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Correspondence

Data-Recursive Algorithms for Blind Channel An outline of this correspondence is as follows. In Section II,
Identification in Oversampled Communication Systems the system and channel model are briefly defined, and the off-
line subchannel response matching (SRM) algorithm is presented.
Dennis L. Goeckel, Alfred O. Hero, and Wayne E. Stark Section Il develops the proposed adaptive algorithms for second-
order identification of oversampled systems. Finally, numerical results

for the proposed algorithms are shown in Section IV.
Abstract—Data-recursive algorithms are presented for performing

blind channel identification in oversampled communication systems. Il P = U R M
Novel on-line solutions with complexities that are only linear in the ' ROBLEM FORMULATION AND SUBCHANNEL RESPONSEVIATCHING

oversampling rate are considered, and mean convergence conditions | et

ided. N ical It ted f bi hase-shift .
E;?/e[go(\gPeSK) suynsqt((eerrlr(l:é results are presented for a binary phase-shi {51} _.. transmitted symbol stream:

transmitted symbol period;
transmitter pulse shape.
The transmitted waveform is(¢) = EZ2__ sip(t — [Ty). The
received waveform is(t) = g(¢) = s(t) + w(t), wherew(t) is
I. INTRODUCTION a complex white Gaussian random process with two-sided power
Much work has appeared recently on channel identificgPectral densityVo/2, andg(t) is the continuous time channel. If
tion/equalization in communication systems when the chanriBe received signal is integrated and dumped at pefiog (7./N),
output is oversampled [1]-[5]. The common base of this worwhere NV is an integer greater than one, the standard discrete-time
is the exploitation of the cyclostationarity of the oversampIeSVersam|0|'3‘d communication system model [4], [5] is derived as
process, which allows for blind channel identification based on ondy (k) = ,ili,(ﬂ“w r(t) dt = ZZ_o ha(Dsk—t + nu(k),
second-order statistics. Because estimation of second-order statistlbgren. (k) is a sequence of independent and identically distributed
requires fewer samples than that of higher order statistics for(l#D) Gaussian random variables with varianeé= (No/2)T., and
given level of estimation accuracy, we expect algorithms based 6hi. (1)}/5' is the nth subchannel response, whose coefficients are
second-order statistics to exhibit faster convergence. given byhn ()= [ drg(r) [o° dtp(t+ (IN +n)T. — 7).
The algorithms of [1], [3], and [6] depend on the determination of The subchannel response matching algorithm [3] is derived by
the eigenvector corresponding to the minimum eigenvalue of a matfgting that /in, (k) * yn, (k) = hno(k) * yn, (k) in @ noiseless
of cross correlations of observations. This makes the complexity ®ifstem. This suggests that to identify the subchanrels(k)
these algorithms cubic in the product of the oversampling rate aadd %.,(k), an option is to consider subchannel estimates
the number of symbol periods spanned by the channel responise,(k) and hnl(k) that minimize the mean squared difference
Thus, these algorithms can be prohibitively complex, partlcularlyz(hno,h,l1 S By (k) % yug (k) = Tty (k) % ya, (k)[2. Clearly,
when the oversampling rate is large. For example, the oversampling = ( is zero when the subchannels are identified correctly.
rate can be large in many spread-spectrum systems; in particulafutthermore, if the subchannels have no common zeroes (which is
has been observed independently by other researchers [8], [9] aﬁlﬁwell known identifiability criterion for second-order identification
the authors [10] that a chip-sampled spread spectrum system {2y, & = 0 implies Tng (k) = g (K), By (k) = hy (k) if
be interpreted as an oversampled communications system, and tkis, trivial solution hng(]‘) = (),h,ll(]‘) = 0,Vk is excluded.
second-order methods can be used for blind channel identificati¢ir the general case ofV >2, define the vector (of length
In such spread-spectrum systems, the oversampling rate is at least 8 of concatenated subchannels 7as= [ho(0 ;,0(1 “ho(L —
large as the processing gain. In other applications, such as underwai@r (0)4,(1)--- hy(L=1)--- hxy_1(0)hn_1(1)--- hy_ 1(L 1"
communications [11], the number of symbol periods spanned by theq the vector (of IengthLi\) of concatenated subchannel

channel response can be large. For real-time operation in each Ofélagervatlon vectors aﬁk) [yl (k). yT (k). y%_ (k)]7, where
above situations, data-recursive algorithms of much lower compIeX|ty e '

