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Abstract—This paper considers the problems of channel es- is used to compute aoptimal equalizer, usually in the sense
timation and adaptive equalization in the novel framework of of MMSE.

set-membership parameter estimatio@hannel estimation using In this paper, channel estimation and equalization prob-

a class of set-membership identification algorithms known as | dd din the f K of | ;
optimal bounding ellipsoid (OBE) algorithms and their extension '€MS_areé addressed in the framework of a novel system-

to track time-varying channels are described. Simulation results identification paradigm, viz., set-membership identification

show that the OBE channel estimators outperform the least- (SMI). The SMI approach assumes set-theoretic (instantaneous
mean-square (LMS) algorithm and perform comparably with the  and deterministic) as opposed to statistical information about
RLS and the Kalman filter. The concept of set-membership equal- the model to compute sets of parameter estimates in the

ization is introduced along with the notion of afeasible equalizer. t led bershi ts. that istent
Necessary and sufficient conditions are derived for the existence parameter space, called membership sets, that are consisten

of feasible equalizers in the case of linear equalization for a linear With the model assumptions and observations. Typical set-
FIR additive noise channel. An adaptive OBE algorithm is shown theoretic assumptions on the noise are those of bounded
to provide a set of estimated feasible equalizers. The selectivemagnitude or membership in an ellipsoid.

update feature of the OBE algorithms is exploited to devise Among many SMI algorithms, the more popular ones are

an updator-shared scheme in a multiple channel environment, . . . - .
referred to as updator-shared parallel adaptive equalization (U- a set of algorithms termed optimal bounding ellipsoid (OBE)

SHAPE). U-SHAPE is shown to reduce hardware complexity algorithms [8]-[11]. The OBE algorithms provide ellipsoids
significantly. Procedures to compute the minimum number of in the parameter space that outer bound the membership set

updating processors required for a specified quality of service and incorporateoptimizationof the size of the ellipsoids in
are presented. some meaningful sense. Despite the fundamental difference
in their approaches, the OBE recursions are strikingly similar
|. INTRODUCTION to those of RLS. Moreover, the centers of the ellipsoids in
the OBE algorithms are known to be certain weighted LS

HANNEL equalization is a common 5|gn§1| process_m%sfimates [11]. The resemblance of the OBE algorithms to
technique that compensates for channel-induced sigia

. . T . the least-squares algorithms, both in terms of the estimates
impairment and the resulting intersymbol interference (ISI) in . . .

- - - A/ and the implementation of recursions, makes the former an
a digital communication system [1], [2]. Insufficieatpriori

; . . : attractive practical estimation tool since LS techniques are
information about the channel and, especially in the case . : S e

: . X used widely, and a large body of work exists on their efficient
of wireless channels, the time-varying nature of the channe . . . :
|mgllementat|ons. Systolic array implementations of the OBE

response, necessitate adaptlve equallzatlon. Linear transveéf Arithms are discussed in [12].

equalizers and decision feedback equalizers (DFE’s) have be he OBE alqorithms offer a number of advantages over
used for many decades in conjunction with deterministic S techni uesg First thev orovide an ellipsoidal t?ound as
statistical least-squares (LS) algorithms, like the least-mean- ques. ! yp P

Sqare (LUS) aigort (13, e Kl lr 2, (], andsh OV€8 0vr e welgled L© estate. Second n e
the recursive least-squares (RLS) algorithm [6], [7], to adju P 9 ying p '

. . . . BE algorithms offer, in a natural w n indication of |
the equalizer coefficients. Parameter estimators can either algo s offer, in a natural way, an indication of loss

: : im efracking. Such information can be invaluable in preventing
employed to directly adapt the equalizer taps or to estimate . ) .
funaway errors by restarting the algorithm when tracking

the impulse response of an FIR channel model, which in tulrsr) lost. Third, earlier studies [9], [11], [13] on the OBE
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fit provided by the data, the OBE algorithms can “intelligentlyassumed to be bounded in magnitude with a known beynd
evaluate incoming data for their potential to improve thee.,
quality of the estimate and weight the data accordingly. It is
common for the algorithms to discard 70-95% of the data

while exhibiting performance very similar to, if not better |tis pertinent to note that system identification with bounded
than, the LS estimators. The large idle times of the parameffjise has been treated in the LS framework by imposing a dead
updators in OBE-trained equalizers are exploited in Section2éne to the update recursions [17]. Moreover, LS estimation
to devise an updator-shared scheme, which is referred toyagler a bounded-disturbance assumption has also been studied
updator-shared parallel adaptive equalization (U-SHAPE), fgy [18].
a number of parallel channel estimators/equalizers. Combining (1) and (2) yields thebservation-induced set

The notion ofset-membership (SM) equalizaties intro-  which is defined as the set of all parameter vectors that are

duced in this paper. An SM equalizer constrains the errgpnsistent with the assumed model and the observation at time
(i.e., the Euclidean distance between the transmitted apdiant»

equalized symbols) to lie within a specified quantity for all data N _— )
consistent with the assumed set-theoretic assumptions. This is On ={0€C™: |yn — 0" xn|" <7} 3)

fundamentally different from conventional minimum meanghere CV is the N-dimensional complex Euclidean space

lvn| <~ YV n. (2)

squares and LS equalizers [1] in the approach to minimizirg,, membership set,, is defined as

ISI. The objective of OBE algorithms for SM equalization

is to estimate a set dfeasible equalizerghat achieve this Pn 2 ﬂ O;. 4
deterministic specification on the symbol error. i<n

The discerning update feature of SM equalization is e “learly, if 6, is time invariant, therd, € v, for all n.

pI0|ted.|n this paper to redu.ce _the hardware complexity o The membership sets as defined in (4) are convex polytopes
a multiple-channel communications system. The proposl%d the parameter space that are not easily tracked. OBE

SChe"?e IS appllcablg to any system that involves 'ndepenqg[&orithms seek ellipsoidal outer approximations of the mem-
adaptive filters running smultaneously at the same Iocat!otgership sets. The seminal paper in the development of OBE
quh'ois/frae baennlz O_]:j.e.ql.’grl]'Znirslt.aﬁetgiczasecgfﬁ';rn of tgn:["n&?gjorithms was by Fogel and Huang [8]. An OBE algorithm
vision/irequency-divist wuttip ss uiar sys .%aturing a simplified (linear complexity) information checking
a receiver employing diversity channels. Infrequent updati ocedure was developed by Dasgupta and Huang (D—H/OBE

facilitates sharing a small number qf updating process F‘gorithm) in [9]. Other contributions to the development of
among a larger number of channels via U-SHAPE [14]-[16 E algorithms include the works of Dellet al. [10]—[12]

