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Data-Recursive Algorithms for Blind Channel
Identification in Oversampled Communication Systems

Dennis L. Goeckel, Alfred O. Hero, and Wayne E. Stark

Abstract—Data-recursive algorithms are presented for performing
blind channel identification in oversampled communication systems.
Novel on-line solutions with complexities that are only linear in the
oversampling rate are considered, and mean convergence conditions
are provided. Numerical results are presented for a binary phase-shift
keyed (BPSK) system.

Index Terms—Adaptive signal processing, equalizers, identification,
pseudonoise coded communication.

I. INTRODUCTION

Much work has appeared recently on channel identifica-
tion/equalization in communication systems when the channel
output is oversampled [1]–[5]. The common base of this work
is the exploitation of the cyclostationarity of the oversampled
process, which allows for blind channel identification based on only
second-order statistics. Because estimation of second-order statistics
requires fewer samples than that of higher order statistics for a
given level of estimation accuracy, we expect algorithms based on
second-order statistics to exhibit faster convergence.

The algorithms of [1], [3], and [6] depend on the determination of
the eigenvector corresponding to the minimum eigenvalue of a matrix
of cross correlations of observations. This makes the complexity of
these algorithms cubic in the product of the oversampling rate and
the number of symbol periods spanned by the channel response.
Thus, these algorithms can be prohibitively complex, particularly
when the oversampling rate is large. For example, the oversampling
rate can be large in many spread-spectrum systems; in particular, it
has been observed independently by other researchers [8], [9] and
the authors [10] that a chip-sampled spread spectrum system can
be interpreted as an oversampled communications system, and thus,
second-order methods can be used for blind channel identification.
In such spread-spectrum systems, the oversampling rate is at least as
large as the processing gain. In other applications, such as underwater
communications [11], the number of symbol periods spanned by the
channel response can be large. For real-time operation in each of the
above situations, data-recursive algorithms of much lower complexity
are desirable. Thus, in this work, on-line algorithms are presented
that are only linear ineither the oversampling rate or the number of
symbol periods spanned by the channel response.
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An outline of this correspondence is as follows. In Section II,
the system and channel model are briefly defined, and the off-
line subchannel response matching (SRM) algorithm is presented.
Section III develops the proposed adaptive algorithms for second-
order identification of oversampled systems. Finally, numerical results
for the proposed algorithms are shown in Section IV.

II. PROBLEM FORMULATION AND SUBCHANNEL RESPONSEMATCHING

Let

fskg
1

k=�1 transmitted symbol stream;
Ts transmitted symbol period;
p(t) transmitter pulse shape.

The transmitted waveform iss(t) = �1l=�1 slp(t � lTs): The
received waveform isr(t) = g(t) � s(t) + w(t), wherew(t) is
a complex white Gaussian random process with two-sided power
spectral densityN0=2, and g(t) is the continuous time channel. If
the received signal is integrated and dumped at periodTc = (Ts=N),
whereN is an integer greater than one, the standard discrete-time
oversampled communication system model [4], [5] is derived as
yn(k)

�
= s

kT +(n+1)T
kT +nT r(t) dt = �1l=�1 hn(l)sk�l + �n(k),

where�n(k) is a sequence of independent and identically distributed
(IID) Gaussian random variables with variance�2 = (N0=2)Tc, and
fhn(l)g

L�1
l=0 is thenth subchannel response, whose coefficients are

given byhn(l) = s1
�1

d� g(�) sT0 dt p(t+ (lN + n)Tc � �):
The subchannel response matching algorithm [3] is derived by

noting that hn (k) � yn (k) = hn (k) � yn (k) in a noiseless
system. This suggests that to identify the subchannelshn (k)
and hn (k), an option is to consider subchannel estimates
ĥn (k) and ĥn (k) that minimize the mean squared difference

E2(ĥn ; ĥn )
�
= Ejĥn (k) � yn (k) � ĥn (k) � yn (k)j2: Clearly,

E2 = 0 is zero when the subchannels are identified correctly.
Furthermore, if the subchannels have no common zeroes (which is
the well-known identifiability criterion for second-order identification
[2]), E2 = 0 implies ĥn (k) = hn (k); ĥn (k) = hn (k) if
the trivial solution ĥn (k) = 0; ĥn (k) = 0;8k is excluded.
For the general case ofN > 2, define the vector (of length
LN ) of concatenated subchannels ashhh

�
= [h0(0)h0(1) � � �h0(L �

1)h1(0)h1(1) � � � h1(L�1) � � �hN�1(0)hN�1(1) � � �hN�1(L�1)]T

and the vector (of lengthLN ) of concatenated subchannel
observation vectors asyyy(k)

