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Parameter Estimation of Two-Dimensional
Moving Average Random Fields

Joseph M. Francossenior Member, IEEEand Benjamin FriedlandeFellow, IEEE

Abstract—This paper considers the problem of estimating the driven nonsymmetrical half plane (NSHP) MA representation.
parameters of two-dimensional (2-D) moving average random |n general, the MA model support has infinite dimensions.

(MA) fields. We first address the problem of expressing the ,yever in the texture modeling problem, we have found
covariance matrix of nonsymmetrical half-plane, noncausal, and ’ !

quarter-plane MA random fields in terms of the model parame- (See'_ €.g., []jo] and [11]) that_ In ma”Y F:a;es, the spect.ral
ters. Assuming the random field is Gaussian, we derive a closed-density function of the purely indeterministic component is
form expression for the Cramér—Rao lower bound (CRLB) on smooth and has small dynamic range (i.e., no sharp peaks).
the error variance in jointly estimating the model parameters. A Thjs property suggests that the purely indeterministic com-
computationally eff|C|ent algorithm for estimating _the parameters onent can be well modeled usindiaite supportNSHP MA
of the MA model is developed. The algorithm initially fits a 2-D P . PP . L
autoregressive model to the observed field and then uses theModel. On the other hand, modeling the purely indeterministic
estimated parameters to compute the MA model. A maximum- component by a 2-D autoregressive (AR) model may require
likelihood algorithm for estimating the MA model parameters is  larger supports, and hence, a less compact parameterization of
also presented. The performance of the proposed algorithms is the field is obtained. Thus, in those cases where the covariance
glr’:rt;e}etf_dR% '\ggztnefarlo simulations and is compared with the ¢, tio of the purely indeterministic component of the field
_ - _ rapidly decays to zero, a finite support NSHP MA model would
_ Index Terms—Maximum likelihood, moving average random  generally provide a more compact representation of the purely
fields, parameter estimation, random fields. indeterministic field. We note that many of the existing texture
analysis and synthesis algorithms employ 2-D AR models for
I. INTRODUCTION texture modeling (see, e.g., [7]-[9]). These AR models produce

HE PROBLEM of estimating the parameters of a tWot_al‘ficiem parameterizat_ion of t_he purely indgterministic field
T dimensional (2-D) real-valued discrete and homogeneoYYg'e” its spegtral density function contains high peaks and has
moving average (MA) random field from a single observel@9€ dynamic range. o
realization of it is of great theoretical and practical impor- |1€ general problem of estimating the parameters of random
tance. For example, it arises in the problem of estimating tﬂglds h{:\s received considerable attention. Most_a_pp_roaches for
parameters of the purely indeterministic component of natuf@ftimating the parameters of purely indeterministic random
textures in images [11] as well as in image segmentation affgfdS concentrate on fitting 2-D AR models to the observed
restoration problems (e.g., [12]). field. In general, thrg_e types _of AR models that differ in the

More specifically, in [11], we presented a texture modénodel support defl_nltlon are in use. These are the noncausal
based on the 2-D Wold-type decomposition of homogeneoffiC), nonsymmetrical half-plane (NSHP), and quarter-plane
random fields [2]. In this framework, the texture field i§QP) AR models. Least squares solution of the set of 2-D
assumed to be a realization of a regular homogeneous rand¥fmal equations that corresponds to each of the different
field, which can have a mixed spectral distribution. ThE10dels is @ method widely used in various image process-
texture is represented as a sum of purely indeterministied applications like image restoration and segmentation. A
harmonic, and a countable number of evanescent fields. THvinson-type algorithm for solving the set of 2-D normal
harmonic and evanescent components of the field result in g##uations of a continuous support NSHP AR model is derived
structural attributes of the observed realization, whereas tRe[5]- A recent analysis of the problem of estimating the
purely indeterministic component is the structureless, “randdd@rameters of 2-D noncausal Gauss—-Markov random fields
looking” component of the texture field. can be found in [6]. The asymptotic CrémRao bound for