Such sharing of processors is not possible with conventio ], Nortonet al. [20], [21], and Waltekt al. [22]. To present

recursive schemes (such as RLS/LMS) since they entail ap'general OBE algorithm, we adopt the formulation given by

dating at every instant. Deller et al. [10]. Assume that at time instant— 1, the exact

Section Il gives a summary of the SMI method and : : !
generalized OBE algorithm. Channel estimation based on t%gesn;:k?;hl%sap"—l is outer bounded by the ellipsoil,

SM framework and an extension to time-varying channels
are presented in Section lll. SM equalization is defined inE,_; = {6 € CY: [0 — 6,1 P}, [6 — 6,_1] < o2_,}
Section 1V, and an OBE solution is proposed. The existence (5)
of a feasible equalizer set and its properties are also discussére

in this section. The design of an updator sharing scheme viap—! positive definite matrix that describes the shape,

U-SHAPE is described in Section V. Concluding remarks are orientation, and size of th&,, ;;
made in Section VI. 02 | positive number that, together wiff,_, defines the
size of £, _1;
ll. SET-MEMBERSHIP |DENTIFICATION ¢,—1 geometric center of the ellipsoid.
AND THE OBE ALGORITHM An ellipsoid E,, that contains the intersection &f, _; and
In the set-membership framework, the linear-in-parametél: IS 9iven by a linear combination of (3) and (5) [9]
model E,={0eC":an[f—0,_1]"P71[0 — 6,_1]
Yn = 0%, + v, 1) + Baltn — 07 x0|? < anoi_y + By} (6)

dwhere a, > 0 and 3, > 0 are parameters to be chosen to
optimize a measure of the size &,. Different optimality
Qﬂ';teria lead to different OBE algorithms. It is straightforward
to show thatF,, describes an ellipsoid, and

is considered, wherd, is the underlying complex-value
parameter vector to be estimated, andis the measurabl&/’'-
dimensional input vector to the system. Note that the class
systems modeled by (1) includes the ARX model in whigh
is the regressor vector of the input and output sequences and g, = {§ e CN: [0 -0, P[0 —0,] < 02} (7)
several nonlinear systems of practical importance. SpeuﬂcalIlehrougJhout this papess*, x7, x'", and[x|| denote the complex conju-

X, may Clonta'n. nonlmear funCt|0nS_Of .paSt OUIPUt.S' .as b%te, transpose, complex conjugate transpose, and the two-norm, respectively,
the case in decision feedback equalization. The nojsés of the vectorx.
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where P, is positive definite, and,, is the geometric center theoretically, the OBE algorithms can diverge because of
of E,,. The D-H/OBE algorithm uses bound violations. The case of Gaussian noise is considered

in the following section.
on =1— )\n§ /371 = )\n

where0 < A, < 1 and defines\?, which is the optimal value ~ Ill. CHANNEL ESTIMATION USING OBE ALGORITHMS

of A,, as the one that minimizes?. It has been shown in  consider a discrete-time complex baseband equivalent
[9] and [23] thato;, is an upper bound on a constant multiplgnodel of a digital communication channel with two-
of the estimation error, assuming a persistency of excitatigiinensional (2-D) signaling (e.g.M-QAM, M-PSK for
condition. An update is not required if thel optimal valggs cgny M) comprised of everything from the input of the
ay andf, area), = 1, and;; = 0. The equivalent condition ransmitting filter to the output of the sampler at the receiver.

in the case of D-H/OBE is\; = 0. The condition that As shown in Fig. 1, the transmitted sequence is denoted by
checks if an update is required or not is calleditifermation , _ {an}22 .., channel impulse response Hy:}” _,,

evaluation criterion. D-H/OBE is particularly attractive for aqgitive noise sequence by = {1,}5>___, and channel
the updator sharing scheme (U-SHAPE, see Section V) singgput sequence by = {u,, }>° The equalizer will be

n=—oc"

its information evaluation criterion is of linear computationalgnsidered in the next section. In this section, we describe the
complexity. In contrast, most other OBE algorithms requ"&pplication of OBE algorithms to the estimation {of,}. The

quadratic computational complexity and thereby do not deriy@annel is described by an FIR model with additive noise
any significant computational advantage via updator sharing.

However, approximate tests for information evaluation that B
reduce the computational complexity exist in the literature Un = Z Ciln—i + Vn- (10)
[11]. The update equations for the D—H/OBE algorithm for real =D

data are given in [9]. By extending those results to compléx vector notation, the above relation can be rewritten as
data, we obtain the update equations at time instant

D

if 02_, 4 [6.]2 < +2, whereé,, =y, — 6%_,x,,, then U =y + 1 (11)
A\ =0 wheree = [c_p -+ -ep]?, and ¢, = [an+p - - an—p]*. Note
and that an IIR filter formulation also leads to (11), whete

contains past outputs. Since (11) is in the same form as the SMI
n—1 (8) model (1), OBE algorithms find direct application in estimating
the channel vectoe.

971, :971,—1; Pn = Pn—l; 02 =

n

else T Additive noise in a communications system is usually
P, = 1 P, — An L1 X0%5, Pt modeled as a Gaussian process. Bounded noise is theoretically
1= 1=+ AGp essential for the OBE algorithms, and even a single violation
6y, =0p_1 + A\ Px5 6, of the bound can potentially make the membership set empty.
An(1 = X)|6n )2 However, as discussed below, this does not pose a serious

2 _ 2 2 .
on =1 =)oyt + Ay — T A T AG, practical problem.

- ) Assume tha{, } is an ergodic zero-mean Gaussian process
where it is shown in (9) at the bottom of the page, and whefg, variances2. The probability that the noise violates the
Amax € (0, 1) is a design parameter. The above algorithm, likessumed bound BO(~/c,), whereQ(-) is the @ function?
all other OBE algorithms, assumes knowledge of a noise bouag; instance ity = 30,, model violations occur less than
v. If reliable noise bounds are not available or if the noisg 304 of the time. It is theoretically possible for the true
bound is time varying, we can employ bound-tuning strategiggrameter to fall out of the ellipsoidal estimate due to these vi-

like the ones proposed in [20] and [24]. Further, previoygarions: however, repeated experiments by several researchers
studies have shown that the OBE algorithms are quite robust

with respect to occasional noise bound violations, althougt?The @ function is defined ag)(x) £ 122 (1 VeEm)e =" /2 d=.

