
EXPONENTIAL STABILITY OF FILTERS ANDSMOOTHERS FOR HIDDEN MARKOV MODELSL. Shuey, B. D. O. Anderson and S. DeyDepartment of Systems Engineeringand Cooperative Research Centre for Robust and Adaptive Systems,Research School of Information Sciences and Engineering,Australian National University,Canberra ACT 0200, Australia.yFax: +61-6-279-8688 and e-mail: louis.shue@syseng.anu.edu.auKeywords : Stochastic, Stability, EstimationAbstractIn this paper, we address the problem of exponential sta-bility of �lters and �xed-lag smoothers for discrete-timeand discrete-state Hidden Markov Models (HMMs). Byappealing to a generalised Perron-Frobenius result fornonnegative matrices, we demonstrate exponential for-getting for both the recursive �lters and smoothers, andobtain overbounds on the rate of forgetting. Simulationstudies are carried out to substantiate the results.1 IntroductionThe purpose of this paper is to explain how some im-portant results in Kalman �ltering and smoothing canbe carried over to contemporary problems involving Hid-den Markov Models (HMMs). Presently, our attentionis restricted to discrete-time models, with �nite and dis-crete state and observation sets; tackling the problem forcontinuous-time models involve new tools which we areseeking to develop.The problems we consider are of two kinds, but related.Most Kalman �lters have an exponential stability property[4], even in nonstationary situations. This ensures that, ifthe �lter is initialised at some �nite time, the initial con-ditions (or equivalently, old measurements) are forgottenexponentially fast, thus the remote past cannot signi�-cantly in
uence the present. The absence of this propertyin a given �lter is likely to lead to unreliable estimates, asround-o� errors may overpower the measurements.The �rst results of the paper extend the exponential for-getting result to HMMs. Similar results along these linescan be found in [1], and, of a more preliminary nature, in[6]. Our results are probably more comprehensive, appeal-ing to more recent developments in properties of products

of positive and non-negative matrices [8], and allowing thecalculation of convergence rates.The second main thrust of the paper is to deal with�xed-lag smoothing, where measurements up to thepresent time are used to infer information about the state� time intervals in the past (� being a �xed quantity). Insmoothing problems which can be tackled using Kalman�lter ideas, it has been found that as � increases, thereis less and less additional bene�t gained in terms of thequality of the estimates. The fall-o� in the rate of in-crease of bene�t is exponential, and with � equal to fouror �ve times the dominant time constant of the Kalman�lter, practically all the bene�t derivable from smoothingis achieved [2].In this paper, we establish equations for the HMM �xed-lag smoother. Again, we are able to show that the rateof increase of bene�t from smoothing falls o� exponen-tially as � increases, with the same rate as the forgettingrate of the HMM �lter, which is, furthermore, at least asfast as that of the original hidden Markov signal model.The results were predicted, and the subject of simulationstudy, more than twenty years ago [7]. They constituteimportant guidelines for the use of �xed-lag smoothing,as opposed to �ltering, of HMMs.In Section 2, we de�ne the signal model, and demon-strate exponential forgetting of initial conditions for recur-sive �lters. In Section 3, the �ltering ideas are extendedto smoothed estimation scheme. Section 4 contains somesimulations results and discussions, in which the perfor-mance of �ltered and smoothed estimates for a two-stateHMM are compared. In Section 5 we present some con-cluding remarks.2 FilteringIn this section we will consider the problem of �ltering.Formally, a �ltered estimate is a conditional estimate ofthe state of the HMM, given a series of measurements.



