schemeWhere A = (A”) and A" N P(Xp1 = el X = ¢).
requires less computational effort than the simultaneous &¥oviously, A >0, and}_;_, A" = 1 for all j. We also
timation scheme presented in [13] but still require6N®) assume thai\, or its distribution is known.
calculations per time instant. We shall define the vector of parameterized

This paper is organized as follows. In Section II, the signfobability  densities (or  symbol  probabilities)  as
model, conditional state estimates, and a parameterized infox- = [bx(¢)], for bx(7) 2 Plyx|Xx = e]. In the special
mation state model are introduced. In Section lIl, we initiallgase whenw;, ~ N[0, 02], we can write
focus on a simplified estimation problem, namely, when the

E[Xp1|Fi] = E[Xp11|Xi] = AX;,

2
state sequence is measured directly, and apply the familiar least bi(i) = 1 {—(yk —Ce¢;) } (2.4)
squares approach. Some convergence results are presented. V2no? 203,

When the state sequence is not measured directly, the least _ N .

squares approach leads to the proposal of an ELS algorith e also write the initial state probability vector for the Markov
D _ A _

We then generalize the ELS algorithm by introducing a RSP#ainT = (;) W'ch m = P(Xo = ¢;). The HMM is denoted

scheme and demonstrate convergence via ODE analysis.)\ln_— (4, C, 7, 0,)-

Section 1V, an algorithm for the simultaneous estimation of

transition probabilitiesA and state output mappingS is B. Conditional State Estimates and Information State Model

presented. In Section V, some simulation studies that show g Xix, 4 denote the conditional filtered state estimate of
relative performance of these algorithms are presented. Fma%: given measurements, and A. In addition |eth|k w
conclusions are presented in Section V. denote the one-step-ahead predictiongf, given measure-
mentsY;_; and A. That is

II. PROBLEM FORMULATION . A . A

Xi, 4 = B[Xp|Vhs Al Xpjp—1, 4 = E[Xp|Vi—1, A]-
(2.5)

"rhe forward recursion for obtaining conditional filtered state
estimatesXy;, 4 for an HMM is given in [2]

In this section, we introduce the HMM in state space form.
Conditional state estimates and a parameterized informatio
state model are also introduced.

A. HMM State Space Model Xk, 4 = Ni(yr, ABu)AX_1i-1,4 (2.6)

Let X be a discrete-time homogeneous, first-order Markov N e
process belonging to a finite set. The state spscavithout Where Ni(uk, A) = (B(yr) AXj_1jx-1,4, 1) is a scalar
loss of generalitycan be identified with a set of unit vectorg?ormalization factor.

S={e, ez ent, ¢ =(0,---,0,1,0 -, 0 € RY We now proceed to introduce an information state model.
with 1 in the ith position. We consider this process to b&" information stateells us all the information we know about
defined on the probability spacé?, F, P), with 0 = the state from the observations and is here simply the state
o{Xo, -+, Xz} and with complete filtratio{ F; }. The state €StimateXyx, 4. Consider the following lemmas.
space model is then defined, for> 0, by Lemma 1: The one-step-ahead predictioBgX ;| Vi—1, A]
are given by
Xpy1 =AXy + My (2.1) Xk|k—1,A _ AXk—1|k—1,A-

yp = C Xy +wi (2.2)
Proof:

where M., is a sequence ofF; martingales; hence,
E[My+1]F] = 0. In addition, they, are continuous X1, 4 = E[X0|Vi—1, Al = E[AXg—1 + My Vi1, 4]

valued belonging toR (although generalization t&R" is = AXp 11, 4- O



1376 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 5, MAY 1998

Hence, the following lemma now holds. X, Xg, oo, X, IS

Lemma 2: The error term (Xk+1|k+1 4 — AXW 4) IS .
orthogonal toXMk 4, and the error ternfy, — CXW Aa) s NN m , B
orthogonal toXMk’A Moreover, the HMM can be reorganized Am = Z X1 Xi Z XiXp, ’ G.1)
as an information state model; see [22, p. 79]. The state k=1
estimates can be written as Moreover