T *
G, =x, P,_1x],

o .
)‘n = )‘n = Hllll(l/n, )‘max)

)\ma.x |f6n:0
1—
A =) if @, =1
2
Vp =
" 1 G
— |1 - _ if 1 n n_]-
1—Gn[ \/1+un(Gn—1)J T34 pn (G = 1) > 0
Amax |f1+ﬂn(Gn_1)S0
_72_0721—1

Hn = W ©)
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Fig. 1. Discrete-time model of a communication system with equalization.

have shown that the OBE algorithms do not diverge in the timen + 1) ellipsoid £, 1,. The result proposed in [27]
presence of infrequent model violations (e.g., whea 30,). that optimizes a positive definite matrix addedig is
Moreover, infrequent model violations have been shown not to

deteriorate the performance of these algorithms significantly in =~ Crn+1jn = Inen

numerous simulations [9], [13], [24]. Such robustness may be Q VIEPEL2]1Q2

attributed to the redundant region around the true membership Popin =P+ —5 +2 on I2p

set provided by ellipsoidabuter approximation involved in o2 — o2 " (17)
each updating instant. In the unlikely event that the ellipsoids ntiln "

lose track of the true parameter, an indication of loss Qfherer, ., is the identity matrix of siz&€D+ 1. A summary
tracking, though not necessarily immediate, is provided By techniques for state bounding by ellipsoidal algorithms is
the sign ofs2. Such an indication may be used to perform gynd in [28].

simple rescue procedure to recapture the true parameter [13kjnce 41 belongs to the set in (16), which is, by con-
Further, once the ellipsoid has converged to the steady staf@uction, a subset oF, 11}, the true channel vectat,
the corresponding point estimate will produce an output ergglongs to the ellipsoid,, ;1 ,.. Sincec,,;; also belongs to the
whose magnitude is at most whenever the true noise isgpservation-induced set at time+ 1, O,.,1, the SMI update
smaller thany (since data consistent with the assumed mod@buaﬁons can be used to find the nawposteriori ellipsoid
do not result in an update in the steady state). In the aboE(;LJrl that outer bound€,, 41, N1 ©,.;1. A point estimate of
example, the steady-state estimate will produce an output eqigs channel vector at timeis taken to be the geometric center
smaller than the noise bound more than 99.7% of the timecn of the a posteriori ellipsoid E,,.

In the case of a time-varying channel, a state-space modekjmuylation Resultsin this section, we examine the per-
can be used to represent the dynamics of the channel ve¢tpmance of an OBE channel estimatds-a-vis those using
and the observation model (11) as conventional techniques. For the time-invariant case, RLS

c —Fe +d (12) (W@th an expo_nential weighting fa_ctok = 0.98) and LMS
et It (with a step-sizey = 0.015) algorithms are used for com-
Un = ¢7,Cn + (13) parison, whereas a Kalman filter (KF) is used in the case of
time-varying channels. The complex form of the D—H/OBE
algorithm, which is described in Section Il, is used for the
OBE estimator. Extension to time-varying channel estimation
D={d:d"Q'd <1}. (14) s incorporated in the second example.
A randomly generated time-invariant complex-valued chan-
In many cases, the only available set-theoretic knowledge nel vector of length five and an output SNR of 15 dB is
the channel dynamics could be an upper boupdon the considered first. The additive noise is a realization of an
magnitude of the channel vector jump at each time. In suWGN process. The noise boung is chosen to be3s,,,
cases, we can make, the identity matrix (oral, where wheres, is the standard deviation of the noise. The mean-

where F,, is a known sequence of matrices, adg is a
disturbance known to belong to the ellipsoidal bound

a < 1) and let@Q = (1/v4)I so that square error performances of D-H/OBE, RLS, and LMS
) ) estimators averaged over 1000 independent runs are illustrated
D ={d:[[d||” < ~a}- (15) in Fig. 2. The plots show comparable performances of the

To estimate the channel vector using an OBE aIgorithnI%)_H/OBE and RLS algorithms, whereas LMS is much slower

S In convergence.
let £, be a known ellipsoid such that, € £,. We need to A time-varying mobile channel is simulated with the tap

compute the set of all vectors that result from transformin(% -
each point inE,, according to (12) for ald,, satisfying (14). efﬂmgnts as the outputs of two-pole Butterworth lowpass
" " " filters with white noise inputs. The cut-off frequencies of the

This set, which is given by filters are taken to be the Doppler frequency shift in the mobile

F,E,&D={F,c+d:ce€ E,,deD} (16) communication environment. We simulate the channel with a

Doppler frequency of 100 Hz and a symbol rate of 25000

clearly containsc,,; and is not an ellipsoid in general.symbols/s. Fig. 3 shows the tracking behavior of D—-H/OBE
Techniques have been proposed in [25]-[27] to outer bouadd the Kalman filter algorithm for an SNR of 10 dB. For

the above set by aa priori (i.e., before using the observationillustration, the figure shows just the real part of the second
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10" . . . . . TABLE |
MEAN-SQUARE ERROR IN TRACKING A MOBILE
- LMS CHANNEL WITH D—H/OBE AND KF ALGORITHMS
— gfg’“ SNR (in dB) 0 5 10 15 20
MSE (D-H/OBE) 1.6309 | 0.5686 | 0.2455 | 0.1227 | 0.0672
MSE (KF) 1.2593 | 0.4496 | 0.1707 | 0.0697 | 0.0313
% updates (D-H/OBE) | 8.76 | 26.15 | 36.756 | 47.19 | 58.80

Assume a one-dimensional (1-D) or 2-D signal constellation
(e.g., BPSK, QPSK, QAM). Consider a linear-in-parameter
equalizer with tap weight$6;}?__ ., whose output is given
by

Mean Square Error

2 = 0%y (18)

07y 10 20 2 20 0 s Wheref =[0_x, ---, On]7 is the parameter vector, ang, is

Time the input vector to the equalizer. In genersl, is a function
Fig. 2. MSE performance in the estimation of a time-invariant channel.of the sequence of received sampiesand the past outputs

of the decoder{d,;}? .., which, in turn, are functions of

1 , . a andv. Therefore, the input vector to a linear-in-parameter
== True equalizer is a function of the transmitted symbol sequence and
the noise sequence. This category of equalizers includes linear
and DFE’s, with either fractionally spaced or symbol-spaced
taps.

