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Abstract

In this paper, we address the problem of exponential sta-
bility of filters and fixed-lag smoothers for discrete-time
and discrete-state Hidden Markov Models (HMMs). By
appealing to a generalised Perron-Frobenius result for
nonnegative matrices;, we demonstrate exponential for-
getting for both the recursive filters and smoothers, and
obtain overbounds on the rate of forgetting. Simulation
studies are carried out to substantiate the results.

1 Introduction

The purpose of this paper is to explain how some im-
portant results in Kalman filtering and smoothing can
be carried over to contemporary problems involving Hid-
den Markov Models (HMMs). Presently, our attention
is restricted to discrete-time models, with finite and dis-
crete state and observation sets; tackling the problem for
continuous-time models involve new tools which we are
seeking to develop.

The problems we consider are of two kinds, but related.
Most Kalman filters have an exponential stability property
[4], even in nonstationary situations. This ensures that, if
the filter is initialised at some finite time, the initial con-
ditions (or equivalently, old measurements) are forgotten
exponentially fast, thus the remote past cannot signifi-
cantly influence the present. The absence of this property
in a given filter 1s likely to lead to unreliable estimates, as
round-off errors may overpower the measurements.

The first results of the paper extend the exponential for-
getting result to HMMs. Similar results along these lines
can be found in [1], and, of a more preliminary nature, in
[6]. Our results are probably more comprehensive, appeal-
ing to more recent developments in properties of products

of positive and non-negative matrices [8], and allowing the
calculation of convergence rates.

The second main thrust of the paper is to deal with
fixed-lag smoothing, where measurements up to the
present time are used to infer information about the state
A time intervals in the past (A being a fixed quantity). In
smoothing problems which can be tackled using Kalman
filter ideas, it has been found that as A increases, there
is less and less additional benefit gained in terms of the
quality of the estimates. The fall-off in the rate of in-
crease of benefit is exponential, and with A equal to four
or five times the dominant time constant of the Kalman
filter, practically all the benefit derivable from smoothing
is achieved [2].

In this paper, we establish equations for the HMM fixed-
lag smoother. Again, we are able to show that the rate
of increase of benefit from smoothing falls off exponen-
tially as A increases, with the same rate as the forgetting
rate of the HMM filter, which is, furthermore, at least as
fast as that of the original hidden Markov signal model.
The results were predicted, and the subject of simulation
study, more than twenty years ago [7]. They constitute
important guidelines for the use of fixed-lag smoothing,
as opposed to filtering, of HMMs.

In Section 2, we define the signal model, and demon-
strate exponential forgetting of initial conditions for recur-
sive filters. In Section 3, the filtering ideas are extended
to smoothed estimation scheme. Section 4 contains some
simulations results and discussions, in which the perfor-
mance of filtered and smoothed estimates for a two-state
HMM are compared. In Section 5 we present some con-
cluding remarks.

2 Filtering
In this section we will consider the problem of filtering.

Formally, a filtered estimate is a conditional estimate of
the state of the HMM, given a series of measurements.



2.1 Signal Model

Consider a first order discrete-time and discrete-state
Markov process X = {1,2,3,..., N}, k denoting time.
At each time instant k, a corresponding signal Y, =
{1,2,..., N}isobserved, again having discrete values. We
will adopt the convention that a lower-case x; denotes the
actual state value, and likewise for yi. The probability
vectors for X and Yy are updated by the system matrices
A and C, where A = {a;;} = {Pr(Xp41 = {|Xr = j)} and
C = {emn} = {Pr(Yi = m|Xx = n)}, and N ayy = 1,
2%21 ¢mn = 1. Further, unless otherwise stated, a;; > 0
and ¢pp >0, Vi, j,ne {1,2,... N}, Yme {1,2,...,M}.

2.2 Evolution of Filtered Distributions

Let Ilyx and Mgy be the filtered and one-step pre-
diction probability vector, with the i-th entry being
PI'(Xk = i|Y0, Yl, ceey Yk) and Pr(Xk+1 = i|Y0, Yl, ceey Yk)
respectively. The time evolution relations for the filtered
probability vector are
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where 1§chk+1ﬂk3+1|k’ =[1...1] Cyk+}Hk3+1|k’ is a scalar
normalising constant to ensure the entries of Il 1541 sum

to 1, and Cy,,, = diag(ein a2 ¢z ... an), when ypyq =1
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2.3 Exponential Forgetting

