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An FIR Cascade Structure for Adaptive Linear Prediction

Paolo Prandoni and Martin Vetterli

Abstract—An alternative structure for adaptive linear prediction is
proposed in which the adaptive filter is replaced by a cascade of inde-
pendently adapting, low-order stages, and the prediction is generated by
means of successive refinements. When the adaptation algorithm for the
stages is LMS, the associated short filters are less affected by eigenvalue
spread and mode coupling problems and display a faster convergence
to their steady-state value. Experimental results show that a cascade of
second-order LMS filters is capable of successfully modeling most input
signals, with a much smaller MSE than LMS or lattice LMS predictors
in the early phase of the adaptation. Other adaptation algorithms can be
used for the single stages, whereas the overall computational cost remains
linear in the number of stages, and very fast tracking is achieved.

I. INTRODUCTION

Least mean squares (LMS) and recursive least squares (RLS) are
the two fundamental algorithms in the area of adaptive filtering;
however popular and widespread, these algorithms in their simplest
forms suffer from several drawbacks and limitations. Fundamentally,
the convergence of LMS filters is marred by two main problems:
the eigenvalue spread of the correlation matrix of the input signal
and the coupling between modes of convergence. Eigenvalue spread
results in nonuniform speed of convergence for the filter values; mode
coupling results in nonmonotonic trajectories toward convergence for
the filter coefficients and in propagation of the eigenvalue disparity
effects among the different modes. RLS filters, on the other hand,
provide a decoupled route to convergence; the algorithm, however,
relies on the implicit or explicit computation of the inverse of the
input signal’s autocorrelation matrix. This not only implies a higher
computational cost, but more importantly, it can lead to irrecoverable
instability problems. Fast RLS algorithms [6]–[8] display a large
sensitivity to numerical accuracy, especially when trying to track
nonstationary signals or in the presence of noisy inputs, and in
the nonstationary case, they can yield reduced performance gains in
comparison with LMS [2]. Although some numerically stable RLS
algorithms do exist, in practical signal processing applications, the
robustness and, above all, the simplicity of LMS structures make
the latter the favored choice. In order to improve on the normal
LMS algorithm, alternative adaptive structures such as the lattice
LMS and the frequency-domain LMS are designed to counteract
mode coupling, albeit at the price of a greater misadjustment [3].
Prewhitening filters have also been proposed for applications such as
time-delay estimation and system identification [4], [5] to reduce the
consequences of eigenvalue spread.

In linear prediction problems, and especially in the case of non-
stationary signals, final misadjustment is of lesser importance with
respect to the tracking capabilities of the system. The speed of
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convergence in a linear predictor is, however, reduced by three
common circumstances.

1) The eigenvalue spread is usually large due to the high corre-
lation of the input signal.

2) High-order FIR predictors are needed to model ARMA inputs,
and it can be shown that eigenvalue spread is a nondecreasing
function of the filter length.

3) Long filters require a small step size, which in turn slows the
adaptation process.

To counteract these problems, in this correspondence, we present
an alternative structure for adaptive linear prediction based on least
squares minimization in which the predictor is formed by a cascade
of small-orderindependently adaptinglinear filters. In a cascade of
short filters, larger step sizes are allowed, and the single stages are
less affected by eigenvalue disparity effects; this results in a faster
and more agile route to convergence.

Adaptive filtering in cascade form has been addressed previously
for both FIR and IIR filters [9]–[11]; application to speech prediction
has been detailed in [12]. In these references, the cascade realization
is introduced mainly to obtain a predictor in factored form, which
allows an easier stability check for the inverse filter. The focus
of our contribution is, however, on theindependent adaptationof
the single stages (even though the advantages of the factored form
remain). Independent adaptation results in a predictor that doesnot
converge to the usual Wiener solution; nevertheless, the performance
improvements over conventional LMS filters are such that we can
justify its consideration in linear prediction problems.