It is shown in [3] (see also [2]) that any 2-D pure|ythe parameters of a Gaussian purely indeterministic field was

indeterministic random field has a unique white innovationglerived by Whittle [4]. More recently, this general derivation
was specialized for the case of noncausal AR models and
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single observed realizatioof this field. The algorithm is an Il. THE PARAMETRIC REPRESENTATION OF THE
extension to two-dimensions of Durbin’s “MA by AR” method MA FIELD AND ITS COVARIANCE MATRIX

[1] for estimating the parameters of scalar MA processes. The| ot {y(n,m), (n,m) € 2%}, be a real-valued, regular, and

algorithm has two stages. In the first stage, a 2-D NSHfgeneous random field, such that its spectral distribution

AR model is fit to the observed field using a least squargsyction is absolutely continuous. Let us define a total order
solution of the 2-D normal equations or alternatively by using,, the discrete lattice such that

a finite support version [10] of Marzetta’s [5] Levinson-type

algorithm. In the second stage, the estimated parameters of (i,7) = (s,8) iff (4,5) € {{(k, )|k = 5,£ <t}

the AR model are used to compute thel parameters of the U{(k, Ok < s, —00 < £ < 00} }. @
MA model through a least squares solution of a system of

Iir;fga}r equations. The overall algorithm is computationallyhen,y(mm) can be uniquely represented by

efficient.

We also address here the prob!em pf expressing the co- y(n,m) = Z b(k, Oyu(n — k,m — £) 2)
variance matrix of the observed field in terms of the MA (0,0)=<(k,0)
model parameters. Then, assuming the MA field is Gaussian,
we employ this result to establish bounds on the achie\wherez(oyo)ﬁ(u) b2(k,£) < o0;b(0,0) = 1, and {u(n,m)}
able accuracy in jointly estimating the parameters of the the innovations field ofy(n, m)} with respect to the total-
MA modeled purely indeterministic random field. We deriverder definition (1), [3].{u(n,m)} is a white noise field.
closed form exact expression for the CerriRao lower bound The random field{y(n,m)} is called purely indeterministic
(CRLB) on the achievable estimation accuracy. Using thandom field. We therefore conclude that the most general
expressions of the covariance matrix in terms of the MA modelodel of any regular random field, whose spectral distribution
parameters, we then derive a maximum likelihood algorithfanction is absolutely continuous, is the innovations-driven,
for these. The previously derived “MA by AR” algorithm iSNSHP support MA model (2).
used for initialization of the multidimensional search involved In practice, the observed random field is of finite di-
in the maximum likelihood estimation (MLE) algorithm. Sincemensions. Hence, lefy(n,m),(n,m) € D}, where D =
the MLE method requires an iterative and computationally(s, ;)|0 < < S—1,0 < j < T—1}, be the observed random
intensive procedure, it becomes computationally prohibitiviield. The MA model (2) is, in general, of infinite dimensions.
even for moderate size data fields. However, as we show in thisthis paper, we restrict our attention to MA models of finite-
paper, as the data size increases, the “MA by AR” algorithdimensional NSHP support. Next, we elaborate on expressing
becomes less biased and, therefore, offers an increasingjy covariance matrix of the observed 2-D MA random field
attractive alternative to ML estimation. in terms of the model parameters.

In [14], we consider the general problem of establishing Assumption 1:The purely indeterministic field is a real-
bounds on the achievable accuracy in jointly estimating the paalued MA field, whose model is given by (2) witlt, ¢) €
rameters of a real valued, 2-D, homogeneous random field Wik, »;, whereSy y = {(4,7)]t = 0,0 < j < M}IU{(4,5)|]1 <
mixed spectral distribution from a single observed realizatian< N,—M < j < M}, and N, M area priori known. The
of it. However, in [14], we restricted our attention to the casériving noise of the MA model is a zero mean, real-valued
in which the purely indeterministic component of the randomhite noise field with variance?. Thus, (2) is replaced by
field is a white noise field. Thus, the derivation presented here
provides a generalization of the lower bound derived in [14] y(n,m) = Z b(k, Hu(n — k,m — £). (3)
for the case of an arbitrary purely indeterministic component. (k,)CSN 1