Xigipers, 4 = AXpg, 4 + (2.7)
Uk = CXppp, 4 + o (2.8) X _
lim A,, exists a.s. (3.2)

m—0o00

wheren; andwv; are orthogonal to’A(Mk,A.
Proof: From (2.1), we see that

Furthermore, under the excitation condition assumption

Kigippa1, 4 — AXpr, 4 limynoo(37, XiX!)~1 = 0, then

= A(Xy — Xigr, 4) = (Xnt1 = Xiprjgr, 4) + Mis1.
We next show that each term on the right is orthogonal to n}grclx)Anl =4 as. (32)
K, A
From optimality, the estimation errofX; — XW 4) Is
orthogonal to)}, and smceXW 4 C Vi, then XW 4 1S m
orthogonal ta X, — XW&,A) S|m|larIyA (Xk+1—Xk+1|k+17A) Z | Xag1 — AXH|2. (3.3)
is orthogonal t0}11 and becauseXy;, 4+ C Vi C Vit1, k=1

then Xy, is orthogonal to{ Xy = Xypajes, ). Finally, g0 g0 manipulations  give (3.1). Now, since
Xk, 4 is orthogonal taM;.,; from (2.2) and becaus&y, 4 m N m . :
is orth | tQVx. The result (2.7) foll d (2.8) follows 2or=t KrXk) = 2y diadX)l, where diagX) is
IS orthogona Oy’“ € result (2.7) follows, and (2.8) fo OWSthe diagonal matrix withX on its diagonal whenX is a
likewise by noting thaty;, — CXyx, 4) = O(Xj — Xgp, 4)+
w : 0 vector, then

k-

Lemma 2 shows that the orthogonality property required for R m m '
convergence of standard recursive identification is satisfied; AT =% X3 xy [Z X,E])]
see [14]. — —

Proof: Standard least squares algorithms are concerned
with minimization with respect tod of the following cost:

-1

In addition, sinceX,Ej) € {0,1}, then on the subse-
quence of [1, m] for which X,E]) = 1, which is de-
lIl. ESTIMATION OF TRANSITION PROBABILITIES noted {£;(1), £;(2), ---, £;(m;)} with m; integers (where

. A ()
In this section, we develop algorithms for estimating thé* = k=1 Xy ). then

HMM transition probability matrix4 from observationg. —

Initially, we investigate the simplified problem of estimating rij ___1 -

A from a known state sequendeX;} using a least squares A Z
quendeX} using q

(LS) algorithm. In the following subsection, we use condition

state estimates in an extended least squares (ELS) algorithm

to produce estimates afi when the state sequence is not m; > 172 m; = m.

measured directly. Finally, we introduce a state prediction

error cost and propose a RSPE algorithm.

()
Xé (k+1)

First, we prove the second lemma result (3.2), where the
excitation condition thatim,,,— . mj_l = 0 for all j holds.
A. Least Squares Consider the error term, which follows from algebraic manip-

In this subsection, we consider the signal model (2.4jation of (3.1) and (2.1)

and (2.2) and the simplified estimation problem. Estimate
the state transition probability matrid from the state se-

my

quenceX;, Xo, ---, X;. Subsequently, we will consider the A — AV = 1 Z M( zk+1) ’
more difficult estimation problem where the state sequence
X4, Xy, -++, X, must be estimated frory,. o
Lemma 3: Once each state has been active at least onceNow, we defineW, i ? 2 Y7 1//€Mé(z(k+1), whose

that is (3, XxX};)™! exists, the optimal off-line least elements are scalar martmgales adapted fp since
squares estimate of the transition probability mattixgiven E[W, ,(,ijl)U-“m] = W9 for all 4, j. In addition, W, 9
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is bounded inL, for eachi, j since B. Extended Least Squares