By iterating (1) and (2), the filtered probability vector at
time k can be expressed in terms of an arbitrarily chosen
initial distribution Ilg|o:

Cy Al _qjp—1
e 1y Cly ATl

NYy k—1lk—1

 (CuACy, A Cy AT
17 Cye ACy, 1 A~ Cyr Al
Ty kIlgjo 3)
U1 kg0

where
Ty =Cy ACy, _ A...Cy A (4)

We now proceed to derive initial-condition forgetting
of the filter by appealing to the generalised Perron-
Frobenius result [8] for an inhomogeneous product of ma-
trices. Broadly, this theorem states that, under certain
conditions, a product of positive matrices, of the form
T ,=H,H,_y...Hi, may become dyadic! as r — oo.

As stated previously, A > 0 and C' > 0, therefore (4),
a product of successive CyA, is strictly positive, and the

IThe term dyadic means that a matrix is of rank 1.

requirements of the aforementioned theorem are automat-
ically satisfied. This means that, as k& — oo,

Ty — U(k)V! (5)

for some positive column vector U(k), and positive row
vector V. Without loss of generality, let v; = 1. Hence
the normalised filter probability vector becomes
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This is independent of the initial distribution Ilgjg. The
rate of convergence of (5) is exponential and rates are
computable [8].

Similar convergence properties also exist when the con-
ditions A > 0 and C' > 0 are relaxed. In particular, the
current results can be applied to the following cases:

1. C >0, A>0and A > 0 failing but primitive?, and
2. A>0,C>0and C > 0 failing.

3 Smoothing

Smoothing is an extension of filtering, in the sense that
the conditional probability vector for X; uses more mea-
surements, not just up to time j, but till some later time
k > j. Since more measurements are used, better esti-
mates should result, although there is an inherent delay
before the smoothed estimates are available.

In this section, we will implement two fixed-lag smooth-
ing schemes for an HMM by formulating the problem in
terms of fixed-point smoothing, and subsequently varying
the fixed index j to obtain a fixed-lag smoothing scheme.
The first approach involves the construction of a fictitious
augmented state model, as outlined in [4, 7]; embedded
within the filtered probability vector for the augmented
HMM is the smoothed probability vector for the original
HMM. In the second method, the smoothed estimates con-
sist of merging the filtered probabilities from forward- and
backward-models, using a procedure outlined in [5].

3.1 Smoother From Augmented Signal

Model

Definition 3.1 Foreachk > j, let Z, = Z; ) = (X; Xi)'
be an augmented state vector, consisting of the states of

2Primitivity means that A® > 0, for k > 0



the original Markov process as defined in Section 2.1, at
a fired time j, and a variable time k.

From Definition 3.1, it can be seen that Z; can only
assume the values (1,1), (1,2), ..., (I, N), (2,1), ...,
(N,N). By denoting the probability vector that Zj is
in each of the N? possible states at time &k as Py, it is
seen that these hold:

where

=IN®A

oo O

Further

P; =
EN PI'(X]' = N)

where e; is a unit vector, and recalling that P; is an (N x 1)
column vector.

By arguing that the output process of the original HMM
with state X can also be regarded as the output process
of an HMM with state Zj, for k > j, the observation
matrix C for the augmented state is

C= [ c cC C ] =1yeC
and, similarly
Cypotr 0 e 0
0 Cyopr 0 0
Cyk+1 = 0 0 0 =IN® Cyk+1
0 0 coo Gy

The filtered probability vector for Z;, denoted as ﬂij,
evolve according to the following recursions:
0 eape =
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where 1%.Cy,  I1; 11| is a scalar normalising constant.

Since, by definition, the :-th entry of the smoothed
probability vector Il;;4a at time j with lag A for the
unaugmented HMM is just

Pr(X; = i|Yo, ..
N
= ZPI'(X] :ian-l-A:”YOa"'an-l-A)a
=1

"Yj-I-A)

the smoothed probability vector Il;; ;A for the unaug-
mented HMM can be evaluated by summing appropriate

terms in the filtered probability vector for the augmented
model:

1...1 0 0

Hjji+a = 0 .0
0 0 1...1
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Note that the property (A ® B)(C ® D) = (AC) ® (BD)

has been used, and

Pr(X; =1,X;=1[Y,...,Y;) ]
Pr(X; =1,X; =2[Y,,...,Y;)
I0; 515 Pr(X; =2,X; =1Yo,...,Y))
Pr(X; =N, X; =N —1[Y;,...,Y;)
Pr(X; =N, X; = N|Yy,....Y;) |

= [ edlyy(1) enTly;(N) ]

with I1;;(i) denoting the i-th entry in IT;);.
With j fixed, (9) has the same structure as (4), hence
as A — oo,
(11)

Furthermore, the same rate of convergence as for the filter
determines how fast 7;1 ;1A becomes dyadic.