2.1 Signal ModelConsider a �rst order discrete-time and discrete-stateMarkov process Xk = f1; 2; 3; : : :; Ng, k denoting time.At each time instant k, a corresponding signal Yk =f1; 2; : : : ; Ng is observed, again having discrete values. Wewill adopt the convention that a lower-case xk denotes theactual state value, and likewise for yk. The probabilityvectors for Xk and Yk are updated by the system matricesA and C, where A = faijg = fPr(Xk+1 = ijXk = j)g andC = fcmng = fPr(Yk = mjXk = n)g, and PNi=1 aij = 1,PMm=1 cmn = 1. Further, unless otherwise stated, aij > 0and cmn > 0, 8i; j; n 2 f1; 2; : : :; Ng, 8m 2 f1; 2; : : :;Mg.2.2 Evolution of Filtered DistributionsLet �kjk and �k+1jk be the �ltered and one-step pre-diction probability vector, with the i-th entry beingPr(Xk = ijY0; Y1; : : : ; Yk) and Pr(Xk+1 = ijY0; Y1; : : : ; Yk)respectively. The time evolution relations for the �lteredprobability vector are�k+1jk = A�kjk (1)�k+1jk+1 = 110NCyk+1�k+1jkCyk+1�k+1jk (2)where 10NCyk+1�k+1jk = [1 : : :1]Cyk+1�k+1jk is a scalarnormalising constant to ensure the entries of �k+1jk+1 sumto 1, and Cyk+1 = diag(cl1 cl2 cl3 : : : clN ), when yk+1 = l.2.3 Exponential ForgettingBy iterating (1) and (2), the �ltered probability vector attime k can be expressed in terms of an arbitrarily choseninitial distribution �0j0:�kjk = CykA�k�1jk�110NCykA�k�1jk�1= (CykACyk�1A : : :Cy1A)�0j010NCykACyk�1A : : :Cy1A�0j0= T1;k�0j010NT1;k�0j0 (3)where T1;k = CykACyk�1A : : :Cy1A (4)We now proceed to derive initial-condition forgettingof the �lter by appealing to the generalised Perron-Frobenius result [8] for an inhomogeneous product of ma-trices. Broadly, this theorem states that, under certainconditions, a product of positive matrices, of the formT1;r = HrHr�1 : : :H1, may become dyadic1 as r !1.As stated previously, A > 0 and C > 0, therefore (4),a product of successive CyA, is strictly positive, and the1The term dyadic means that a matrix is of rank 1.

requirements of the aforementioned theorem are automat-ically satis�ed. This means that, as k !1,T1;k �! U (k)V 0 (5)for some positive column vector U (k), and positive rowvector V 0. Without loss of generality, let v1 = 1. Hencethe normalised �lter probability vector becomes�kjk = 110NT1;k�0j0T1;k�0j0�! 110NT1;k�0j0 26664 u1(k)u2(k)...un(k) 37775 (1 v2 v3 : : : vn)�0j0�! 1NXi=1 ui(k)U (k)This is independent of the initial distribution �0j0. Therate of convergence of (5) is exponential and rates arecomputable [8].Similar convergence properties also exist when the con-ditions A > 0 and C > 0 are relaxed. In particular, thecurrent results can be applied to the following cases:1. C > 0, A � 0 and A > 0 failing but primitive2, and2. A > 0, C � 0 and C > 0 failing.3 SmoothingSmoothing is an extension of �ltering, in the sense thatthe conditional probability vector for Xj uses more mea-surements, not just up to time j, but till some later timek > j. Since more measurements are used, better esti-mates should result, although there is an inherent delaybefore the smoothed estimates are available.In this section, we will implement two �xed-lag smooth-ing schemes for an HMM by formulating the problem interms of �xed-point smoothing, and subsequently varyingthe �xed index j to obtain a �xed-lag smoothing scheme.The �rst approach involves the construction of a �ctitiousaugmented state model, as outlined in [4, 7]; embeddedwithin the �ltered probability vector for the augmentedHMM is the smoothed probability vector for the originalHMM. In the second method, the smoothed estimates con-sist of merging the �ltered probabilities from forward- andbackward-models, using a procedure outlined in [5].3.1 Smoother From Augmented SignalModelDe�nition 3.1 For each k � j, let Zk = Zj;k = (Xj Xk)0be an augmented state vector, consisting of the states of2Primitivity means that Ak > 0, for k > 0