A T
are desirable. Thus, in this work, on-line algorithms are present 111 | ”"(l‘f)”ﬁ —1)- 7;]”(]‘13_ L+ 13:] Let z[n ljdfeno;e theh
that are only linear ireitherthe oversampling rate or the number of'th € efmﬁnt of the vector. The o (jjegt;\f/e unction is defined as the
symbol periods spanned by the channel response. sum of all pairwise mean squared differences

T.
Index Terms—Adaptive signal processing, equalizers, identification, p(st)
pseudonoise coded communication. ’
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The objective (1) can be rewritten in an alternate form. Deflne the TABLE |
LbylL matricesRmn 2 Ely,, (k)yif(]‘)] Then, ¢ (h) - h Sh ZEROES OF THE*GOOD" AND “BAD” CHANNELS
wk\nrer?h is the complex conjugate (no transpose)hoS [In ® Subchannel | Good Bad
Y20 BRun] =V, In is an N by N identity matrix, ® is the 0 0.353 £ 0.353 ] | 0.636 £0.636;
Kronecker product, and 0.259 + 0.150 ] | 0.692 + 0.400j
Roo  Rio -+ Rin—iyo 1 -0.104 £ 0.590 j | -0.121 + 0.689j
1.691 + 0.615j | 1.122 £+ 0.410j
v=| foo Ru 2 0.069 + 0.393] | 0.148 & 0.837]
: ) -1.221 4 1.455j | 1.034 + 0.376j
Rov_1y - Riv_1y(v-1) 3 0.752 + 2.067j | 0.393 £ 1.081]
-0.800 £ 1.385j | -0.525 + 0.909j
The matrix.S is Hermitian symmetric and positive semidefinite, and
if the subchannels have no common zeroes, there will bmique
minimum eigenvalue of, where the channét is the conjugate of 1o hew search directiop, is selected by, = _vekJrl(hk) +
its associated eigenvector [2]. bip, ;- In Chenet al. [14], by, is chosen such that! Sip, , =0,
which yields
o II.I. ADAPTI-VE A.LGORITHM-S . - €k+1(hk)5kpk .
Historically, algorithms for iteratively solving for the eigenvector b = 5
corresponding to the minimum eigenvalue of a positive semidefinite P Sipio
matrix have fallen into three classes: The stochastic gradient and conjugate gradient algorithms require
« stochastic gradient [12], [13]; O(L*N?) operations as written due to matrix-vector multiplications,
« conjugate gradient [14]; where S, is the matrix in each case. To see how this can be simpli-
- Newton's method [15]. fied, consider the multiplicatiors’, hL_1 reqwred by the stochastic

Attention here is restricted to the stochastic gradient and conjug&f@dient algorithm. Le€x (hx—1) = hl—15khk—1 be the empirical
gradient algorithms. Although finding the eigenvector correspondi@gtimate Of(hk—ﬂ and note thav &, (hx_1) = 25 hi—_ . Element
to the minimum eigenvalue of a matrix corresponds closely teL + ! of Schi—, can be obtained as

Pisarenko’s harmonic retrieval method [12] and direction-of-arrival

. . . . . Ex(hy—
estimation,S is not expressible as the expectation of an outer product "(7]61)
of the observed vector unlesé = 2; hence, the simple data updates Ohy—1[mL + 1]
of [12] do not apply. The algorithms presented here update;, P I
which is the estimate d§°"* at iterationk — 1 based on an additional =2 X Z hi—i[m L+ dlyn(k = D)y (k = 1)
symbol period of datayo (k). y1 (k). -, yn 1 (k). n=0mzm \i=0

The stochastic gradient update equatlonit@rls given bth = - , . -
he 1 — pver(hi_1), wherep is the step size to be chosew, is - Zh""l["]‘ +lym (k= Jya (k= 1)
the gradient operator, and the error fUﬂCtI@ﬂ(hl,,_1) employed
here is the empirical estimate of the Rayleigh quotient S3f —9 _ _
(i.e., the Rayleigh quotient with the positive semidefinite empirical - th 1L+ ;) yn (k= Dyn(k = 1)
matrix Si, which is identical toS derived above except with the N
expectations removed from (1), replacing the ensemble average - ZJ,”U{ —J) Z hi i [nL +jlyn(k—1) . (4)
matrix S). Substituting in appropriate values and absorbing a factor rd

of 2 into x, the stochastic gradient update is obtained as
# g P The computation of the right side of (4) proceeds as follows: The