Let the transmitted symbols come from a 2-D constellation
-1 s prers =0 C- In addition, assume that we want to design an equalizer
Time that performs according to the desired specification whenever
the additive noisev,, belongs to a selV. No performance
requirement is specified for the equalizer when the noise is
not from V. For instance)’ could be the set of noise samples
of magnitude less than somg,. Let the set of input-noise
pairs for which the performance specification is defined be
denoted as thelesign space
0 500 1000 1500 S={a:ia, €CVn} x{viv, eVVn} (19)

Time

Parameter

Fig. 3. Tracking of a mobile channel using D-H/OBE and RLS algorithmdf the probability thatz,, € V is high, then an equalizer
that achieves the desired specification whenevgre V

tap coefficient. Table | shows the mean-square predicti(\fvr%" achieve the specification with a correspondingly high

errors produced by the D—H/OBE algorithm and the KF fo?mbab'“ty‘ . . . .

various values of SNR. The D-H/OBE performance is seen.The output of the eguahzer IS a.functlon of the input and
to be comparable with that of the KF, which is considered RPISE sequences and is parameterized iap
benchmark for its fast convergence and tracking characteristics z,(0, a, v) = 01x,(a, v). (20)
[3]. Moreover, as seen from the percentage of updates, this

performance is achieved in spite of the infrequent updating By?€ objective of SM equalization is to ensure that the max-
D—H/OBE. imum Euclidean distance between the transmitted and equal-

ized symbols is less than a specified vatue- 0 whenever

the input-noise pairs come from the design space, i.e.,
IV. CHANNEL EQUALIZATION IN

THE SET-MEMBERSHIP FRAMEWORK |an — 2,(0, a,v)|* <7, forall (a,v) e S. (21)

] o This is an instantaneous specification on the equalizer perfor-
A. Set-Membership Equalization mance depending on the input.

A novel concept of adaptive equalization in the SM frame- If the probability that the input belongs to the design space
work is proposed here. The approach incorporates set-theoreti, then this formulation ensures that the probability of
knowledge of the additive noise, which includes interferencaeeting the specification is lower bounded /yin terms of
and thermal noise. This approach to equalizer design guarkig. 1, the SM equalizer constrains the erroto be upper
tees a specified upper bound on the Euclidean distance betweennded in magnitude by for all inputs fromS&. This is in
the transmitted and equalized symbols for all inputs belongiregntrast with the minimum mean-squares and LS equalizers,
to a certain set. which are specified to minimize an ensemble or time-average
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On4q for all I > 0. Theorem 1 below provides a
sufficient condition and a necessary condition@oy ()
to be nonempty in the case of linear equalization of FIR
channels.
4) It follows trivially from (22) that©y(v) C On(y +¢€)
T for anye > 0. Therefore, the possibility a® 5 () being
nonempty increases with.
A linear equalizeris a linear-in-parameters equalizer where
- . . dmn  the input vector is simply the regressor vector of the channel
el outputs. Continuing with the notation from Fig. 1, this implies
' that

Xp = [U'n-l—Na ) U/n—N]T- (23)

+
+
-

‘\y j / When the linear equalizer is considered in conjunction with
‘ the FIR channel model (10), we have

where

. . N . T. _
Fig. 4. Set-membership equalization criterion for a QPSK system. The Sn = [an+K7 T an—K] i K=D+N
equalized symbol is constrained to lie in a circle of radiucentered at _[ ]T
the transmitted symbol. Wn = ntNs "7 Vn—N

and the channel convolution matriXy is

of the squared erroe?. Condition (21) requires that the ¢c—D 0 0
equalized symbol remain in a circle of radius centered C_p+1 C—D
at the transmitted symbol, as shown in Fig. 4 for QPSK :
signaling. Note that (21) is independent of the time inaex
since the inequality must hold for all possible data and noise ¢p 0
sequences iS. If the minimum Euclidean distance between™~ — 0
any two symbols in the signal constellatiéhis d,,;,, then . )
the specification foerror-free equalization(i.e., no decision : - C—D+1
errors whenever the inputs are from the design space) is made :
by choosingy = dyin/2. 0 0 e 0
For a given specification of, define the set of all equalizer o ]
weight vectors of length{2V + 1) that satisfies (21) as the The output of the equalizer is, therefore, given by

feasible equalizer se®y(v) 2 = 07 (Csy +wy). (25)

C_D+41

¢D (2K+1)x(2N+1)

On(y) 2 ﬂ {6 € C*N*La, — 2,(6, a,v)|> <+4?}  Since the desired output of the equalizer can be expressed as
(a,v)eS a, = el's,, whereey is the unit vector of dimensio(2K +1)
_ 9 c 2N g, — 67, 2 .2 Wllth a “1" in the (K + 1)t_h position, the SM equalization
ﬂ toe la xn(@, V)] <77} criterion (21) can be rewritten as

(a,v)ES
(22) (CnO—eq) s+ 6"w|<v,  V(s,w)eH  (26)
whereS is the design space, as defined in (19). where the design space [space of the signal vector and noise
The following observations on the feasible equalizer s¥ector pairs(s, w) of interest] is denoted
Opn(v) can be made. H = C2EFL 2N+ 27)

1) Oxn(v) is a convex set. This follows from the fact that

for each(a, v), {6: |an — 67 %, (a, v)[2 < 42} describes Note that the change in notation for the design space ffom
a convex hypérsfripnin the gpa’ce = is due to the switch from infinite sequencesnd v to finite

2) SM equalization involves estimation of a member thmensmnal vectors and W . o
the set®x(y). Any point in the set yields a valid Consequently, the feasible equalizer ®st(~) is given by
SM equalizer. Later in this section, we shall derive a ©x(v) =
procedure to estimat®(+) that results in the same ON+1, _N\T T_ 12 2
recursions as SMI algoriihzns. ﬂ {oeC H(Cn8 —eo) s+ 6w < 7).
3) ©x(v) may be an empty set for a givé¥. This means (28)
that there exists no SM equalizer as defined above.
In general, however, for a given signal constellatiorGonditions for the existence of a nonempty parameter set
channel, and noise model, it may be possible to find@y (), assuming an FIR channel and a linear equalizer, are
nonemptyo y () for a larger value ofV since®© () C stated in the following theorem.