This subsection proposes an ELS algorithm for estimat-

i,5)12
E{WS 1%} ing HMM transition probabilities. Extended least squares

m; 1 ‘ 7 algorithms aread hocalgorithms in which conditional state
= Z EMZ(;)(,LH) Z 2 é (k-l—l) estimates are used in lieu of actual stat€g in an LS
n=1 implementation; see [23] for more details.
W 1 Consider the ELS version of the LS recursion (3.4) obtained
— (4) (9 i ‘ iti [ [
—E|E Z Z _sz li41) EMéj(kH) |]:max[é (), €65 (1)] by replacing the stat&’;, by conditional state estimates, that is
n=1 k=1 ~ ~ ~ A A —
s Ak+1 :Ak + (Xk+1|k+17fik - AkXMk:Ak—l)Xl/xlk As_ 1Pk
~ 1 i H-1 _p-1 ; ¢
=B 32 1 BUM s P} Py =Py +diag Xy 4,) (3.5)
k=1
=, where A, = [Ao, -+, Az], diag X) is the diagonal matrix
< Beo Z 1 with X on its diagonal wherX is a vector, and the recursion
el k? below is used to generate state estimatgs, ;, |

< 00 for all ¢, .

A

Xr1lht1, Ay = Niet1(yr, Ak)B(ykJrl)Akam,Ak_l (3.6)
Here, we have used thﬂ[M,EZZlM,(f)U-“k] =0foraln<k
and E{[M,Eﬁzl] |Fr} < Boo for someB,, < oo.

Now, under the excitation conditiom; — oo for all j and
martingale convergence results [7], [8], we have tﬂéﬁf’j)
converges almost surely. Hence, by the Kronecker Lemma [8],
[9], we have that

where Ny.41(yx, flk) is a scalar normalization factor as in

(2.6).

Remarks:

1) Note that(XkJrllkJrl A, —Akalk A,_,) Is not orthog-
onal to Xklk A unIessAk = A for all k. Hence,
standard theory no longer applies.

mj 2) The computational cost of the ELS recursion (3.5) at

lim (A9 — A%) = lim Z é (k+1) —0 each iteration is QV?).
mmee mj—oo Ty 1= Since we are unable to proceed with further analysis of
a.s. for allz, 7 the convergence properties of this ELS algorithm, we proceed
in the next subsection by taking the ELS concepts one step
and the lemma result (3.2) follows. further. The RSPE algorithm that follows appears to naturally

To obtain the first lemma result, we note thaiifi,y, ..., 77; generalize this ELS algorithm. These RSPE algorithms are

is finite, thenZ"” XZ(Z)(k-i—l) is also finite, and hence, C|ear|y’developed Wit.h the view of achieving asymptotic effigient
convergence (in the sense of almost surely to a local minimum

Ll — oo Am is finite. The existence dim,,—oo Am WHheN ¢ e anaropriate cost function) with rate of ordefk!/2,
lim,,, — o0 mj = 0 is proven by the second lemma result;

hence, the first lemma results follow as claimed. O . RSPE Method

Consider now on-line estimation via recursive least square
(RLS) algorithms. Simple manipulations of (3.1) give th%
on-line recursions

SThere exists mature theory for recursive identification of
iscrete-time models with states IR" based on the min-
imization of the observation prediction error cost; see [14].
N N R , This RPE theory provides asymptotic quadratic convergent
Ay = Ap + (X — A Xp) X By algorithms (admittedly to a local minimum) for linear and
P7l =Pt + XX}, or certain nonlinear models.
Py =Pi 1 — Py Xo(1 + XLPu1 X3) " XL Py (3.4) In this ;ecuon, we proceeql by ap_plymg this theory to obtain
asymptotic convergent algorithms (in a local sense) for HMM
where P, can be thought of as related to the energy of t sguebnstglcct?(:l:n that generalize the ELS scheme of the previous
mpTur: sg?jgentce. . th w that i Lemma 2 motivates the use of a state prediction error cost
€ Indicator vectorsi, have the property that noniineargeq (3 3)) rather than the observation prediction error cost that
functions of an indicator vectof’(X;,) are linear functions is ,sed in the standard RPE theory. Consider the cost function
[£'(e1), - -+, F'(en)] X} of the indicator vectorX;.. Exploiting
this property, it is possible to rewrite (3.4) so that the right- A
hand sides are linear iX}. = Z”XW o = AWB)Xi 11,6/l 3.7)
We now proceed to consider the more realistic case when
X, is not measured directly but must be estimated fromhere # is used to parameterize the unknown transition
observations. We first examine extended least squares (ER8)bability matrix such thatd = [ay, ---, an]’, where

algorithms. aj A [ATL, ..., AIN],
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Thus, the RSPE recursions that seek to minimize the costConvergence ProofConvergence of (3.8) and (3.9) is
(3.7) are shown by considering the ordinary differential equation (ODE)
R R . associated with (3.8) and (3.9). That is
Or =1+ By, .