The paper is organized as follows. In Section 11, we consider ] )
the problem of representing the covariance matrix of the The parameter vector of the observed figlg(n, m)} is
observed MA field in terms of the MA model parameteriven by
The result is derived first for an NSHP MA model and then
extended to the cases of noncausal MA model and quarter- 0 =[0%,0(0,1), -, b(0, M), b(1, M), -, b(1, M)
plane model. In Section IlI, a closed-form expression for the o (N, =M, - (N, M) 4
CRB on the error variance in jointly estimating the MA o
model parameters is derived. In Section IV, we develop the L€t us stack the columns of the observed field into the vector
computationally efficient “MA by AR” estimation algorithm. form
Section V presents the ML algorithm for estimating the MA
model pargmeters. In Section VI, we present some numeri- ¥ = (S =1, T = 1), y(§ =1,0),-,y(1, T = 1)
cal examples. The performance of the proposed algorithms -+ %(1,0),5(0,T — 1), -+, 4(0,0)]”. (5)
is illustrated by Monte Carlo simulations and is compared o ] )
with the Cranér—Rao bound. We investigate the effects gpiMilarly, let the driving noise vector be defined by
both th_e de_lta size and the dimens_ions of the suppc_)rt of the w=[u(S = 1,T+M—1),,u(S — 1,— M)
approximating AR model on the bias and error variance of
the proposed algorithms. In Section VII, we present some w0, T+ M—1),-- u(0,-M)
concluding remarks. (=N, T4+ M — 1), ,u(—N,-M)]*. (6)
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Let 0, denote ak-dimensional row vector of zeros. Inand
addition, let

bo =[04s,1,0(0,1),---,b(0, M),07_4]
by =[(1,-M),---,b(1,0),---,0(1,M),07_4]

b=[b_n, b0, -, by]. (13)

Here,bis a(7 +2M) - (2N + 1) — (' — 1)-dimensional row
vector. DefineC to be theT x (T'+2M) - (2N + 1) banded
Toeplitz matrix

by =[b(N,—M), -, b(N,0), - b(N, M 7 - b(j—i+1), j>i
~ = [H( ) ( ) ( ] (7) [Cl.; = {O(J ¢ ) ¥< L (14)
) J
and
whereb(i) = 0fori < 0, andi > (T'+2M)-(2N+1)—(T-1).
b= [bo by, by]. (8) Finally, B is anST"x (T'+2M)(S+2N) block matrix defined
Note thatb is a (T + 2M) - (N + 1) — (T — 1)-dimensional Similarly to (10) with 3 replaced byC".
row vector. The Quarter Plane MA ModelConsider the 2-D MA

Define theT x (T'+2M) - (N + 1) banded Toeplitz matrix MCdel of (3), where we redefine its support so gty =
{@ N0 <i<N,0<j <M}, andb(0,0) = 1. Let

— bj—i+1), j>1
[Bl:,; = {Of" ) ‘f < () bo =[b(0,0), - -, b(0, M),07_1]
whereb(i) = 0fori < 0, and: > (T+2M)-(N+1)—(T-1). : :
Finally, we define theST x (I'+ 2M)(S + N) block matrix by =[0(N,0),---,b(N, M)] (15)
in (10), shown at the bottom of the page.
Thus, we can rewrite the observations (3) in the fornd
y = Bu. The covariance matrix of the observed field is given
in terms of the MA model parameters by

I =s’BB'. (11)

b= [b07"'7bN]' (16)

In the case of QP suppottis a(7+M)-(N+1)—(T—1)-
dimensional row vector. Defin® to be theZ x (7' + M) -