(s,w)eH
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Theorem 1—EXxistence of the Feasible Equalizer Set,y

Consider a linear channel model (10) and a linear equalizer
as described above. W = {r € C: |v| < v,} andOy(~) is
as defined in (28), then the following hold. I  Sufcient___ 4
1) ©xy(y) is nonempty if the channel satisfies 1 = .
K N o T
Ya Z et 4+, Z 16V] < ~ (29) oo Nesssay
i= K i=—N [
wherec(!) = Cn 61 —ey, 5 is the maximum amplitude o 2 3 5 5 6 7 8 9

Number of Equalizer taps (2N+1}

in the constellatiorC, and ") = (CECn + ((2N +

D2 /KA "LCHeq. If (29) is satisfied, therpD Fig. 5. Necessary and sufficient conditions for the existence of a feasible
6)7’24) ’7“) ) NFO (29) < linear equalizer set for the channel 21, 1] and~y, = 0.2.
NY)-

2) If ©n(~) is nonempty, then i o i . .
Remark: The intent of this simulation example is to illus-
2 o I ||9(2)||2 2 .2 (30) trate the principle of SM equalization and may not correspond
2 =7 to a realistic channel. It shows clearly that SM equalizers
where~, is the minimum amplitude in the constellationc 2" pe deS|g_ned n.on.adaptwely (without the need for OBE
= algorithms) witha priori knowledge of the channel. In such a

A .
¢, and ¢o = max,ec mingee [P(a1, a2)l,  case, the resulting SM equalizer will achieve the error-bound

1127 cos

€ = COy0® — ep, and 6 = (CHCy + specification for all input pairs front{, and therefore, the

(v/va cos®(¢0/2))1) " Cfleo. probability that the output error is less than the specified bound

Proof: See Appendix A. B s at least equal to the probability that the input pair belongs
Remarks: to H.

1) To gain intuition about the theorem, note that ahy
belongs to the feasible set if and only J{#) < v, C. A Recursive OBE Solution

where J(-) is a cost function as defined in Appendix A \ve now show that SM recursions can be used to outer bound
[Jl(-)_|s the supremum of (54) ovet]. In the theorem, e feasible equalizer se®y(+). Note that the restriction
61 is the minimum of a function that upper boundgy |inear channel and equalizer models are not required in
J(), and#® is the minimum of a function that lower y,¢ sequel. An arbitrary channel and a linear-in-parameter
bounds.J(:). - . equalizer are assumed. Further, assume Yhat {v: |v|*> <

2) Besides prowdmg conditions fc_)r the existence of feas%} and that all training data come frofd. Any data that do
ble equalizers, Theorem 1 provides a method to COMPUYi§; are considered model violations, and they are expected
an SM equalizer nonrecursively when a channel estimaig occur with a small probability (see the discussion on
is available. When (29) is satisfied is a closed- ;npoinded noise in Section I11). Following the notation of SM

form solution for an SM equalizer since it belongs t?heory define th@bservation-induced sett time n
the feasible set.

O 2 {6: |an — 67,2 < 2} (31)

B. lllustrative Example wherea,, is the transmitted symbol at time. ©,, is the set

Consider a discrete-time additive noise FIR channel withf all equalizer weights that equalize the channel output at
coefficients [2,—1, 1] and a noise bound, = 0.2. The timen, according to the SM equalization criterion. Analogous
transmitted symbols are QPSK modulated with unit magnitude, the definition in Section I, we definmembership se#,,

i.e., 7. = va =1, and ¢y = 7/2. The square of the LHS of as the set of equalizer weights that equalize all the channel
the sufficient condition (29) (dash—dot line), the LHS of theutputs until timen

necessary condition (30) (dashed line), ddg,;,/2)? (solid A

line) are shown in Fig. 5 for equalizer lengtf&V + 1). For n = ﬂ Ok (32)

~v = dmin/2, the sufficient (necessary) condition is satisfied if ksn

the plot corresponding to the sufficient (necessary) condititihthe transmitted symbol sequence and the noise sequence
is below the(dmin/2)? line. Fig. 5 shows thagrror-freelinear  satisfy the assumed set-theoretic model, then it follows from
equalization is possible for this channel if the number ¢21) and (31) that®,, contains®x(v) for every n, and,
equalizer taps is seven or more. Simulations with the worstensequently,

case input and noise sequences have showna&fiatdoes ¥ 2 On(7) (33)
indeed produce no bit errors when the sufficient condition is " N

met. The necessary condition is satisfied for linear equalizersSince SM techniques estimate the membership/getith

of all lengths. outer bounding approximations, we can use an OBE algorithm

to compute ellipsoid€,, such that
3The angle¢(ay, az) between two complex numbers and ay is the
solution ofe’® = a¥as/|ai||az|, with ¢ € (—=, a. E, D, 2 @N(’y), Vn. (34)
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A few qualitative remarks about the above procedure are 1 ; . .
given below. They provide intuitive justification for the pro-
posed scheme and are stated without proof.

Remarks: 0

1) SM equalization does not require the noise to be
bounded but only that the data for which the bounded-
error specification must be met come from bounded ™}
noise. The off-line procedure for the design of an SM§
equalizer therefore poses no theoretical problems in
handling Gaussian noise. However, OBE adaptation " |
requires all the training data to come from the design
space, and model violations can potentially result in loss .|
of tracking. Please refer to the discussion following (11)
for possible solutions.