II. THE CASCADE STRUCTURE

The general structure of the cascade for the one-step-ahead linear
prediction problem is shown in Fig. 1. In the cascade, each of the
M sections is an independently adapting FIR predictor of order
lk; k = 1 . . .M . Let xk(n) be the input to stagek, and letek(n) be
the corresponding prediction error; it is

ek(n) = xk(n)�
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(n) are the time-varying taps of thekth
predictor. The cascade structure is such thatxk+1(n) = ek(n);
x1(n) = x(n), where x(n) is the signal to model. The global
prediction error of the structure is the error of the last stage,eM(n).
After convergence,f (m)
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, and the global predictor
transfer function can be expressed as
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Among the several architectural variables of the system (number
of stages, number of taps per stage, update algorithms), the most
successful experiments have taken into account cascade structures of
minimally sized stages using LMS or RLS-like adaptation.

Theoretical analysis of the cascade is difficult and will not be
attempted here except for a low-order example. Computer simulations
have, however, shown that the cascade is particularly effective during
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Fig. 1. General structure of the cascade predictor.

the initial, transient phase of the adaptation and displays a higher
final misadjustment. We conjecture here (without formal proof) that
the cascade operates a linear prediction in terms ofsuccessive
refinements. Each stage is a short filter that “sees” its input signal
through an autocorrelation matrix of small size; the linear prediction
structure will therefore attempt to cancel the dominant mode of its
input signal. If the signal to be modeled contains widely separate
modes, the low-order approximation to the signal’s autocorrelation
will be sufficiently accurate; the first stage will therefore place its
zeros close to the dominant poles of the AR model, the input to the
second stage will identify the second dominant mode, and so on, with
a successful progressive refinement strategy.

Care has to be exercised, however, for certain classes of signals
such as signals with frequency spectra symmetric around�=2 (whose
autocorrelation is zero at odd lags) or signals whose generating AR
model contains clustered poles. In these cases, the small autocor-
relation matrix implicit in a low-order filter would not allow the
first stage to resolve the separate modes of the signal, leading to a
predictor stuck “in balance” between different modes. Since there
is no feedback path between stages, the first stage would pass a
fundamentally unchanged signal to the second stage, and so on,
thus propagating the problem across the whole cascade. In addition,
due to the small order of the autocorrelation matrix, the cascade
might not prove effective in noise-reduction applications such as line
enhancement, in which the SNR conditions are markedly adverse.
This suggests that the most useful application for the cascade is that
of a “startup engine” for a global gradient predictor as in [9] or in a
master–slave configuration as in [13].

A. Cascade of One-Tap Filters

The simplest form of the cascade predictor filter is composed of
one-tap stages; of course, this structure will generally be inadequate
for general input signals since the resulting prediction filter has only
strictly real zeros. Surprisingly, however, the speed of convergence of
the cascade filter with LMS adaptation is such that its initial MSE is
usually smaller than those of equivalent-order LMS and lattice LMS
predictors. In addition, it is instructive to analyze the behavior of this
structure, which is partly tractable in analytical form.

In the cascade of one-tap filters, for each stage,lk = 1; if we
assume convergence toward the Wiener solutionfor the single stages,
it is going to be

fk(n)!
rk(1)

rk(0)
= fk (4)

where rk(m) is the autocorrelation function forxk(n). Since
xk+1(n) = ek(n), the chain relation

rk+1(m) = 1 + f2k rk(m)� fk(rk(m� 1) + rk(m+ 1)) (5)

holds. The overall prediction error coincides witheM(n); defining
Jk = E[e2k(n)] = rk+1(0) and using (5) form = 0, we have

Jk = Jk�1 � (r2k(1)=Jk�1) � Jk�1 so that the final MSE is a
nonincreasing function of the number of stages.