Note that (10) and (11) are made valid for any type dfV + 1) banded Toeplitz matrix
support of the MA model simply by redefining«, and B. o bj—it1), j>i
In the following, we list two important examples, namely, the [D]:,; = {0‘ L2 ; 17)
noncausal and quarter-plane models. ’ )

The Noncausal MA ModelConsider the 2-D MA model of whereb(:) = 0for¢ < 0, andé > (T+M)-(N+1)—(T—1).
(3), where we redefine its support so th& = {(¢,7)| Finally, Bis theST x (T + M)(S+ N) block matrix in (18),
—N<i<N,-M<j< M} andb(0,0) = 1. Let shown at the bottom of the page.

bon =[(=N, M), -, b(=N, 0, -, b=N, M), O] lIl. THE CRAMER-RAO BOUND
ON THE MA M ODEL PARAMETERS

by =[b(0, —M),---,b(0,0),---,b(0, M), 0p_1] Assume that the driving noise of the NSHP MA model
is a zero mean, real-valued Gaussian white noise field with
: : variance o2. Hence, the observed fieldy(n,m)} is also
by =[b(N,—M),---,b(N,0),---,b(N, M) (12) Gaussian. The general expression for the Fisher information

B Orx(z42Mm) e Orx(T42M)
O xr+2) B O x(r+20) e O x(r+2n)
B= . (10)
O7x(T+2M) e B Orx(r+2Mm)
Op (w42 e O7 s (r42u1)
D O (z+M) e O x (74 M1)
Oz (7400 D Orx(T4a) e Oz (7400
B— (18)
Oz (7400 e D O+ M)

Orx(r+an e Orx @+ D
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matrix (FIM) of a real, zero mean, Gaussian process is giveunction of the parameter vectér Hence, e.g., [15], the CRB

by (e.g., [16]) on S(e’?7 ¢i27) is related to the CRB of by
1 ar’ or 27w _j2mrNy __ T
‘ ! where the column vectoW is defined by
where I" is the observation vector covariance matrix, and e 2w
[J(0)]; ; denotes thdz, j) entry of the matrixJ. W = 95(c", ¢ )_ (29)
Note that o0
ab (20) Taking the partial derivatives of (/2™ /27 with respect
Ob(k, ) CMTHIM)+ML4L to the parameters ifl, we have
Whel’eek(T+2]w)+]w+1+[ is a(T + 2M) . (N + 1) - (T - 1)- 85(6””“, CjQﬂ—V) — i S(eiju 6]’2771/) (30)
dimensional row vector whos& 7 +2M )+ M +1+-£ element Ho2 o2 ’ ’
. j2rw Lj2wy
equals one, whereas aII_|ts other elements are zero. Hence 8S(e;b(k,;)f ) — 207 Re{B(ei?™, ej””)ej%(’““Jfé”)}.
9B _g.. (21) (31)
b(k,e) —  *D
whereﬁ(kyé) is the up-shift matrix IV. 2-D MOVING AVERAGE PARAMETER ESTIMATION
— 1, j—i=kT+2M)+M+/¢ The parameter estimation algorithm that we present in this
Uaolis= {0’ otherwise. (22)  section is an extension to two dimensions of the algorithm

. ) o ] proposed by Durbin [1] for estimating the parameters of scalar
Taking the partial derivatives aof with respect to the MA \ a processes. The idea is to fit a NSHP AR model to the
model parameters, we have observed field and then using the estimated AR parameters to

or ) T T estimate the MA model parameters.
ob(k, 0) =" WaoB +BU(k,é)]’ It was shown by Whittle [4] that any purely indeterministic
(k. £) € S \ {(0,0)} (23) raljdom field whose spec.trfal density is analy'qg in some
’ neighborhood of the unit bicircle and strictly positive on the
where U, ¢ is defined in (24), shown at the bottom of theunit bicircle can be represented by a NSHP AR model of