d

Pt =P+ diagl © K,y g, ) - O(r. k) = R (7, K)[6(r. k), M
Prl=Ar 3.8
0 =4 (38) diR(’ﬂ k) =Go(r, k), k], R0, k) > 6I. (3.12)
. . ) T
where Iik|ék—1 - (Iigjl)ék—l) for ﬁ§€|)ék—1 - d/dQ(Z)Vk

Here, k is fixed, andé is a small constant. Let us define for

()ly=s, _,» and (3.8) and (3.9) withd(r, k) abbreviated a#,

1 column vector of all ones;

® Kronecker product; F(6r, k) = Eltings.] (3.13)
A some large constant. nd ’
Here,ﬁ’k__l1 is an approximation to the second derivative o? , L
Vi(6). Note that a projection operation can be implemented G(0-, k) = E[diagl’ ® Xy_15-1,6.)].  (3.14)
at each time step to ensure thatf) is a valid stochastic _
matrix, and the convergence results presented in the followih§€ following lemma now holds. _
discussion still hold. Lemma 4: The recursions (3.8) and (3.9) will converge a.s.

The recursion (3.8) can also be written as the scalar rectf-the setD = {foo|limp—oo E[f (0, k)] = 0} 2 6 (or
possibly the boundary of the valid A region if a projection

sion step is performed). Moreover, under the excitation condition
69 =6 4 Plgz)ﬁﬁ)e P, — 0 as1/k, then convergence df, is at the ratel /k*/2.
)11 AG) -1 (5’)"‘1 Proof: The ODE associated with (3.8) and (3.9) for fixed
BT =0+ X7 A (3.9) £, under (3.13) and (3.14), is (3.12).

Now, a Lyapunov function for (3.12) under (3.13) and (3.14)
where { = ¢ modn N. Here, modn is the usual modulo jg

operation, except that modn ¢ = 1.

Gradient Calculations: W (b, k) = E| Xpr, 6. — A0)Xp_1pp—1.6.]1)] (3.15)
@ _ avi(9)
Fplies = gAmn vir so that A
d AW (0, k) db-
= =(i— — W, k)=—F7"——
wherem =i modn N, andn = (i —m)/N + 1. Now p W( ) a0, .
dVi(6) 5 (m) 5 5 (n) = — f[0(r, k), K|R(7, k&)L f[O(r, k), k).
T = [ka,e - am(e)Xk—llk—l,0:| X 1k—1,6 (3.16)
N
+ Z [X,E’lze - aj(e)Xk_llk_Lg] Thus, W (6,, k) converges for alk andr — oo, 'and 9(_7, k)
j=1 converges to the sed|E[f (6, k)] = 0} (for discussion of
) N convergence when a projection is performed, see Ljung [14]).
kO _ o ) dXp—1jk—1, (3.10) Here, the recursions (3.8) and (3.9) and intermediate steps
dAmn® ) dAmn® are stable; hence, together with the results of [18]-[20], the

various regularity conditions required by the ODE theory of
Here, a; is defined in Section II-A, and Ljung [14] are satisfied, and the first result claimed follows.
Note that the conditions given in [18]-[20] ensure that HMM

dxy) X filters forget initial condit iall
Mk8 oo o (n) k—1|k—1,0 ilters forget initial conditions exponentially.
dAmn =Ny diagB) | X 2y g1 em + A(0) dAmn Observe from (3.16) that iR(r, k) is of the orderl/k,
o N as under suitable excitation, theiié(r, k), k) converges to
x B(j, 1)ai(0) Xp—1jx-1,6 zero asl/k'/2. Since, asymptotically, the stochastic difference
. ka_llk_Lg . equation behaves as the ODE, then rates of convergence
+NkB(J7, 9)35(0) — it j #m translate across.
O ax This leads to the convergence rate result of the lemimna.
ot = NpdiagB) | X" g e+ A(6) 2}'7;—179] Remarks:
1) The theory is not a global convergence theory. It is not
x B(j, j)aj(9)Xk—1|k—1,e excluded that the seb may contain locally optimal,
B but not globally optimal, parameterizations to which the
+ NB(j, 7) [Xz@uk—l,e + a;(8) 2}'75;1 9] re_cursions can converge. _Simujation studies suggest that
with reasonable initializationsf;, converges tof, as

if j=m. (3.11) desired.
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2) The lemma excitation conditiod’, — 0 as 1/k is identifying#. Lemma 5 correctly predicts that the performance
not particularly restrictive. It can be interpreted as aaf the RPE algorithm presented in [13] will deteriorate as
ergodicity requirement on the state sequence. That is, thg — 0.