�
= [yyyT0 (k); yyy

T
1 (k); � � � ; yyy

T
N�1(k)]

T , where

yyyn(k)
�
= [yn(k)yn(k� 1) � � � yn(k� L+ 1)]T : Let xxx[n] denote the

nth element of the vectorxxx: The objective function is defined as the
sum of all pairwise mean squared differences

E(ĥhh) =

N�2

m=0

N�1

n=m+1

E

L�1

i=0

ĥhh[mL+ i]yn(k � i)

�

L�1

j=0

ĥhh[nL+ j]ym(k � j)

2

(1)

which, when minimized over̂hhh, which is the estimate ofhhh, gives a
solutionhhhopt: A constraint must be added to avoid the trivial solution
hhhopt = 0; the constraint employed here iskĥhhk2 = 1: Note that there
is an implicit ambiguity in the problem; multiplyinghhh by a complex
constant does not affect the solutionhhhopt:
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The objective (1) can be rewritten in an alternate form. Define the
L by L matricesRmn

�
= E[yyym(k)yyyHn (k)]: Then,E(ĥhh) = ĥhh

T
Sĥhh

�

,
whereĥhh

�

is the complex conjugate (no transpose) ofĥhh; S = [IN 

�N�1
n=0 Rnn] � V; IN is an N by N identity matrix, 
 is the

Kronecker product, and

V =

R00 R10 � � � R(N�1)0

R01 R11

...
...

. . .
R0(N�1) � � � R(N�1)(N�1)

:

The matrixS is Hermitian symmetric and positive semidefinite, and
if the subchannels have no common zeroes, there will be aunique
minimum eigenvalue ofS, where the channelhhh is the conjugate of
its associated eigenvector [2].

III. A DAPTIVE ALGORITHMS

Historically, algorithms for iteratively solving for the eigenvector
corresponding to the minimum eigenvalue of a positive semidefinite
matrix have fallen into three classes:

• stochastic gradient [12], [13];
• conjugate gradient [14];
• Newton’s method [15].

Attention here is restricted to the stochastic gradient and conjugate
gradient algorithms. Although finding the eigenvector corresponding
to the minimum eigenvalue of a matrix corresponds closely to
Pisarenko’s harmonic retrieval method [12] and direction-of-arrival
estimation,S is not expressible as the expectation of an outer product
of the observed vector unlessN = 2; hence, the simple data updates
of [12] do not apply. The algorithms presented here updateĥhhk�1,
which is the estimate ofhhhopt at iterationk�1 based on an additional
symbol period of datay0(k); y1(k); � � � ; yN�1(k):

The stochastic gradient update equation forĥhhk is given byĥhhk =
ĥhhk�1 � � ek(ĥhhk�1), where� is the step size to be chosen, is
the gradient operator, and the error functionek(ĥhhk�1) employed
here is the empirical estimate of the Rayleigh quotient ofS�

(i.e., the Rayleigh quotient with the positive semidefinite empirical
matrix Sk, which is identical toS derived above except with the
expectations removed from (1), replacing the ensemble average
matrix S). Substituting in appropriate values and absorbing a factor
of 2 into �, the stochastic gradient update is obtained as

ĥhhk = ĥhhk�1 � �
(kĥhhk�1k2S�kĥhhk�1 � (ĥhh

T

k�1Skĥhh
�

k�1)ĥhhk�1)

kĥhhk�1k4
: (2)

Performing a normalization based on the convergence analysis (see
Appendix A) yields the normalized stochastic gradient update

ĥhhk = ĥhhk�1 � �
(kĥhhk�1k2S�kĥhhk�1 � (ĥhh

T

k�1Skĥhh
�

k�1)ĥhhk�1)

kĥhhk�1k2
: (3)

A conjugate gradient algorithm [14] is given by the update~hhhk+1 =
ĥhhk + �kpppk followed by the normalization̂hhhk+1 = (~hhhk+1=k~hhhk+1k),
where �k is chosen to minimize the Rayleigh quotient in
direction pppk and is given by�k = (�B +

p
B2 � 4CD=2D)

with D
�
= Pb(k)Pc(k) � Pa(k)Pd(k);B

�
= Pb(k) �

ek+1(ĥhhk)Pd(k);C
�
= Pa(k) � ek+1(ĥhhk)Pc(k)

Pa(k)
�
=

pppHk S
�
k+1ĥhhk

kĥhhkk2
Pb(k)

�
=

pppHk S
�
k+1pppk

kĥhhkk2

Pc(k)
�
=

pppHk ĥhhk

kĥhhkk2
Pd(k)

�
=

pppHk pppk

kĥhhkk2
:

TABLE I
ZEROES OF THE“GOOD” AND “BAD” CHANNELS

The new search directionpppk is selected bypppk = � ek+1(ĥhhk) +
bkpppk�1: In Chenet al. [14], bk is chosen such thatpppHk S

�
kpppk�1 = 0,

which yields

bk =
Hek+1(ĥhhk)S

�
kpppk�1

pppHk�1S
�
kpppk�1

:

The stochastic gradient and conjugate gradient algorithms require
O(L2N2) operations as written due to matrix-vector multiplications,
whereSk is the matrix in each case. To see how this can be simpli-
fied, consider the multiplicationSkĥhh

�

k�1 required by the stochastic

gradient algorithm. LetEk(ĥhhk�1) = ĥhh
T

k�1Skĥhh
�

k�1 be the empirical
estimate ofE(ĥhhk�1), and note that Ek(ĥhhk�1) = 2S�kĥhhk�1: Element
mL + l of Skĥhh

�

k�1 can be obtained as

@Ek(ĥhhk�1)
@ĥhhk�1[mL+ l]

= 2

N�1

n=0;n6=m

L�1

i=0

ĥhhk�1[mL+ i]yn(k � i)y�n(k � l)

�
L�1

j=0

ĥhhk�1[nL+ j]ym(k � j)y�n(k� l)

= 2

L�1

i=0

ĥhhk�1[mL+ i]

N�1

n=0

yn(k � i)y�n(k� l)

�
L�1

j=0

ym(k � j)

N�1

n=0

ĥhhk�1[nL+ j]y�n(k� l) : (4)

The computation of the right side of (4) proceeds as follows: The
sums overn must be done for eachl and i (or j), thus leading
to O(L2N) operations; given these sums,Skĥhh

�

k�1 = Ek(ĥhhk�1)
can be found inO(LN) inner products of vectors of lengthL:
Thus, the update (3) can be done inO(L2N) flops. SinceN � L
for highly oversampled systems, this amounts to a large savings in
computational effort for the algorithm. By reversing the summations
in (4), the update can be performed inO(LN2) flops.

IV. NUMERICAL RESULTS

The normalized mean squared error at iterationk is defined by
NMSEk = k(ĥhhk=kĥhhkk) � (hhh=khhhk)k2: Binary phase-shift keyed
(BPSK) modulation over two channels with zeroes as in Table I
and in Fig. 1 is considered. For each channel,N = 4 andL = 5,
which yields� = 0:14 from the convergence analysis in Appendix
A. The “standard” stochastic gradient algorithm (2), “normalized”
stochastic gradient algorithm (3), conjugate gradient algorithm, and
the off-line SRM algorithm from [3] were run on channels “Good”
and “Bad” at signal-to-noise ratios of 20 and 10 dB. For the stochastic
gradient algorithms, the best gain factors from among� = 0:06; � =
0:14; and � = 0:30 (the gain factor the convergence analysis
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Fig. 1. Zeroes of the “Good” and “Bad” channels in thez plane.

Fig. 2. Comparison of the SRM-based algorithms for the “Good” channel,
SNR= 20 dB. SG: Standard stochastic gradient algorithm. Norm: Normalized
stochastic gradient algorithm. SRM: Off-line SRM algorithm of [3], whereSk

is obtained at timek by averaging all of the data through timek to estimate
ensemble averages. Conj Grad: Conjugate gradient algorithm. The results are
averaged over 200 sample trials.

suggests and one on either side) were selected. The results are shown
in Figs. 2–5.

V. SUMMARY AND CONCLUSIONS

The need for channel identification in highly oversampled com-
munication systems motivates the search for efficient blind channel
identification algorithms when the oversampling rate is high. Stochas-
tic gradient and conjugate gradient algorithms have been presented
that are low complexity (only linear in the oversampling rate).
Numerical results suggest that there is quite a bit of performance
loss between the off-line SRM algorithm and the data-adaptive
implementations of it. Furthermore, it appears that the gain of the
conjugate gradient algorithms over the stochastic gradient algorithms
is not as prominent as was shown in Pisarenko’s harmonic retrieval
[16]; however, the conjugate gradient algorithm showed markedly
faster initial convergence in general.

APPENDIX

STOCHASTIC GRADIENT ALGORITHM CONVERGENCE

Since all of the eigenvectors except those of the minimum and
maximum eigenvalues are saddle points of the error surface, the
stochastic gradient algorithm will leave these eigenvectors [13]; thus,

Fig. 3. Comparison of the SRM-based algorithms for the “Good” channel,
SNR= 10 dB. SG: Standard stochastic gradient algorithm. Norm: Normalized
stochastic gradient algorithm. SRM: Off-line SRM algorithm of [3], whereSk

is obtained at timek by averaging all of the data through timek to estimate
ensemble averages. Conj Grad: Conjugate gradient algorithm. The results are
averaged over 200 sample trials.