page. In addition generally infinite dimensions. This result was later extended
or 1 and was shown to hold even under milder conditions [3].
97 = o2 (25) Hence, any 2-D purely indeterministic MA random field that

o ] ~ satisfies the foregoing conditions can be fit with a NSHP
Substituting (11), (23), and (25) into (19), we obtain AR model. Since parameter estimation algorithms of 2-D
closed-form expression for the FIM of 2-D Gaussian MA\R random fields are available (e.g., [5]), we employ such

random fields. . _ ~_an algorithm as the first step of the proposed procedure for
In many cases, we are interested not only in estimatiggtimating the parameters of the MA field.
the MA model parameters but in estimating some function of | ot Spo be defined similarly toSy /, and letSpo \

these parameters, such as the spectral density function of {I(@ 0)} be the NSHP support of the MA field AR model. In
observed field. Having estimated the model paramdtetSe  general S, , is of infinite dimensions. In practice, we must
spectral density of the field can be computed using its knoVgoose finite values foP andQ, and hence, an approximation

functional dependence on the (estimated) parameters error is introduced. It is obvious that such a method is
S(eI?™ B2y = 2| B2 | 12| (26) hecessarily inc.onsi.stent., even if thg covariance .function of

the observed field ig priori known since no MA field can
where be exactly modeled by a finite support AR model. However,

the bias of the estimates can be made arbitrarily small by
sufficiently increasing the support of the AR modgp .
Therefore, we choosE and@ such thatP? > N and@ > M,
Next, we derive the CRB on the spectral density of the fielde., the finite support of the AR model is chosen to be much
The spectral density function of the MA field is a differentiabléarger than that of the MA model. More specifically, let the

B(GjQﬂw7 ej27rz/) _ Z b(k, g)e—jQﬂ'(kw-l—éu)' (27)
(k,0)ESN, M

U Orx(r+2Mm) e Or s (r+20)
Orx(T420m) Uio) Orx(T42M) e Or x(7420)

Ugop = - B : (24)
Orx(T420m) e U0 O7 s (r+2Mm)

O xr+20) e O x(r+20) Ui
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2-D finite support MA model of the data be given by (3), an&ach of the blocks ofd is a Toeplitz matrix. The structure of
let the approximated finite support NSHP AR model of ththe blocks is given as

same field be given by

y(n,m) = Z a(k,()y(n—k,m—ﬁ)
(k,6)CSp,o\{(0,0)}
+ u(n,m). (32)
Define
Bl )= bk, D2 2" (33)
(k,0)ESN, M
and
Alz, 22) = Z a(k, 0z %2t (34)
(k,0)CSpq

wherea(0,0) = 1. We therefore have the approximate relation

Az, 22)B(21, 22) = 1. (35)
Let
b=[b(0,1),--,b(0, M), b(1,—M),---,b(1, M)
o B(N,=M), - (N, M. (36)
Similarly, let
ao =[a(0,1),---,a(0,Q),0]" (37)

aL = [CL(]., _(Q - 1))7 o -,CL(]_,O), o '7a(17Q)701\4]T

(38)
ay = [0]\4, CL(]{}, _Q)a Ty CL(]{}, O)a T ,CL(/{}, Q)’ 0/\4]T
2<k<P (39)
and
a=aj,af. 'aaﬁaOE(Q+M)+11N]T' (40)

i 0¢x(2Mm+1) 7
1 cee 0
a(0,1) 1 0
: 0
4(0,Q) 4(0,Q — 2M)
Lo - 0 a(0,Q) |
and forl1 < k< P
[ a(k,—Q) 0 0 T
a(kv _(Q - 1)) CL(I{}, _Q) 0
: 0
Ak — . a(kv_Q)
ok, Q) ok, Q — 2M)
0 0 ]{;7
L a(k, Q) a4