For a two-stage cascade filter, exact expressions for the filter values
can be derived. This is, of course, a very simple example, but it is
one in which direct comparison of the cascade filter and the Wiener
solution is manageable. LetF � = [1 �c�1 �c

�

2]
t be the prediction

error filter as given by the Wiener solution of the linear prediction
problem for a two-tap filter. The normal equations yield

c�1 =
rx(1)[rx(0)� rx(2)]

r2x(0)� r2x(1)
(6)

c�2 =
rx(0)rx(2)� r2x(1)

r2x(0)� r2x(1)
: (7)

Let F = [1 �c1 �c2]
t be the tap values of the equivalent filter for

the cascade predictor after convergence, that is,c1 = f0 + f1 and
c2 = �f0f1. Using (4), we obtain

c1 = c�1; (8)

c2 = (rx(1)=rx(0))
2c�2 = �2c�2: (9)

The filter taps thus converge to a biased version of the optimal filter;
in this case, the bias affects the second coefficient as a function of
the correlation of the signal; it is always� � 1 with larger values
for signals with a narrow power spectrum.

These results can be used to verify experimentally the performance
of the cascade structure. Consider a stationary processx(n) obtained
by filtering unit variance Gaussian white noise through a two-pole
filter H(z) = 1=[(1 � �ej�z�1)(1 � �e�j�z�1)]; the eigenvalue
spread for the2�2 correlation matrix is, in this case,� = (1+�2+
2� cos �)=(1+ �2 � 2� cos �), yielding increasing values for� ! 0.
The bias factor for the second coefficient of the cascade predictor
is � = 2� cos �=(1 + �2); ideally, when� ! 1 and � ! 0, the
performance of the cascade should prove superior and largely immune
from effects deriving from either the large eigenvalue spread and
the mode coupling. Indeed, the simulations shown in Fig. 2 confirm
these predictions. In the experiments,� = 0:95, and � = �=20;
the filter coefficients are updated using the standard LMS equations
[1] with the step size chosen in both normal and cascaded filters to
maximize the speed of convergence.1 The graphs show the results
of an ensemble average over 100 trials for 2000 iterations; Fig. 2(a)
displays the trajectories ofc1(n) andc2(n) for a two-tap LMS filter,
a lattice LMS, and the cascade LMS; the Wiener values are shown
by the dotted lines. Fig. 2(b) shows the mean-square errors for the
same three filters. The superior performance of the cascade predictor
confirms the expected results.

B. Cascade of Two-Tap Filters

A less-constrained building block than the one-tap filter is needed
to approximate complex poles (and zeros) in the generating AR(MA)

1This is achieved by increasing the step-size value until the stability limit
is reached.
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(a)

(b)

Fig. 2. Performance comparison between LMS (dashed), lattice LMS (dash-dot), and one-tap cascade LMS (solid) in predicting an AR(2) signal. (a)
Trajectories of the filter taps. (b) MSE.

model. The simplest such element for real input signals is a two-tap
filter (or, equivalently, a one-tap complex filter for complex inputs).
Unfortunately, it is hard to obtain manageable analytical results for
the resulting predictor because of the involved recursive formula for
the autocorrelation ofek(n) [equation (5) in this case depends also
on rk(m�2)]. However, as stated earlier, the main advantages of the
cascade appear in the transient phase of the adaptation rather than in
the steady-state limit. Theoretical analysis of the transient is always
extremely complex; in this correspondence, we prefer to give some
typical simulation results to illustrate the behavior of the cascade,

deferring a more detailed analysis of its convergence properties to
future research.

The update mechanism for the single sections can be the LMS algo-
rithm as before, and in this case, we will label the cascade predictor
“CLMS.” For a two-tap filter, however, the normal equations are
simple enough to be solved directly; for each stagek, the estimates
of the input autocorrelation at timen and lagm r

(n)
k

(m) can be
computed as a running estimate

r
(n)
k

(m) = �r
(n�1)
k

(m) + xk(n)xk(n�m) (10)
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(a)

(b)

Fig. 3. MSE in linear prediction problems for LMS (dotted line), lattice LMS (dashed), cascade of two-tap filters with LMS (solid) and RLS (dash-dot)
adaptation. The predicted signal is an (a) AR(6) lowpass signal and (b) ARMA signal (six poles, four zeros).

where � is a forgetting factor (close to unity). These values, for
m = 0; 1; 2, can be used with (6) and (7) to compute the filter
coefficients for alln. This adaptation algorithm is simply a direct-
form implementation of the RLS update for the single stages; it
provides an extremely fast convergence and immediate stability
monitoring but at a linear computational cost. We will label this
realization of the cascade predictor “CRLS.” The computational

complexity of the cascade structure is alwaysO(M); in this case,
the computational costs for a structure equivalent to a2M -tap filter
are5M multiplies for CLMS and10M multiplies andM divisions
for CRLS.