the original Markov process as de�ned in Section 2.1, ata �xed time j, and a variable time k.From De�nition 3.1, it can be seen that Zk can onlyassume the values (1; 1), (1; 2), . . . , (1; N ), (2; 1), . . . ,(N;N ). By denoting the probability vector that Zk isin each of the N2 possible states at time k as Pk, it isseen that these hold: Pk+1 = APkwhere A = 26664 A 0 : : : 00 A 0 00 0 .. . 00 0 : : : A 37775 = IN 
AFurther Pj = 26664 e1 Pr(Xj = 1)e2 Pr(Xj = 2)...eN Pr(Xj = N ) 37775where ei is a unit vector, and recalling that Pj is an (N�1)column vector.By arguing that the output process of the original HMMwith state Xk can also be regarded as the output processof an HMM with state Zk, for k � j, the observationmatrix C for the augmented state isC = � C C : : : C � = 10N 
Cand, similarlyCyk+1 = 26664 Cyk+1 0 : : : 00 Cyk+1 0 00 0 .. . 00 0 : : : Cyk+1 37775 = IN 
 Cyk+1The �ltered probability vector for Zk, denoted as �̂j;kjk,evolve according to the following recursions:�̂j;k+1jk = A�̂j;kjk (6)�̂j;k+1jk+1 = 110N2Cyk+1�̂j;k+1jk Cyk+1�̂j;k+1jk (7)where 10N2Cyk+1�̂j;k+1jk is a scalar normalising constant.Since, by de�nition, the i-th entry of the smoothedprobability vector �jjj+� at time j with lag � for theunaugmented HMM is justPr(Xj = ijY0; : : : ; Yj+�)= NXl=1 Pr(Xj = i;Xj+� = ljY0; : : : ; Yj+�);the smoothed probability vector �jjj+� for the unaug-mented HMM can be evaluated by summing appropriate

terms in the �ltered probability vector for the augmentedmodel:�jjj+� = 264 1 : : :1 0 00 .. . 00 0 1 : : :1 375 �̂j;j+�jj+�= (IN 
 10N ) �̂j;j+�jj+�= �(IN 
 10N )(Cyj+�ACyj+��1A : : :Cyj+1A)� �̂j;jjj�j;j+�= [IN 
 (10N Tj+1;j+�)] �̂j;jjj�j;j+� (8)where �j;j+� = 10N2 [IN 
 (10N Tj+1;j+�)] �̂j;jjj, andTj+1;j+� = Cyj+�ACyj+��1A : : :Cyj+1A (9)Note that the property (A 
 B)(C 
D) = (AC) 
 (BD)has been used, and�̂j;jjj = 266666666664 Pr(Xj = 1; Xj = 1jY0; : : : ; Yj)Pr(Xj = 1; Xj = 2jY0; : : : ; Yj)...Pr(Xj = 2; Xj = 1jY0; : : : ; Yj)...Pr(Xj = N;Xj = N � 1jY0; : : : ; Yj)Pr(Xj = N;Xj = N jY0; : : : ; Yj) 377777777775= � e1�jjj(1) : : : eN�jjj(N ) �0 (10)with �jjj(i) denoting the i-th entry in �jjj.With j �xed, (9) has the same structure as (4), henceas �!1, Tj+1;j+� �! U(�)V0 (11)Furthermore, the same rate of convergence as for the �lterdetermines how fast Tj+1;j+� becomes dyadic.Remark 3.1 Disregarding the j-dependence, U(�) =fui(�)g is a �-dependent term, whereas V = fvig is avector of constants, 8i 2 f1; 2; : : : ; Ng.The unnormalised smoothed probability vector becomes~�jjj+� = "IN 
 NXi=1 ui(�)!V 0# �̂j;jjj= " NXi=1 ui(�)#26664 v1�jjj(1)v2�jjj(2)...vN�jjj(N ) 37775Once normalised, it can be seen that the �-dependentterms are cancelled, thus establishing the �-independenceof the smoothing equation for large lags, or �'s. Thismeans that all the improvement that can be gained bysmoothing is attained after some �nite �, and no signi�-cant gains can be made as the lag is extended further.