(10)

Tjt1,j4a —> U(A)V

Remark 3.1 Disregarding the j-dependence, U(A) =
{u;(A)} is a A-dependent term, whereas V. = {v;} is a
vector of constants, Vi € {1,2,...,N}.

The unnormalised smoothed probability vector becomes
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Once normalised, it can be seen that the A-dependent
terms are cancelled, thus establishing the A-independence
of the smoothing equation for large lags, or A’s. This
means that all the improvement that can be gained by
smoothing is attained after some finite A, and no signifi-
cant gains can be made as the lag is extended further.

(8)



3.2 Smoother From Forward-Backward
Filters

3.2.1 Backwards Model

Following ideas in [3], an analogous backward Markov
state process and HMM, which evolves backwards in time,
can be constructed from a forward Markov state process.

Definition 3.2 For a given forward Markov state pro-
cess, characterised by a state transition probability matriz
A, the associated backward process has a system matriz
A with elements a?j, such that
PI'(Xk = i|Xk+1 = _])

-1
= Pr(Xi =) Pr( X1 = j| Xk =4) Pr(Xeq1 = )

In other words, and further assuming stationarity so that
Pr(Xy, = i) = Pr(Xpy1 = 4) = Pr(X =),

AP = AAATT

where A = diag(I1), and 11 is the steady-state distribution,
such that AIl =1I.

3.2.2 Smoother from Forward-Backward Model

Definition 3.3 Denote a reverse filter probability and
the assoctated analog of the one-step prediction proba-
bility vector by Hl—cl—lk and I, respectively, with the

Elk+1
i-th entry being Pr(X; = Vi, Yeq1,...,Ys4a) and
Pr(Xi = i|Yet1, Yeg1s .- -, Yega), where k+ A is the maz-

mmum time at which measurements are avatlable.

In accordance with Definition 3.3, I} (7)) =

E+Alk+A
Pr(Xppa = i|Yiga) and I, 5 p0n0,(6) = Pr(Xpga =
i), since k 4+ A is the maximum time at which measure-
ments are available. By further assuming stationarity, it
can be seen that

H-I-

k+A|k+A+1(i) = Pr(X =)

The reverse-time filter obeys the following updating
equations:

+ _Abrt
Woer = AT (12)
1
n = —C, I (13)
Elk T Yet k1
| HVCWHk|k+1 |
Using the fact that the sequences (Yp,Y1,...,Y;)

and (Yj41,Yj42,...,Yj4a) are conditionally independent
given X; [5], the smoothed probability vector can be ex-
pressed as a product of two terms, the forward and reverse
filtered probability vectors:

. Pr(X; =i|Yo,...,Y))
Pr(X; =iYy,...,Yj4a) = J BERTAN
J J OPr(X; =1)
Pr(X; =14|Y41,...,Y5404)  (14)

where © is a normalising constant.
From (12), (13) and (14), IT;| ;1A (¢) can be rewritten as

O Pr(X; =) 1|1 a(7)
= M8 10 (9)
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— : b + .
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with I1;;4(¢) denoting the i-th entry of IL;;4a, etc.
The A-dependence lies entirely in T7b+1,j+A; the appar-

ent A-dependence in Hj+A|j+A+1 will be lost due to the

initialising process of the reverse filter. Now, since A® and
C both are strictly positive, as A — oo

j}{)-l'l,j-l'A Abcyj+1AbCyj+2 o 'Abcyj+A
(AAA™HCy, (AN, Cyyn
= AACy, ACy,, . ACy )N
s AU(AYA
= UtvY(A)

The third equality follows from the commutativity of diag-
onal matrices. By the same arguments in Section 3.1, the
A-dependency in the smoothed estimate (15) can again
be removed after normalisation.