Fig. 3 displays, as an example, the performances of LMS, lattice
LMS, CLMS, and CRLS filters for the one-step-ahead linear predic-
tion problem; the input signals are obtained by filtering unit-variance
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Fig. 4. Speech prediction. Prediction gain for a 12-tap LMS filter (dotted line), cascade LMS (solid), and cascade RLS (dash-dot).

white Gaussian noise by the AR an the ARMA transfer function
displayed in the upper-right box. The cascade structure containsN=2
two-tap stages, whereN is the number of taps of the standard LMS
filter of reference; the step sizes are chosen as in Section II-A. The
MSE is plotted against the number of iterations, averaged over an
ensemble of 100 trials. Clearly, the CRLS results are not meant to
be compared with the LMS directly; they are displayed in the same
figure only by reason of convenience.

C. An Application: Linear Prediction of Speech

The agile behavior of the cascade structure at the onset of the
adaptation process suggests its potential in tracking nonstationary
signals such as speech. The two-tap cascade structure has indeed
been tested against a reference speech linear prediction scheme [14].
The update equation for the 12-tapc(m)(n) of the proposed FIR
predictor is

c(m)(n+1) = a�c(m) +(1�a)[c(m)(n)+�(n)e(n)x(n�k)] (11)

where

e(n) usual prediction error;
a leakage term;
�c(m) quiescent values for the filter taps.

The step size� is time varying and inversely proportional to a
running estimate of the input variance; details on the suggested values
for the prediction parameters can be found in the cited reference.
The competing cascade predictor uses the same parameters and is
composed of six stages of two-tap filters. To obtain a quantitative
measure of the differences in performance between the two systems,
the index

� =
(PC(n)� PL(n))

PL(n)
� 100 (12)

is defined, wherePC(n) andPL(n) are the time-varying segmental
prediction gains for the cascade and the system of (11), respectively.
In Fig. 4, a short speech segment is shown along with the prediction

gains over time for the original system and for the cascade, with
both LMS and RLS-like adaptation schemes. The index values are
� = 8:45 and � = 19:1 for the CLMS and for the CRLS,
respectively.

III. CONCLUSION

Even though the theoretical analysis of the cascade structure is
difficult, experimental simulations show that in many cases, the
cascade predictor displays an interesting ability to converge rapidly
to a good approximation of the optimal predictor, surpassing even
computationally more expensive structures. It circumvents many of
the fundamental problems in the convergence of LMS filters, albeit
at the price of a number of “weak spots” toward certain classes of
signals. The interest of the cascade structure is eminently practical,
for instance, as a start-up method for other kinds of global gradient
updates. In the absence of a more conclusive set of comparisons
with established applications, it is premature to judge the general
applicability of the scheme; the results presented here, however,
indicate an interesting potential of the FIR cascade structure in terms
of speed of convergence and computational efficiency.
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DCT/DST and Gauss–Markov
Fields: Conditions for Equivalence

Jośe M. F. Moura and Marcelo G. S. Bruno

Abstract—The correspondence addresses the intriguing question of
which random models are equivalent to the discrete cosine transform
(DCT) and discrete sine transform (DST). Common knowledge states
that these transforms areasymptoticallyequivalent to first-order Gauss
causal Markov random processes. We establish that the DCT and the
DST are exactly equivalent to homogeneous one-dimensional (1-D) and
two-dimensional (2–D) Gaussnoncausal Markov random fields defined
on finite lattices with appropriate boundary conditions.

I. INTRODUCTION

In this correspondence, we establish the second-order equivalence
between the discrete sine transform (DST) and the discrete cosine
transform (DCT) and arbitrary order noncausal Gauss–Markov ran-
dom fields (GMrf’s) defined on a finite lattice. We prove this by
showing that the DST and the DCT diagonalize the covariance matrix
associated with these fields. Following [1], we work with the inverse
of the covariance matrix, which is called the potential matrix, that
is highly structured; for homogeneous noncausal GMrf’s of arbitrary
order, it is given by a Toeplitzcanonical matrix plus a boundary
matrix.