Note that the matricegl;,0 < & < P are all[2(Q + M) +
1] x (2M + 1)-dimensional matrices. In addition, let, be
the (2Q + M) x (2M + 1) sub-block ofA, consisting of its
2Q) + M lower rows, and letd) be the(Q + M) x M lower
right sub-block ofAy. Similarly, let Ax,1 < k < P be the
(2Q + M) x M lower right sub-block of4;, and

(45)

A = [O(Mi:;)xM} '

The MA model parameters can now be found by minimizing

We can now set the following linear system of equations hjje sum of the squared approximation error. The solution to

equating the coefficients of identical powers4f* z;*

Abt+a=e (41)

wheree is the approximation error vector, and we hates

this linear least squares problem is
b=—(ATA)A . (46)

In the actual solution for the MA model parameters, the

the block matrix, shown in (42) at the bottom of the pagg@arameters of the AR moddk(k,¢)} are replaced by their

[ ég 0(@+Myx(@2Mm+1) O+ myx2m+1) O+ myx2m+1)
A Ay O0q+r)yx@m+1) O0q+r)yx@m+1)
A) Ay Ag O2(Q+ M)+ x (2M+1)
:0 : Op(@+M)+1]x (2M+1)
a=| A Ao Ao . @
A} Ap_ Ap_n
Op2(@+M)+11x 01 Ap e Ap_n_1
Opp@+my+11xmr Op(Q+m)+1)x(2M+1) Ap Ap_Nn_2
0@ ran+1)xnm OR(@ran+1)x2M+1) Ap i
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estimated values, which have been obtained by solving the TABLE |
Corresponding set of 2-D normal equations usingeﬂ;tdmated SQUARED RoOTS OoF THECRB ON THE PARAMETERS OF THE TWO FIELDS
covariance function. Field 1 Field IT

Finally, note that the proposed algorithm is derived using no Parameters | (CRB)* | Parameters | (CRB)®
a priori assumptions regarding the probability density function . 019 8‘8;1;12 019 g-giii:‘
of the observed field. It is, therefore, applicable to Gaussian b(g Li) '0 i .03 53 004156
MA fields, as well as to non-Gaussian ones. b(i,o) 05 0.04063 05 0.04337

b(1,1) 0.4 0.03343 0.1 0.04248

V. THE MAXIMUM LIKELIHOOD ESTIMATOR

The main advantage of the “MA by AR” algorithm of the 10

previous section is that it requires only the solution of two A
sets of linear systems of equations [one to estimate the AR 2 8 /;g%:;
parameters by solving the set of 2-D normal equations and § //4%55‘“
the other the solution (46) to (41)]. In particular, there is g ° ////gﬁ‘“
no need for an iterative solution. However, as indicated in § / %ﬁ“‘“
Section IV, the estimates are biased and inconsistent. Hence 2 4 // /’%ﬁ‘fﬂ“
improved estimation algorithms are required in cases where the § é%ﬁ‘ﬁﬁ“‘“
performance of the “MA by AR” algorithm is not acceptable. g 2 \ ?‘ﬁ‘:‘f
The “MA by AR” algorithm can then serve to initialize a more “:\\\\\\\\\\ g94
sophisticated algorithm. One such estimator is the maximum 9 5$§§\\§\§

I,
{77
94

1247

72

&
7
/
7

%

likelihood estimator (MLE) for Gaussian MA fields, which %3
we derive in this section.

Since the observed fieldy(n,m)} is Gaussian, the log-
likelihood function of the observations is given by

(17
5
7

;I
7
7%

iy
iy

ST 1 1 _
logp(y; 0) = 5 log(2m) — 5 log(detI") — 5 yI' 'y
(47) T 05

The MLE of the field parameters is found by maximizing Fig. 1. Spectral density function of Field I.