3.2 Smoother From Forward-BackwardFilters3.2.1 Backwards ModelFollowing ideas in [3], an analogous backward Markovstate process and HMM, which evolves backwards in time,can be constructed from a forward Markov state process.De�nition 3.2 For a given forward Markov state pro-cess, characterised by a state transition probability matrixA, the associated backward process has a system matrixAb with elements abij, such thatabij = Pr(Xk = ijXk+1 = j)= Pr(Xk = i) Pr(Xk+1 = jjXk = i) �1Pr(Xk+1 = j)In other words, and further assuming stationarity so thatPr(Xk = i) = Pr(Xk+1 = i) = Pr(X = i),Ab = �A0��1where � = diag(�), and � is the steady-state distribution,such that A� = �.3.2.2 Smoother from Forward-Backward ModelDe�nition 3.3 Denote a reverse �lter probability andthe associated analog of the one-step prediction proba-bility vector by �+kjk and �+kjk+1 respectively, with thei-th entry being Pr(Xk = ijYk; Yk+1; : : : ; Yk+�) andPr(Xk = ijYk+1; Yk+1; : : : ; Yk+�), where k+� is the max-imum time at which measurements are available.In accordance with De�nition 3.3, �+k+�jk+�(i) =Pr(Xk+� = ijYk+�) and �+k+�jk+�+1(i) = Pr(Xk+� =i), since k + � is the maximum time at which measure-ments are available. By further assuming stationarity, itcan be seen that�+k+�jk+�+1(i) = Pr(X = i)The reverse-time �lter obeys the following updatingequations:�+kjk+1 = Ab�+k+1jk+1 (12)�+kjk = 110NCyk�+kjk+1Cyk�+kjk+1 (13)Using the fact that the sequences (Y0; Y1; : : : ; Yj)and (Yj+1; Yj+2; : : : ; Yj+�) are conditionally independentgiven Xj [5], the smoothed probability vector can be ex-pressed as a product of two terms, the forward and reverse�ltered probability vectors:Pr(Xj = ijY0; : : : ; Yj+�) = Pr(Xj = ijY0; : : : ; Yj)�Pr(Xj = i) �Pr(Xj = ijYj+1; : : : ; Yj+�) (14)

where � is a normalising constant.From (12), (13) and (14), �jjj+�(i) can be rewritten as�Pr(Xj = i) �jjj+�(i)= �jjj(i) �+jjj+1(i)= �jjj(i) hAbCyj+1Ab : : :AbCyj+��+j+�jj+�+1i(i)= �jjj(i) hT bj+1;j+��+j+�jj+�+1i(i) (15)with �jjj+�(i) denoting the i-th entry of �jjj+�, etc.The �-dependence lies entirely in T bj+1;j+�; the appar-ent �-dependence in �+j+�jj+�+1 will be lost due to theinitialising process of the reverse �lter. Now, since Ab andC both are strictly positive, as �!1T bj+1;j+� = AbCyj+1AbCyj+2 : : :AbCyj+�= (�A0��1)Cyj+1(�A0��1)Cyj+2 : : :Cyj+�= �(A0Cyj+1A0Cyj+2 : : :A0Cyj+�)��1�! �(U (�)V 0)0��1� U bV b0(�)The third equality follows from the commutativity of diag-onal matrices. By the same arguments in Section 3.1, the�-dependency in the smoothed estimate (15) can againbe removed after normalisation.4 Simulations of a 2-state HMMThe basic system investigated is a two-state HMM, witha symmetric A matrix (also known as random telegraphwave). The simulations aim to illustrate the bene�ts ofsmoothing over �ltering in environments with di�erentsignal and noise contents. Results were obtained for twocases: �xingA and varyingC, and then �xing C and vary-ingA. The respective �xed matrices are: A = � 0.90:1 0.10:9 �, C = � 0.10:9 0.80:2 �.The lag required for the smoothing error variance toreach steady-state can be estimated by using the so-calledBirkho� coe�cient (see [8]), denoted as �B(:), which is ameasure of how close a given matrix is to having rank 1.This means that�B(Tj+1;j+�) � ��B(Tj+1;j+�)ob���1where �B(Tj+1;j+�)ob provides an overbound on the �B(:)of the individual terms which make up the productTj+1;j+�. Using the fact that �B(:) of a positive diagonalmatrix is 1, an approximate bound is�B(Tj+1;j+�)ob = �B(A);whereas a tighter bound can be found by grouping threeterms at a time in Tj+1;j+�, and isln �B(Tj+1;j+�)ob = 12E[ln �B(ACykA)]