Fig. 4. Comparison of the SRM-based algorithms for the “Bad” channel,
SNR= 20 dB. SG: Standard stochastic gradient algorithm. Norm: Normalized
stochastic gradient algorithm. SRM: Off-line SRM algorithm of [3], whereSk

is obtained at timek by averaging all of the data through timek to estimate
ensemble averages. Conj Grad: Conjugate gradient algorithm. The results are
averaged over 200 sample trials.

� is chosen such that the algorithm will converge to the correct
solution when it is near the minimizing eigenvector. A first-order
convergence analysis is performed, which is equivalent to making
the assumption thatS can be estimated without error. The error
after iterationk of the algorithm is given by the Rayleigh quotient
e(ĥhhk) = (ĥhh

T

k Sĥhh
�

k=kĥhhkk
2) = (ĥhh

T

k SZĥhh
�

k=kĥhhkk
2) + �0, whereSZ is

the matrixS for a noiseless system(w(t) = 0), and�0 = (N�1)�2

is the unique smallest eigenvalue ofS: Dropping the irreducible error
�0, substituting in the appropriate quantities, and preserving terms
that are linear or constant ine(ĥhhk) (i.e., assuminge(ĥhhk) � 1 near
the solution), we can show [10] thateik, which is the squared error
in the direction of theith eigenvector ofSZ at stepk, is given by

eik � eik�1 1�
��i

kĥhhk�1k2

2

(5)
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Fig. 5. Comparison of the SRM-based algorithms for the “Bad” channel,
SNR= 10 dB. SG: Standard stochastic gradient algorithm. Norm: Normalized
stochastic gradient algorithm. SRM: Off-line SRM algorithm of [3], whereSk

is obtained at timek by averaging all of the data through timek to estimate
ensemble averages. Conj Grad: Conjugate gradient algorithm. The results are
averaged over 200 sample trials.

where�i is the eigenvalue corresponding to theith eigenvector ofSZ :
If the initial guess is chosen on the unit circle (i.e.,kĥhh

2

0k = 1), the fact
that the magnitude of̂hhhk is nondecreasing and (5) can be used to show
[10] that convergence occurs in all of the modes if�< (2=�max),
where�max is the largest eigenvalue ofSZ : Since�max is difficult to
obtain, the conservative rule� � (2=tr(SZ)) is used instead, where
tr(SZ) = L(N � 1) �N�1

i=0
Ejyi(k)j

2 � LN(N � 1)�2, which can
be readily estimated if the signal-to-noise ratio is known.

Equation (5) suggests defining a normalized algorithm to eliminate
the kĥhhk�1k2 dependence in the convergence condition. The normal-
ized algorithm is obtained by using a variable gain factor�kĥhhk�1k

2

at thekth step. Employing this variable gain factor yields

ĥhhk = ĥhhk�1 � �
(kĥhhk�1k

2S�kĥhhk�1 � (ĥhh
T

k�1Skĥhh
�

k�1)ĥhhk�1)

kĥhhk�1k2
(6)

which is (3) of the main text. The convergence analysis of this
normalized stochastic gradient update follows similarly and implies
convergence if�< (2=�max):

REFERENCES

[1] H. Liu, G. Xu, and L. Tong, “A deterministic approach to blind
equalization,” in Conf. Rec. Twenty-Seventh Asilomar Conf. Signals,
Syst., Comput., 1993, pp. 751–755.
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Cascaded Power Symmetric IIR Filter Banks and
Continuity Constrained Adaptive Algorithms
for Acoustic Echo Cancellation in Subbands

Oǧuz Tanŕıkulu and Anthony G. Constantinides

Abstract—The problem of aliasing in subband acoustic echo cancel-
lation (AEC) is addressed. Filter banks with implicit notch filtering are
derived from cascaded power symmetric–infinite impulse response (CPS-
IIR) filters. It is shown that adaptive filters used with these filter banks
must be coupled via continuity constraints to reduce the aliasing in the
residual echo. A continuity constrained NLMS algorithm is therefore
proposed and evaluated.

Index Terms—Adaptive filters, echo suppression, IIR digital filters.

I. INTRODUCTION

Teleconferencing systems and hands-free mobile terminals use
acoustic echo cancellation (AEC) for high-quality full-duplex speech
communication [1]. AEC in subbands is an effective way of reducing
the computational complexity [2], [3]. However, the performance is
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