(||}”_1|| Sihn_1 — (hl._wslhl,_])hl—]) sums overn must be done for each and: (or j), thus leading
e || @ 1o O(L*N) operations; given these sumSyh,_, = V&, (h,_1)
can be found inO(LN) inner products of vectors of length.
Performing a normalization based on the convergence analysis ($@@s, the update (3) can be doneGqL?N) flops. SinceN > L
Appendix A) yields the normalized stochastic gradient update  for highly oversampled systems, this amounts to a large savings in
. computational effort for the algorithm. By reversing the summations
hi = by — (”h‘_‘ ISk h‘—h - (hﬁ 1Sihy,— 1)}”—‘) 3) in (4), the update can be performedGr(LN?) flops.
hp 1|2

hi = hi—y —

A conjugate gradient algorithm [14] is given by the update, = IV. NUMERICAL RESULTS

hi + pp,, followed by the normalizatioths 1 = (hys1 /||his1]]), The normalized mean squared error at iteratiois defined by
where ui is chosen to m|n|m|ze the Rayleigh quotient ilNMSE. = ||(hs/||ks||) — (R/||R])||>. Binary phase-shift keyed
direction p,, and is given byu, = (=B + B2 —-4CD/2D) (BPSK) modulation over two channels with zeroes as in Table |
with D 2 Py(k)P.(k) — pa‘(k)pd(k)’B 2 Py(k)y — and in Fig. 1 is considered. For each channiél= 4 and L = 3,
e hk)Pd k),C A Pa(k) — Cchrl(i"k)Pc(k) which yl‘(‘E|dSu = 9.14 from Fhe convergence_analygs ‘l‘n Appe_nd|x”
A. The “standard” stochastic gradient algorithm (2), “normalized
P (k) a p{js:zH}}k (k) a ! S:Z_,'_lpk stochas_tic gradient algorithm (3), conjugate gradient algori}hm, a”nd
INE A the off-line SF_zM algorlth_m from [3] were run on channels “Good _
He H and “Bad” at signal-to-noise ratios of 20 and 10 dB. For the stochastic
P.(k) 2 P h" Py(k) & PePi gradient algorithms, the best gain factors from ampng 0.06, ;. =

A1 llAx]? 0.14, and z = 0.30 (the gain factor the convergence analysis
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Fig. 1. Zeroes of the “Good” and “Bad” channels in thelane.
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Fig. 3. Comparison of the SRM-based algorithms for the “Good” channel,

SNR= 10 dB. SG: Standard stochastic gradient algorithm. Norm: Normalized

o : 4 stochastic gradient algorithm. SRM: Off-line SRM algorithm of [3], wh&e

EETHEEHESTEEEES is obtained at timé: by averaging all of the data through tinteto estimate

USRS . ensemble averages. Conj Grad: Conjugate gradient algorithm. The results are
4 averaged over 200 sample trials.
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Fig. 2. Comparison of the SRM-based algorithms for the “Good” channel,
SNR = 20 dB. SG: Standard stochastic gradient algorithm. Norm: Normalized
stochastic gradient algorithm. SRM: Off-line SRM algorithm of [3], whé&je

is obtained at timé: by averaging all of the data through tinteto estimate
ensemble averages. Conj Grad: Conjugate gradient algorithm. The results are
averaged over 200 sample trials.
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§uggests and one on either side) were selected. The results are Sr}%‘f'h. Comparison of the SRM-based algorithms for the “Bad” channel,
in Figs. 2-5. SNR= 20 dB. SG: Standard stochastic gradient algorithm. Norm: Normalized
stochastic gradient algorithm. SRM: Off-line SRM algorithm of [3], wh&je

is obtained at timé: by averaging all of the data through tinketo estimate
ensemble averages. Conj Grad: Conjugate gradient algorithm. The results are

The need for channel identification in highly oversampled conaveraged over 200 sample trials.

munication systems motivates the search for efficient blind channel
identification algorithms when the oversampling rate is high. Stochas-. . .
tic gradient and conjugate gradient algorithms have been preserffe _chosen sgch that the alg_or_lth_m_ will converge o the correct
that are low complexity (only linear in the oversampling rate)>° ution when it is hear the minimizing elg.envect.or. A f|rst-ordgr
Numerical results suggest that there is quite a bit of performan gnvergence analysis is performgd, Whmh.ls equivalent to making
loss between the off-line SRM algorithm and the data-adapti e a_ssum_ptlon thab can _be e_st|m_ated without error. The error
implementations of it. Furthermore, it appears that the gain of t er |teratA|gl)_nkA Ef tbe fj"go“”lT 'S Ag*|ver) b! the Rayleigh quqtlent
conjugate gradient algorithms over the stochastic gradient algorithft&+) = (R Shi/[[Ri|”) = (ki Szhe/|[hi ") 4 Ao, whereSz 1S

is not as prominent as was shown in Pisarenko’s harmonic retriel@ matrixS for a noiseless systefm (t) = 0), andAo = (N —1)¢*