The criteria for convergence, or Tj+1;j+� having rank 1,is to determine � = �crit, such that �B(:)�crit=4ob = 1=e.The associated overbounds �B(:)ob and the expected lagbefore convergence have been listed in Table 1.Lastly, in analogy with the Kalman �ltering case, wede�ne the error variance to be12E[(�k � �kjk)0(�k � �kjk)jYk] = 12 h1� �0kjk�kjkiwhere �k(i) = Pr(Xk = i) and Yk = fY0; Y1; : : : ; Ykg.4.1 A constant, C variableIn this series of simulations, the C matrices used are:C1 = � 0.10:9 0.80:2 � ; C2 = � 0.450:55 0.40:6 �In Figs. 1-2, there is rapid initial improvement in thesmoothing error which then reaches some steady-statevalue. The rate of convergence with � of the smooth-ing error3 is relatively insensitive to variations in C, inaccordance with the fact that �B(:) of a diagonal matrixis 1. From Table 1, it can be seen that �crit provides anadequate, albeit slightly pessimistic, bound to the maxi-mum � before convergence.As C becomes `whiter' (ie. given a certain xk, each pos-sible yk is equally likely, which means columns in C areidentical), the magnitude of the errors for both the �l-tered and smoothed estimates increases and approachesthe maximum value of 0.25. This means that in envi-ronments with high measurement noise, it is di�cult toobtain better estimates, by either �ltering or smoothing,than estimating via steady-state distributions alone.
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Figure 1: Variation of smoothing error with �: A �xed,C1; �lter error: 0.10943The same arguments apply equally to the rate of forgetting ofinitial-conditions for �lters.
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Figure 2: Variation of smoothing error with �: A �xed,C3; �lter error: 0.24874.2 A variable, C �xedThis series of simulations illustrate the dependence ofsmoothing/�ltering on the correlation between Xk's fromone time instant to the next. The following A matriceshave been used:A1 = � 0.950:05 0.050:95 � ; A2 = � 0.60:4 0.40:6 �As the X process varies from an almost deterministicsystem (A has a dominant entry in every row) to close tobecoming a white process (A having identical columns),the minimum � required for steady-state decreases (Fig.3-4), until any gain/loss by smoothing is almost instan-taneous. This is indicated by the increased 
uctuationsin Fig. 4, and also con�rmed by the decrease in �crit (seeTable 1), which is a measure of how readily previous statesare forgotten. �B(Tj+1;j+�)ob �critapprox. 3-term approx. 3-termbound average bound average(A �xed) C1 0.8 0.729 17.9 12.7C2 0.8 0.800 17.9 17.9(C �xed)A1 0.9 0.861 38.0 26.6A2 0.2 0.144 2.49 2.06Table 1: Overbounds on �B(Tj+1;j+�) and the expectedsmoothing lag before convergence.5 ConclusionsNatural extensions of the present work includes a morecomplete treatment of systems with both A and Cboth being nonnegative, investigations of continuous-timemodels, and also continuous-state/output HMMs, which
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Figure 3: Variation of smoothing error with �: C �xed,A1; �lter error: 0.0644
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Figure 4: Variation of smoothing error with �: C �xed,A4; �lter error: 0.1258makes possible direct comparisons between the perfor-mance of the �lters/smoothers with SNR of the system.However, for continuous-time systems, an analog of thelimiting theorem for a product of nonnegative matrices isrequired. Other indirect applications include the Viterbialgorithm, where the concept of a �crit may help to guidethe choice of truncation point, and hybrid systems whichinvolve HMMs such as arising from, for example, multi-target tracking.Acknowledgements:The authors wish to acknowledge the funding of the ac-tivities of the Cooperative Research Centre for Robustand Adaptive Systems by the Australian CommonwealthGovernment under the Cooperative Research Centres Pro-gram.
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