4 Simulations of a 2-state HMM

The basic system investigated is a two-state HMM, with
a symmetric A matrix (also known as random telegraph
wave). The simulations aim to illustrate the benefits of
smoothing over filtering in environments with different
signal and noise contents. Results were obtained for two
cases: fixing A and varying C', and then fixing C' and vary-

09 0.1
ing A. The respective fixed matrices are: A = [ 0.1 0.9 ]
0.1 0.8
C=1 0902 |

The lag required for the smoothing error variance to
reach steady-state can be estimated by using the so-called
Birkhoff coefficient (see [8]), denoted as 75(.), which is a
measure of how close a given matrix i1s to having rank 1.
This means that

(L1 4a) < [B (L1 jea)e)”
where 78(1}41,j+),, provides an overbound on the 75(.)
of the individual terms which make up the product
Tj41,j+a. Using the fact that 75(.) of a positive diagonal
matrix is 1, an approximate bound is

B (Tj+1j+a) o, = T8 (A),
whereas a tighter bound can be found by grouping three
terms at a time in 741 j4a, and is
1

In7p(Tj+15+a)0, = 5 Bl 78(ACy, A)]



The criteria for convergence, or Tj41 ;4+a having rank 1,
Is to determine A = A,,;;, such that TB(.)OAb"”/4 = 1/e.
The associated overbounds 7p(.),, and the expected lag
before convergence have been listed in Table 1.

Lastly, in analogy with the Kalman filtering case, we

define the error variance to be

1 — Il Tl

N | —

LB = M (1 = T 94] =

where TIg(¢) = Pr(Xy, = ¢) and Yy = {Yo, Y1,..., Y}

4.1 A constant, C variable

In this series of simulations, the C' matrices used are:

e [i22] oo

In Figs. 1-2, there 1s rapid initial improvement in the
smoothing error which then reaches some steady-state
value. The rate of convergence with A of the smooth-
ing error® is relatively insensitive to variations in C, in
accordance with the fact that 75(.) of a diagonal matrix
is 1. From Table 1, it can be seen that At provides an
adequate, albeit slightly pessimistic, bound to the maxi-
mum A before convergence.

As C becomes ‘whiter’ (ie. given a certain zy, each pos-
sible yi 1s equally likely, which means columns in C' are
identical), the magnitude of the errors for both the fil-
tered and smoothed estimates increases and approaches
the maximum value of 0.25. This means that in envi-
ronments with high measurement noise, it is difficult to
obtain better estimates, by either filtering or smoothing,
than estimating via steady-state distributions alone.
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Figure 1: Variation of smoothing error with A: A fixed,
C'y; filter error: 0.1094

3The same arguments apply equally to the rate of forgetting of
initial-conditions for filters.
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Figure 2: Variation of smoothing error with A: A fixed,
Cj; filter error: 0.2487

4.2 A variable, C fixed

This series of simulations illustrate the dependence of
smoothing /filtering on the correlation between Xj’s from
one time instant to the next. The following A matrices
have been used:

0.95 0.05 0.6 0.4
Al:[ ]’A22[0.40.6]

0.05 0.95

As the X process varies from an almost deterministic
system (A has a dominant entry in every row) to close to
becoming a white process (A having identical columns),
the minimum A required for steady-state decreases (Fig.
3-4), until any gain/loss by smoothing is almost instan-
taneous. This is indicated by the increased fluctuations
in Fig. 4, and also confirmed by the decrease in Ayt (see
Table 1), which is a measure of how readily previous states
are forgotten.

B (Tj+1,j+A)ob Acrit
approx. | 3-term | approx. | 3-term
bound | average | bound | average
(A fixed) C4 0.8 0.729 17.9 12.7
Cs 0.8 0.800 17.9 17.9
(C fixed) Ay 0.9 0.861 38.0 26.6
As 0.2 0.144 2.49 2.06

Table 1: Overbounds on 75(7;4+1 j+a) and the expected
smoothing lag before convergence.

5 Conclusions

Natural extensions of the present work includes a more
complete treatment of systems with both A and C
both being nonnegative, investigations of continuous-time
models, and also continuous-state/output HMMs, which
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Figure 3: Variation of smoothing error with A: C' fixed,
Ay filter error: 0.0644
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Figure 4: Variation of smoothing error with A: C' fixed,
Ay; filter error: 0.1258

makes possible direct comparisons between the perfor-
mance of the filters/smoothers with SNR of the system.
However, for continuous-time systems, an analog of the
limiting theorem for a product of nonnegative matrices is
required. Other indirect applications include the Viterbi
algorithm, where the concept of a A may help to guide
the choice of truncation point, and hybrid systems which
involve HMMs such as arising from, for example, multi-
target tracking.
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