log p(y; 8) with respect to the MA model parameters. Since ) ) ) . o

this objective function is highly nonlinear in the problem AS is well known, this type of iterative optimization proce-
parameters, the maximization problem cannot be solved &hir¢ converges to a local maximum and does not guarantee
alytically, and we must resort to numerical methods. In ordgfoPal optimality, unless the initial estimate is sufficiently

to avoid the enormous computational burden of an exhausti gse .t_o the. global optimum. AS Wf show in“Sectio_n Vi,
search, we used the following two-step procedure. In e initial estimates provided by the “MA by AR” algorithm

first stage, we obtain a suboptimal initial estimate for th%r(_)pos_ed in Section IV appear to provide a good initial starting
ﬁmt (i.e., one that leads to convergence to the global max-

0.5

nu

parameters of the MA model by using the algorithm describ«? um). The performance of the ML algorithm is discussed

in Section IV. In the second stage, we refine these initi more detail in Section VI and is compared with the CRB,
estimates by an iterative numerical maximization of the 1agnich was derived earlier.

likelihood function. In our experiments, we used the Broy-
den—Fletcher-Goldfarb—Shanno (BFGS) quasi-Newton opti- VI. NUMERICAL EXAMPLES

mization method [17], [18]. This algorithm requires evaluation |, gain more insight into the performance of the proposed
of the first derivative of the objective function at each iteratio%lgorithms relatively to the CRB, we resort to numerical

Next, we derive expressions for the first derivatives of the, 5 ,ation of some specific examples. We present several such
objective function (47) with respect # In general examples, which illustrate the dependence of the algorithms

Ologp(y; 8) 1 _, ar 1 , o bias and error variance on the dimensions of the support of
o0, Y tr{F aoi} + 2 Y r 90, Iy the approximating AR model and on the size of the observed
48) data field.
(48) Example 1: Consider the two NSHP MA fields with sup-
where@; is the ith element of6. port S; 1, whose parameters are listed in Table I. In this
Hence, using (11), (23), and (25), we obtain example, we evaluate the CRB on the error variance in
dlog p(y; 0) ST 1 o, estimatin.g the r_nodel_s parameters, as well as t_h.e bound on the
9.2~ 292 T2 Y I'y (49) error variance in estimating the spectral densities of the two
dlog p(y; 0) 1 . or fields. The dimensions of the observed field, for both models,
W =—3 tr{F W} are relatively small:S = 7" = 30. The squared roots of the

CRB on the parameters of the two models are listed in Table 1.
+ 1 y ' or I''y.  (50) The spectral density functioq of Figld I is.dep_icted in Fig. 1,
2 Ib(k, £) and the CRB on the error variance in estimating the spectral
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Fig. 5. Ratio of the square root of the CRB to the spectral density function
for Field I.

which is initialized using the “MA by AR” algorithm. Three
£bproximating NSHP AR models with different supports are

of Field ”_ s d(_apictgd in Fg. 3,_an_d the pounq on the erM¢onsidered. Table Il lists the bias and standard deviation of
variance in estimating the density is depicted in Fig. 4. NOEﬁe estimates for each of the supports, as well as the square
that in both examples, the shape of the bound as a function.gf; of the CRB. Note. however. that since the “MA by AR
frequency matches the shape of the MA field spectral densifiimation algorithm is found to be biased, the parameters
function. In order to further investigate the dependence of tgtimation error variances are not comparable with the CRB,
CRB on the shape of the spectral density, we depict in Fig\ghich is the lower bound on any unbiased estimator of the
the normalized CRB for Field |, i.e., the ratio of the squareghodel parameters.

root of the CRB to the spectral density function of the MA From the results summarized in Table I, we conclude that
field. Note that the estimation of the MA field spectral densitiyr the “MA by AR” algorithm, increasing the dimensions
function is relatively less accurate in frequency regions whegg the approximating AR model support reduces the bias
the spectral density function is close to zero than in regiog$ the estimated MA model parameters and increases the

of higher spectral density.