2) From (22), (31), and (32), we can see that the feasible , - . . .
equalizer se® (v) is an ensemble intersection, andthe 2 ° * ¢
memberShlp Sexf" Is atime mtersec’ﬂqn of the same S_et%ig. 6. BER of OBE and RLS equalizers for the channel [0.75, 1.0, 0.75].
over the transmitted symbols and noise. Therefore, if the
transmitted symbols and noise samples are “persistently
exciting,” we can expect the time intersectiaf, to number of updating unité, some criterion must be established
approach the ensemble intersectiény(y) in some to decide whichL of them to service. A straightforward
meaningful sense. This provides a qualitative assurar@ecision strategy is to choose thavinningchannels randomly
that the optimal bounding ellipsoids are “tight” sincgwith equal probability) from the contending channels, but it
they tightly outer bound the membership set. will be shown in the following that this is not the best approach

3) The geometric center of the bounding ellipsoid is takemhen the probabilities of update requests on all the channels
to be the point estimate for the purpose of equalizatioare unequal. The design problem in U-SHAPE is twofold:

If the bounding ellipsoid ismsymptotically tightthen the to determine the “optimal” number of updating processors
convexity of the desired parameter set makes it likekgquired to meet certain specifications and to devise a scheme
for the geometric center to asymptotically lie inside th&r contention resolution that would provide uniform quality of
feasible equalizer set service to all users. This section addresses these design issues

4) The proposed algorithm inherits the discerning updater U-SHAPE based on the results in [15] and [16].
feature of the OBE method and, therefore, allows sharingAssume the channel update requests are stationary, memo-
of the updating processors, as described in the followirigless, independent random processes. At any sample instant,
section. define a binary random variabl€; to be 1 when theith

Simulation ResultsTo test the performance of thechannel requests an update and O otherwisepL&t Po, (1),
OBE adaptive equalizer, a raised cosine ISI channel [@hichis the probability that théth channel requests an update.
p. 414] is considered. The channel impulse response Degfine another binary random variablg to be 1 when an
{0.75, 1.0, 0.75}. A DFE with nine forward and one update is performed on thgh channel and O otherwise. Let
feedback taps is used. The OBE equalizer uges 902, and Ng denote the total number of update requests at any time
RLS uses exponential weighting factor 0.99. Fig. 6 shovg® that
the bit error rate (BER) performance of both the equalizers

after 500 bits of training. Ng a iQ (35)
=1

L L
6 8 10 12 14 16
SNR (dB}

V. UPDATOR-SHARED ADAPTIVE

PARALLEL EQUALIZATION (U-SHAPE) Quality of service provided to thah user (channel) can be

] . . measured in terms akjection rate p;, which is defined as
Consider the problem of simultaneously equaliziigchan- - the probability of not updating the channel given an update
nels. If the probability that more than a certain numbggpqyest, i.e.,

of channels request an update at the same time is small,

fewer than A/ updating units (processors) can be shared A

among theM channels. We shall refer to such a sharing pi = Puij: (O1)- (36)
scheme U-SHAPE. Fig. 7 shows a schematic of the proposed ) o

system when decision feedback equalizers are employed. Nte>0lution for Equal Update Request Probabilities

that all results in this section are valid whenever severalConsider the case of equal probabilities of update requests
independent systems are to be identified using OBE techniquesall channels, i.ep; = p2 = -+ = pp; = p. In addition,

in parallel, including the case of multiple-channel estimatioiff Ny > L, assume thalVg — L update requests are rejected
and linear equalization. In the implementation of U-SHAPE, &t random with equal probabilities of rejection. This results in
the number of simultaneous update requests is larger than the= p» = --- = pps, and we have the following theorem.
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.
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Fig. 7. Updator-shared parallel adaptive equalization (U-SHAPE) scheme using decision feedback equalizers.

25 . . : : : e formulation, it fails when the probabilities of update requests

: ' are not the same on all the channels. To illustrate this, consider
a two-channel case with one updating processor. Using the
random rejection scheme, either channel will be admitted with

a probability1/2 whenever there is a tie. Then

P1 :PUllleA‘rQ (0|17 1)PNQ|Q1(1|1)
P2
+ PUl|Q1,NQ (0|1’ 2)PNQ|Q1 (2|1) = ? (38)

- n
o =]
T T

Number of Updating Units, L
o

Similarly, po = pi/2. Thus, if p; is close to 1 and. is
close to 0, then channel 1 would be admitted almost every
time it requests an update, whereas almost half of channel 2’s
v requests would be rejected. The case of an arbitrary update
0 S O U U j s request distribution is considered in the next subsection.

0 10 20 30 40 50 60 70 80 90 100
Number of Channels, M

Fig. 8. Number of updators when= 0.3 and po = 0.1. B. Solution for General Update Request Probabilities

In this section, we remove the constraint that sglk are

Theorem 2:Under the assumptions above, the optimurdqual. Define a binary random variablg for each channel
number of updating processors that resultspjn< po for to indicate an update request rejection, i.e.,

every: is the smallest numbet of processors that satisfies Af1, ifQ;=1andlU; =0
Mo LM -1 R = {O, otherwise. (39)
= > el A < . .
pi T k k-1 - Let N denote the number of rejected requests at any time.
=t . Then
for any . (37) u
Proof: See Appendix B. n Nr=)_ R (40)
Since we know that < L < M, the minimum value of. i=1
that satisfies (37) can be found by searchinglin2, - -, M}. In order to remove the dependence of the solution on

The relation betweeid. and M whenpo = 0.1 andp = 0.3 any particular contention resolution scheme, the performance
is shown in Fig. 8. Simulation results have shown that thgnstraint is modified from a bound on the rejection rates to a
variation of pg from 0 to 0.1 has an insignificant effect onpound on the ratio of the average number of rejected channels

the BER. It is clear that this scheme provides a significafy the average number of update requests, i.e., define
reduction in the number of updating processors required. —

The contention resolution scheme used above is to aimit p= =" (41)
out of the/N¢ update requests with equal probability of admit- Ng
ting (or, equivalently, rejecting) any of the requesting channels ~ A — A .
This scheme is referred to here as thrdom rejection scheme where N = E{Nr} andNq = E{Nq}, and specify
Although such a scheme lends itself to a simple mathematical P < po. (42)
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Note that if there exists a contention resolution scheme traat m-server loss queuing system [29]. In this model, the
achievesp; = p2 = --- = pu, then NR/NQ = p; for customer population is assumed to be infinite, and the number
everyi. Therefore, the above specification reduces;t& po, of available telephone channels (i.e., the number of servers) is
which is identical to the specification in the previous sectiodenoted by/N. The average rate of incoming calls Ascalls
Contention resolution schemes are studied in Section V-Per second, and the average service rate for any callcalls

The following theorem provides the solution for the optimurper second. Any call that arrives when all channels are busy
number of updators when the update request probabilities @ eaejected. The call interarrival time and the service time for
not (necessarily) equal. each call are exponentially distributed with parametend