Section II expresses the Toeplitz component of the potential matrix
as matrix polynomials that are diagonalizable by either the DST or the
DCT plus a perturbation matrix. Section III shows that for a given
arbitrary order one-dimensional (1-D) GMrf, particular choices of
boundary conditions (bc’s) lead to a boundary matrix that cancels
the perturbation term in the expansion of the Toeplitz canonical
matrix. The final result is then an overall potential matrix that is
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diagonalizable by either the DST or the DCT. Results are extended
to two-dimensional (2-D) GMrf’s in Section IV using the Kronecker
product. The same techniques can be used to show similar results for
the other sinusoidal transforms introduced in [2].

II. NOTATION AND PRELIMINARIES

Let e1 = [1 0 � � � 0]T and, for1 � i � N , ei be a zero vector
except for entryi, which is a 1. We define the followingN � N

matrices whose entries are zero, except as indicated:

• reflection matrixJ, with counter diagonal of ones;
• forward shiftK1, with first upper diagonal of ones;
• backward shiftK2 = K

T
1 , with lower diagonal of ones;

• the powers of the shift operatorsKi
1 andKi

2, 1 � i � N � 1,
with the ith-upper, or, respectively,i-lower, diagonal of ones;

• F0 = 0, and symmetric matricesFi = J(KN�i
1 + K

N�i
2 ),

0 � i � N � 1, with the (i � 1)th lower and uppercounter
diagonals of ones;

• H = K1+K2, with the first upper and lower diagonal of ones;
• H is like H, with, in addition, the entries (1, 1) and (N; N ),

which are also ones.

Eigenstructure ofH andH: MatricesH and H are symmetric
tridiagonal matrices. Their eigenstructure is well known, e.g., [3].
The eigenvectors ofH are the basis vectors of the DST, and the
eigenvectors ofH are the basis vectors of the DCT. In other words,
their eigenvectors are the rows of the orthogonal transform matrices
S andC for the DST and DCT, respectively, which are defined as

Skn =
2

N + 1
sin

�(k + 1)(n+ 1)

N + 1
0�k; n�N�1

(1)

Ckn =

1

N
; k = 0; 0 � n � N � 1

2

N
cos

�(2n+ 1)k

2N
; 1 � k � N � 1

0 � n � N � 1.

(2)

Toeplitz Matrices: We decompose a banded symmetricN � N

Toeplitz matrix as

8m � N : T = b1I+ b2(K1 +K2) + b3(K
2
1 +K

2
2) + � � �

+ bm(Km�1
1 +K

m�1
2 ): (3)

Powers[Ki�1
1 +K

i�1
2 ]: The following lemma relates(Ki

1+K
i
2)

to the powers ofHi and ofHi.
Lemma II.1: Let F�1 = F0 = 0 andFi, i � 1 be defined as

before. Then

0 � i � N � 1: K
i
1 +K

i
2 = Pi(H) + Fi�1 (4)

where P0(H) = 2I, and Pi(H), 1 � i � N � 1 are matrix
polynomials inH

i even: Pi(H) = H
i
� iH

i�2
� �

i
1H

i�4
� � � � � �

i
(i�2)=2I (5)

i odd: Pi(H) = H
i
� iH

i�2
� �

i
1H

i�4
� � � � � �

i
(i�3)=2H: (6)

Similarly

0 � i � N � 1: K
i
1 +K

i
2 = Qi(H)� Fi (7)

where Q0(H) = 2I and Qi(H), 1 � i � N � 1 are matrix
polynomials inH

i even: Qi(H) = H
i
� iH

i�2
� �

i
1H

i�4
� � � � � �

i
(i�2)=2I (8)

i odd: Qi(H) = H
i
� iH

i�2
� �

i
1H

i�4
� � � � � �

i
(i�3)=2H: (9)
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