Markov state sequence must visit each state (uniformly) Our choice of cost function (3.7) does not suffer from the
ask — . same difficulties as2 — 0. In fact, from (3.10), it is clear that

3) The existence of parameter estimates and/or convergease? — 0, the RSPE algorithm reduces to the ELS algorithm
of these estimates (possibly only for a subset of th&.5). Similarly, ass2 — 0, then Xk et Ay = Xk and
parameters) can be shown when the lemma excitatihence, the ELS algorithm, and, likewise, the RSPE algorithm,
condition is relaxed, but this is not done here. simplifies to the LS algorithm (3.4).

4) To reduce the number of calculations, the second halfRemark:

of (3.8) and (3.9) can be replaced by a stochastic 1) Even withouto2, — 0, it is possible to see the simi-

approximation given by larities between the ELS recursion (3.5) and the RSPE
Aq _ recursion (3.8). In fact, if we were to approximate the
By ~ kdiag E[X4]). gradientr, s by the first term in (3.10), then the

. . . . RSPE recursions would reduce to the ELS recursions
Convergence can still be proven with a slight modifica- (3.5)

tion of Lemma 4.
5) The concept of using a cost function (3.7) that measures
the state prediction error has been introduced previously IV. ESTIMATION OF TRANSITION

in other contexts by Bryson; see [10, p. 349]. However, PROBABILITIES AND STATE OUTPUT MAPPINGS

we believe this concept has not been used previously. hi ) laorithm for simul .
for HMM identification. This section proposes an algorithm for simultaneous estima-

6) The state prediction error cannot be driven to zero fg§Pn Of the state output mapping matri and the transition

all k by a particular choice of due to the nature of probability matrix A, given a set of observation¥;, and

error will tend to zero asék — 0.

7) The number of calculations required to estimétén
(3.8) and (3.9) is of QV*).

In [13], the observation prediction cost function is used t8. Dual Cost Function Approach

are neither shown nor excluded from our theory.

identify transition probabilities, that is To obtain simultaneous estimates férand C, we consider
. o ) the coupled subproblems of estimating given an estimate
0 = arg mn {Vi(8) = El(yx — CXp)"[Yi]}- of A and estimating4, given an estimate af’. Each of these

» ] ] ) subproblems can be solved, respectively, via RPE and RSPE
To understand the difficulty in using this type of cosfechniques after setting up appropriate cost functions. The

consider the following lemma. _ back into theA recursion andC recursion, respectively, to
Lemma 5: As the measurement noise approaches zero dgyple the recursions.
variance, that isg;, — 0, then Consider the minimization of the two separate cost functions
Ton (4.1) and (4.2).
_MkAR— 0
dAmn )

k
0 = arg min {vkl(ec, i) =%
=

Proof: From (2.6) we see that 1
N
() — Nee X
s, 4o = Nl (G)ai X 4, S - OO PP(X: = ejly) ¢ (4.1)
j=1
where N}, = [Ef;l bk(j)anmk,Ak_l]_l’ and by (¢) is de- X X
fined in (2.4). it = arg min {V,f(eA, 05 ) =14
As 02 — 0, thenby(i) — 0 for all i that X; # e o ;

x

||
[N

T

and bk(;i) # 0 for the ¢ that X;, = ¢;. Hence, N, — . o ,
br(i)ai Xy, 4,_, &s. for thei that X = ;. NMXe,_, — AODX, 16, 7 ¢ (4.2)
¢ () ; ‘
Thergfore,XkHlkH’Ak — 0 for all ¢ that X3 # e,
and X1521|k+1 A 1 for the i that X;, = e; i.e., Here, the two parameterizationg+ 2 [ag, -+, an]’
A TR A r .
Xr1ht1, 4, — Xa+1 The lemma result follows. O and ¢ = [CW, ..., C™)] have been introduced, and

o N A A A A~ ~ . . .