Theorem 3: The optimum number of updating processorg, respectively. Note that and, as used here, are different

required to guarantee (42) is the minimum valuelothat from the notation in the discussion on OBE algorithms in

satisfies Section Il. For this system, the probability 8f active users
M M is given by
> (k= L)Pxg(k) < pod _pi (43) N\
k=L 41 i=1 <—) m!
Pym)=—F2 1L y—0/1,...,N. (46)

where N \ & P )
M—k+1 M—k+2 M Z(;) /k!
Prg(ky= > > o > s

=l dz=ii+l  G=ip_1t+l The average number of active users is
— A A
PirPiz * Pi 11 (1—=py) |- MIE{M}Iﬁ(l—PM(N))%;-
JE{L, o, MIN{d1, i }

(47)

If the number of updating processaksis computed using

The rejection ratio is given by M = My andp = po in (37) or (43), then, neglecting the
M effect of variations inp;’s, we get
> (k= L)Py (k) N
p="t : (44) Plp>pol= Y, Pu(m) (48)
m=My+1
Zpi and
i=1 N
Proof: See Appendix C. n E{p} =Y _ p(m)Py(m) (49)
The minimum value ofL that satisfies (43) can be deter- m=0
mined as before by an off-line search {1, 2, ---, M}. It \yhere p(m) is the rejection rate when the number of active
can be easily verified that (43) coincides with (37) under thgers ism.
assumption of equal update request probabilities. Variation in the probabilities of update requests is modeled
as an exponential decay with an initial valueygf;; = 1 to
C. Design of U-SHAPE Using a Queuing Model a steady-state probability,,, i.e.,

The preceding design procedure assumes time-invariant
probabilities of update requests and a fixed number of active
users. However, in practice, the number of active users variggere timet is normalized by the symbol interval, andis
Further, SM equalizers usually require more frequent updatiffg number of symbols.
at the beginning of a call. Consequently, the probability of A worst-case estimate of the set of parameters for the

update request on any channel is large at the beginningefeuing system and the exponential modeljgs is
a call and then decays to a steady-state value. Since the

number of updating processors is fixed, these variations result N =100 A=1/180s™" A =50 p, =0.1
in a stochastic rejection rate. Computation of the number of o
updating processors must be altered to satisfy a statistical Pinit =1.0 ps = 0.3 7 = 100. (50)

specificat_ion.on the rejection_rate. .Insf[ead of an upper ,bouﬁ%servation of the transient behavior of the D—H/OBE algo-
on the rejection rate, the design criterion can be a confidengg ., iy nonstationary environments has shown that the above
interval, i.e., for giverpy ande, the design specification is choice ofr and p,, represents a worst-case scenario. Even
Plp> po] < e. (45) if we assume a symbol rate as small as 2400 symbols/s, the
average interarrival time for incoming calls is approximately
Computation of P[p > po] as a function ofL requires equal to2.4 x 10° symbols. Since- is insignificant compared
a model for the time variations of the number of activavith this number, we can expect the variationpifs to have
users M and thep;’'s. We employ a queuing model forlittle impact on the effective rejection rate. This conjecture is
the telephone network and model the decaypgé by an supported by simulation results with the system parameters as

exponential function. The telephone network is modeled as(50), andM, = M = 50. From (37), we gef. = 15. Using

2:(t) = (Pinit _pss)e—t/‘r 4 P i=0,1,---,N
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" , T T rejected, is suboptimal, except in the special case when the
probabilities of update requests are equal on all the channels.
In the general case, we need to determine whiclof the
requesting channels require updates more urgently than the
others. This would result in griority rejection schemen
which some measure of priority would be used to determine
the priority of each channel so that a higher priority channel
is serviced in case of a tie.
In the D—H/OBE algorithm, the quantitit; = 62 +02_, —
~% is used as a measure of the information content in the
received data set. In particular, an update is requested if and
only if A; > 0. Therefore,A; is an intuitively satisfying
measure for theriority rejection scheme
195 s o T 20 The rejection ratios of all the channels can be made equal if
Number of channels, N the priority of each channel is measured in terms of estimates
Fig. 9. Number of updators whan= 0.3 andpo = 0.1, using the queuing Of their rejection rates. To do this, defingection fractionp;
model. of the ith channel as the fraction of its update requests that
have been rejected until that time, i.¢;{¢) 2 (Ri) e /{Qi)de,
(49), E{p} = 0.0941, whereas the observed= 0.0964. Since where(-),; denotes time average until tinieAssuming ergod-
(49) is derived without considering the effect of variations ircity, g;(t) equals the rejection ratio in the limit as— oo.
p;'s, it is clear that the exponential decay of the update requésichannel with a higher rejection fraction would win in a tie
probabilities does not significantly affect the overall rejectioto bring the rejection fractions closer. Estimates(&f); and
rate. Therefore,L can be computed assuming steady-stat€);); can be obtained as
update request probabilities without loss of accuracy.

(2]
5]

w
=]
T

Number of Updating Processors, L

Given py ande in (45), the number of updating processors ri(t) =Crit — 1) + (1 = ORs(t) (51)

L is computed as follows. ai(t) =Cai(t — 1) + (1 - Q)Qi(t) (52)

1) Using (4_18)_, findMo, which is the minimum value o \ynere 9 < ¢ < 1is a forgetting factor. Thenj(t) ~
that satisfies (45). r:(t)/q:(t). Therefore, each channel can be prioritized by the