standard deviation of the estimation error. The overall effect

Example 2: Consider Field I—the NSHP MA field with of increasing the dimensions of the approximating AR model
supportS; ; from Example 1. Using 100 Monte Carlo runssupport is a smaller mean squared error. The ML algorithm is
we investigate the performance of the proposed “MA by ARSlightly biased, due to the small dimensions of the observed
estimation algorithm, as well as that of the ML algorithmfield. However, its bias is considerably lower than that of the
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TABLE I
EsTiMATION ResuLTs oF FIELD | MA M obEL PARAMETERS USING DIFFERENT NSHP
AR SupPORTS FOR THE “MA BY AR” AND THE MAXIMUM LIKELIHOOD ALGORITHMS

Parameters o2=1 [b(0,1)=-09]b(1,-1)=0.1]5(1,0)=-0.5 [ 6(1,1) =04
] (CRB)% 0.04778 0.02318 0.03171 0.04063 0.03343
bias 0.16245 0.22799 -0.02720 0.04957 -0.12292
(P,Q)y=(4,4) std 0.05488 0.01808 0.02803 0.03238 0.02794
bias ML | -0.04633 -0.04943 0.00702 -0.00954 0.02309
std ML | 0.08869 0.08403 0.03502 0.04089 0.04433
bias 0.07848 0.17654 -0.02872 0.04631 -0.10275
(P,Q)=(7,7) std 0.04936 0.02305 0.02980 0.03647 0.03181
bias ML | -0.05614 -0.05808 0.00802 -0.00965 0.02515
std ML | 0.08268 0.08599 0.03449 0.03945 0.04073
bias 0.01150 0.16728 -0.02953 0.04987 -0.10046
(P, Q) = (10,10) std 0.05323 0.02452 0.03025 0.03776 0.03129
bias ML | -0.05411 -0.05605 0.00584 -0.01213 0.02477
std ML | 0.09143 0.08758 0.03491 0.03907 0.04243
TABLE 1l VIl. CONCLUSIONS
EsTiMATION REsSuLTs oFFIELD | MA M ODEL PARAMETERS . . . .
FOR DIFFERENT DATA SizES, USING THE “MA BY AR” ALGORITHM In this paper, we studied the problem of estimating the

parameters of 2-D MA random fields. We first addressed
the problem of expressing the covariance matrix of various

Parameters §=30,T=30 S =100,T =100

bias std bias std : )
a2 1 | 0.01150 | 0.05323 | 0.05509 | 0.01644 types of MA random fields in terms of the model parameters.
b(0,1) |-0.9 | 0.16728 | 0.02452 | 0.08664 | 0.00523 This derivation was then employed to derive a maximum
bééi*oﬁ) %15 ‘gé’f;’;? g-ggggg '8-[;311:0107 8'8‘;‘1"2’2 likelihood algorithm and the CRB on the error variance in
B(11) | 0.4 | -0.10046 | 0.03129 | -0.04679 | 0.00842 jointly estimating the model parameters for Gaussian MA

fields. A suboptimal “MA by AR” algorithm for estimating the
parameters of the MA model was developed. This algorithm
“MA by AR” algorithm, which is used for its initialization. has low computational complexity but is biased. The bias
Hence, the mean squared error (MSE) in estimating the modeicreases when increasing the dimensions of the observed
parameters using the ML algorithm is smaller than the MSield or the dimensions of the approximating NSHP AR
of the “MA by AR” algorithm. model support. It was demonstrated that the “MA by AR”
Note that since the dimensions of the observed data field &stimator is a good choice for implementing the initialization
relatively small, increasing’ and@ so that( P, @) = (10,10), phase of the maximum likelihood algorithm. Furthermore,
rather than (7, 7), does not have a considerable effect on #t®ethe data size increases, the maximum likelihood method
bias nor on the variance of the estimation error for the “MAecomes computationally prohibitive, whereas the “MA by
by AR” algorithm. Since the “MA by AR” algorithm provides AR” algorithm becomes less biased and, therefore, offers an
the initial conditions for the ML algorithm, it is clear thatincreasingly attractive alternative to ML estimation.
no improvement in the accuracy of the ML algorithm can be
expected. The reason for the lack of performance gain when REFERENCES
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