Lemma 5 implies thatl/d6V;(6) — 0 aso? — 0. That ©Ox =[5, 6, -+~ 65", 6] denotes the history of estimation.
is, asa2 — 0, the cost functionV,(¢) becomes invariant The cost functionsVi!(6, ¢i' ;) and Vi2(64, 6;_,) are
of 6. Hence, it is clear tha¥’; () is not a good criterion for coupled through thé;' | andé{_, terms.
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We proceed by introducing recursionséﬁ andé;j before
establishing convergence results.

o e i
O =01+ Lidyge  ga

k—1

Bt =Bt + diag{[P(Xx = edlyn), -
whereg,go g4 = d/d6VH(EC, GiL ) yo_ge » 2N
k-1
éA :éfé_l + PkliMéA é(ﬁ
P_ k 1+d|aq1 ®Xk 1lk—1,64_ 2) (44)
Wheremkle ic is the same aBygs defined in (3.10).

k—1?"k—1
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Dy = {6} |limp—oo E[f(6, k)] = 0} D 6% (or possibly
the boundary of the validd region if a projection step is
performed). Moreover, under the excitation conditiBn— 0
as1/k, then convergence d! is at the ratel /k'/2.

Proof: BecausedS — 6 ask — oo, then likewise,
the costV2(64, 8S) — V2(64, 6€) ask — oo. Now, by
inspection, it is clear that;?(6, 6<) is equivalent toV; (6)
given in Section Ill. Hence, the rest of the proof follows
Lemma 4. O

Together, Lemmas 6-8 imply local convergence of parame-
ter estimated andé;t. However, note that Lemma 8 holds if
and only if (4.3) has converged to the true valuedbfrather
than locally as Lemma 7 provides. In particular, for noise
processes that are multimodal such as mixtures of Gaussian,
this may not always occur.

Convergence ProofTo demonstrate local convergence of Remarks:

the coupled algorithm, we first show that recursion (4.3)

converges locally independently @ﬁ [or recursion (4.4)].
Next, we show local convergence of recursion (4.4).
Lemma 6: If the parameterized probability densitigs are

independent o6+, then the cost function (4.1) is independent

of 64, i =0, -, k.
Proof: The lemma condition implies that(.X; = ¢;|y;)
[as distinct fromP(X; = ¢;|Y;)] is mdependent ofek u
hence, the cost; (€, 85+ ) in (4.1) is independent df! | .
a

It follows from Lemma 6 that the recursions (4.3) are
independent ofek 1, hence, convergence of (4.3) can be

established as follows.
Consider the ODE (3.12) and witt(r, k&) abbreviated as
6¢, and let us redefine for (4.3) the

F(65, k) = E[¢pryec] (4.5)

and
G(6S, k) =

E[diag X, 1k—1,0¢,84_ )] (4.6)

The following lemma holds.
Lemma 7: If the parameterized probability densitigs are

independent o, then the recursion (4.3) will converge a.s.

to the setDc = {05 |lim oo E[f(S,, k)] = 0} D 6.
Moreover, undqr the excitation conditidh, — 0 as1/k, then
convergence of is at the ratel /k'/2.

1) Alternative cost functions for estimating have been

proposed elsewhere; see [11] and [13].

The Lemma 6 conditions are not very restrictive. For ex-

ample, Gaussian noise models and mixtures of Gaussians

noise models both satisfy the lemma condition.

3) P(X; = ¢j|y;) can be replaced by(X; = ¢,|Y;)

in the cost function (4.1); however, convergence is no

longer guaranteed. In simulations, it is found that a

scheme withP(X; = ¢,|Y;) replacing P(X; = ¢;|y;)

converges for all but the worst initial guesses. Note that

if 62 = [1/N2, ..., 1/N?], then P(X; = ¢;ly;) =

P(X; = ¢;]Y;), making 63 = [1/N2, ... 1/N? a

good initialization for the modified scheme if no other

a priori information is available.