[16]; however, the conjugate gradient algorithm showed markedﬁ/the unique smallest eigenvalue$fDropping the irreducible error
faster initial convergence in general. Xo, substituting in the appropriate quantities, and preserving terms

that are linear or constant (k) (i.e., assuming:(hy) < 1 near
the solution), we can show [10] tha}, which is the squared error
in the direction of the'th eigenvector ofSz at stepk, is given by

V. SUMMARY AND CONCLUSIONS

APPENDIX
STOCHASTIC GRADIENT ALGORITHM CONVERGENCE

Since all of the eigenvectors except those of the minimum and , ‘ \o 2
maximum eigenvalues are saddle points of the error surface, the er <epq <1 S s 7) (5)
stochastic gradient algorithm will leave these eigenvectors [13]; thus, ([ -1 12
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Fig. 5. Comparison of the SRM-based algorithms for the “Bad” chann€ll4] H. Chen, T. Sarkar, S. Dianat, and J. ExutAdaptive spectral estima-

SNR = 10 dB. SG: Standard stochastic gradient algorithm. Norm: Normalized tion by the conjugate gradient methodEEE Trans. Acoust., Speech,

stochastic gradient algorithm. SRM: Off-line SRM algorithm of [3], wh&e Signal Processingvol. ASSP-34, pp. 272-284, Apr. 1986.

is obtained at timé: by averaging all of the data through tirketo estimate [15] G. Mathew, S. Dasgupta, and V. Reddy, “Improved Newton-type

ensemble averages. Conj Grad: Conjugate gradient algorithm. The results are algorithm for adaptive implementation of Pisarenko’s harmonic retrieval

averaged over 200 sample trials. method and its convergence analysikgEE Trans. Signal Processing
vol. 42, pp. 434-437, Feb. 1994.
[16] X. Yang, T. Sarkar, and E. Arvas, “A survey of conjugate gradient

where); is the eigenvalue corresponding to itie eigenvector of . algorithms for solution of extreme eigen-problems of a symmetric
If the initial guess is chosen on the unit circle (ijﬁzi” = 1), the fact matrix,” IEEE Trans. Acoust., Speech, Signal Processimg. 37, pp.

¢ e ! ' 1550-1555, Oct. 1989.
that the magnitude di;. is nondecreasing and (5) can be used to show
[10] that convergence occurs in all of the modes ik (2/Amax),
whereAnmax is the largest eigenvalue 6f;. Sinceln.x is difficult to
obtain, the conservative ruje < (2/tr(Sz)) is used instead, where
tr(Sz) = L(N — 1) ¥X5" BEly:(k)|* = LN(N — 1)o?, which can
be readily estimated if the signal-to-noise ratio is known.

Equation (5) suggests defining a normalized algorithm to eliminate
the||hx_1||* dependence in the convergence condition. The normal-
ized algorithm is obtained by using a variable gain fagtfhhs _: ||
at thekth step. Employing this variable gain factor yields

Norm(u=0.14)

Cascaded Power Symmetric IIR Filter Banks and
Continuity Constrained Adaptive Algorithms
for Acoustic Echo Cancellation in Subbands

Oguz Tanikulu and Anthony G. Constantinides

N 9 et N - N Abstract—The problem of aliasing in subband acoustic echo cancel-
ﬁk — izk —_— (w1 1" Skhi—1 — (1 Skhe_ ) hie—1) (6) lation (AEC) is addressed. Filter banks with implicit notch filtering are

B [ hiy |2 derived from cascaded power symmetric—infinite impulse response (CPS-
IIR) filters. It is shown that adaptive filters used with these filter banks

which is (3) of the main text. The convergence analysis of th[gust be coupled via continuity constraints to reduce the aliasing in the
normalized stochastic aradient update follows similarly and impli residual echo. A continuity constrained NLMS algorithm is therefore

. 9 p y P (?J?oposed and evaluated.
convergence ifi < (2/Amax)-

Index Terms—Adaptive filters, echo suppression, IIR digital filters.
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