2) ComputeL usingp = po and M = Mo in (37) or (43). fraction 4(t). Additional time-dependent terms could be added
Example: For ¢ = 0.1, po = 0.1, and the above systemin the equations to assign higher priority to equalizers that have
parameters, the design procedure yields = 59 andL = 17.  started operating more recently.
The simulation included 50 runs, each for more tHaxn 10%
symbols, with a symbol rate of 2400 symbols/s. Each run VI. SUMMARY AND CONCLUSIONS
was initialized with the ending network status (number of
active calls, call-lengths, etc.) of the previous run. The averal
rejection rate was observed to be

eThe excellent convergence and tracking characteristics of
M algorithms and the computational advantage provided by
their discerning update feature have inspired the development
E{p}tors = 0.054 (E{p}tneory = 0.046). of SM equalization in this paper. The close resemblance of
the OBE update equations to those of LS estimators make
them attractive practical tools. SM algorithms and schemes
Plp > polovs = 0.109 (Plp > poltneory = 0.100). that utilize their selective updating feature can be very useful

in applications to adaptive filtering in communications, where

Slr_nqlatlons show very good_ agreement with the_theoretl%le requirement is for high performance algorithms with low
predictions made after neglecting the effect of varying uDdat@émputational complexity

request probabilities. Moreover, simulation results have ShownSMl methodology has been applied to channel identifica-
that gmall variations in the re;jection rgte do not adversely affe[%n' showing comparable convergence performance and better
the final BER of the equalizers. This example shows thatia, .ing performanceis-4-vis the LS techniques at a fraction
system with .100 cha_m_nels needs Ju.St 17 updating Processif$he computational burden. The notion of SM equalization
to p_erform with neghglblg deterioration. _has been introduced, and the issues of the existence and
Fig. 9 shows the relation between the number of updating,s;i, of SM equalizers have been addressed. OBE algorithms
processorg, and the number of channelé when the expected 56" heen shown to be attractive tools for adaptive SM
number of active callsf = NV/2, with all other para_lmeters aSequalization. An updator-shared implementation of parallel
above. The p!Ot _c!early ShOWS_ the_‘t the above design procedg E equalizers/channel estimators called U-SHAPE has been
results in a significant reduction in hardware complexity. proposed to exploit the selective updating feature of OBE
) ) algorithms. Solutions have been derived for the minimization
D. Contention Resolution Schemes of the number of updating processors subject to a specified
As we have seen earlier, thandom rejection schemén bounds on quality of service to all users. U-SHAPE has been
which all requesting channels have equal probability of beirgljown to offer a large reduction in the number of updating

The fraction of times thap > po = 0.1 was
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processors. For instance, a 100-channel system only need®gfining
updating processors to operate with negligible deterioration

in performance. Different strategies have been suggested to Va 2 min |al (62)
handle update contentions. B acC
A .
= ms 63
bo max min |p(a1, a2)] (63)
APPENDIX A
PROOF OF THEOREM 1 the choice (61) results in

Proof: From the definition of the feasible equalizer set
(22), a necessary and sufficient condition for(y) to be (CnO —eo)’'s| = (le—x |+ + |ex|)Va cos @. (64)
nonempty is 2

Equations (53), (55), and (64) imply

J° 2 inf sup J(#, s, w) <~y (53)
7
(s,w)eH (/)0
JO > i - - . s
where J? > 1101f(|€—ls| + -+ |ex|)vq cos 5
/ @4 e
J(0, s, w) 2 [(CnO —e0)'s+ 607wl (54) + (105 + -+ 108 D

, . . . - > inf ||€]|y, cos fo + 1)1~
The filtered noise magnitud&®®w| is maximized when e & 2 v

|wi| = v, Vi and Z(w;) = ¢ — £(6;), Vi, for any angleg. . bo
Given anyf ands, J(6, s, w) is maximized whenp is chosen = inf \/||f||2’@ cos? = +16]|*?
such that/(Cn0 — eq)’'s = /(67w). Therefore, in (53)

= (2)]|2~2 2 @ 9(2)(|2~2 65
sup J(Q, S, W) \/HF || ,yg coS 2 + || || ’71} ( )
(s,w)eEH
= sup |(CyO—eo) s|+(|0_n|+---+|0x])7. (55) where ¢@ = Crn0P — ep, and 6 = (CHCy +

seCErH (v2/42 cos? (¢0/2))I)~' Cl eq. The necessary condition (30)

n A follows from the above. ™
Defining vz = max,ec |a|, we also have

[(CnO —eo)’s| < (le—k|+---+|ex)va  (56) APPENDIX B

wheree = C 6—eo. Combining this with (53) and (55) yields PROOF OF THEOREM 2

Proof: The probability mass function aVg, which is

Jo< i%f{(|e_K| +--+lexDva+ (|0-n[+---+[6n))7.}.  denoted byPy,, (k), follows a binomial distribution given by
(57)
Ay i i i M MY\ 4 —k
th;'therefore,@A (v) is nonempty if there exists &' such Py, (k) = < s >pk(1 _pyM—* (66)
and
(25l 4 -+ 165 e + (6ER] + -+ 163D < 7 (68) M1\, |
PNQ|Q7'(I€|1) = < kE—1 )pk_l(l _p)]\l—k. (67)
wheree®) = Oy o1 — e,
Since Therefore,
T8, s, W) <2(|(Cnb — eg) s + [67w]?) "
<2(||On8 — eol* K~z + [|6]1(2N + 1)7;) pi= > Puiq, ngOIL k)Pygiq, (K1)
(59) k=I+1
M M-1
choosed™ to be the LS solution of the RHS of the above = " Py g, n, (01, k)(k ] )pk_l(l )
inequality to obtain the sufficient condition (29). k=L+1
For a necessary condition, we need to lower bound (68)

Sup(s, wyen (0, s, w). Letting e = Cn6 — e, we have
If X— L requests are rejected at random with equal probabil-

K . - . .
T L ity, the probability that theéth channel is one of the rejected
(Cnb —eo)"s| = ‘z:rqsl : 60)  channels is
r=—Hn
Choose each; to minimize the angular distance of each term Py 0, ng (011, k) = % (69)

in the RHS above to the real axis, i.e., let

(61) Putting (69) in (68) and bounding;’s by a specifiedpy,

. *
a, = argimnin a, ;). )
’ & ec [#(a. <)l the desired result follows. [ |
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APPENDIX C [10]
PROOF OF THEOREM 3
Proof: The probability mass function aR; is given by  [11]
PRi (1) = PRilQi (1|0)PQi (0) + PR{|Q{ (1|1)PQi (1) [12]
= piPi- (70)
Therefore, the expected number of rejections is [13]
M M
E{Ng} =) E{R}=> Pa(1) (71)
=1 =1
X [15]
Nr=>_ pipi. (72)
=1
From (35), we also have [16]
M
N = E{Ng} = E{Q:} (73)
=1 [17]
. M [18]
No= > n (74)
. . =t [19]
Now, putting (74) in (43), we obtain
M
— [20]
Nr<p)y  pi (75)
=1

Since Np = Ng — L if Ng > L and O otherwise, the
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