The dual cost function approach of this section has

been found in simulations to converge more rapidly

than a composite single cost function approach, e.g.,

minimization of V;(6) = ViL(6€, 64) + AV2(64, 69),

for some A.

5) Implementation of recursions (4.3) and (4.4) requires
O(N*) + O(N) calculations per time instant, which
is less than the QV*) + O(N?) required using a
composite single cost function approach. Further reduc-
tion in computational requirements can be achieved by
implementing ELS versions of (4.3) and (4.4); however,
convergence results are not yet established in this case.

2)

4)

Proof: A similar approach to Lemma 4 can be taken. See

also [13]. O

V. SIMULATIONS

Lemma 7 demonstrates local convergence results for the
recursion (4.3). We now present convergence results for (44)!mplementation Considerations
under the assumption that (4.3) converges to the true valudn [11], several implementation issues are discussed, includ-

of C. Again, consider the ODE (3.12), and wifir, k&) now
abbreviated a2, let us redefine for (4.4)

F(82, k) = Elrigjpa] 4.7)

and

G(63, k) = Eldiag Xi_1j5—1,02, 60)].

The following lemma now holds.
Lemma 8: Given that§$ — 6 converges a.s. ab —

(4.8)

ing the following:

e the use of step sequences and Polyak acceleration to
improve transients performance;

< the modification of the parameter estimate recursions to
include the variance of Markov state estimates and vice
versa;

« modifications to allow tracking of slowly time-varying
parameters.

The discussion in [11] equally applies to the algorithms

oo, then the recursion (4.4) will converge a.s. to the seresented in this paper.
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Error during simultaneous estimation
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Fig. 1. Comparison of convergence rates.
Convergence in low noise
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Fig. 2. Convergence in low noise.

B. Simulation Results A" =09, AY = (1 —A%)fori £ 4, C=[1,3], 02 =1,
We present results of simulation examples using com utgrs_sumingc andoy, known. The transition probability matrix
P P g P Is estimated using both the ELS and RSPE algorithms (3.5) and

generated finite, discrete-state Markov chains to demonstrg%), respectfully. Fig. 1 shows a comparison of the estimation

features of the algorithms proposed in this paper. errors. This figure shows that convergence toward the true
Estimation of Transition ProbabilitiesA two-state Markov value occurs for both schemes and suggests that the RSPE
chain embedded in WGN is generated with parameter valusegheme converges more rapidly that the ELS scheme.
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Convergence for fast chains
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Fig. 3. Convergence of a fast chain.

Convergence of a 3 state system
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Fig. 4. Convergence of higher order chain.

Estimation in Low Noise:A two-state Markov chain em- presented in [13] do not converge. Fig. 2 shows the error in
bedded in WGN is generated with parameter valués = estimation of (3.5) over time. This figure demonstrates that
0.9, AY = (1 - A®)fori £ j, C = [1, 3], ¢ = 0.0001, (3.5) convergence occurs in this low-noise environment.
assumingC and o2, are known. The transition probabilities Estimation of Fast Markov ChainsA two-state Markov
of the chain are estimated in low noise using the ELS algohain embedded in WGN is generated with parameter values
rithm, i.e., (3.5). For this noise level, the recursive scheme’ = 0.6, AY = (1 — A%) fori £ j, C =[1, 3], o2 =1,
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Estimate of transition probabilities
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Fig. 5. Simultaneous estimation—Transition probabilities.
Estimate of state levels
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Fig. 6. Simultaneous estimation—State levels.

assuming” andc? are known. The transition probabilities 0f0.9, A% = (1 — A¥)/2fori # j, C = [1, 3, 5], 02 =1,

the chain are estimated using the RSPE algorithm, i.e., (3.8%suming’” ands? are known. The transition probabilities of

Fig. 3 shows the size of the estimation error over time arle chain are estimated using the RSPE algorithms; see (3.8).

demonstrates that convergence occurs. Fig. 4 shows the time evolution of the transition probabilities
Higher Order Chain: A three-state Markov chain embed-estimates. This figure demonstrates that estimates converge to

ded in WGN is generated with parameter valug¥ = the correct values.
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Comparsion of convergence rates
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Fig. 7. Simultaneous estimation—Estimation error.
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