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€15, 22, DEINg N (0, 2), thel,-periodogram does not perform much Structural stability of theautocorrelation methods a well-known

worse than the standadd-periodogram. result. Because the NEM is positive definite and Toeplitz, the proof
can be identified to that of the stability of the prediction error
V. CONCLUSIONS filter in the given covariancecase [3]. Thepost-windowedapproach

is also known to be structurally stable [4], although the associ-

A new type Of. the periodogram is develgped for observatlor}jlsted NEM is not Toeplitz. With regard to other methods, such as
contaminated by impulse random errors having an unknown han 2 covariance methadthe modified covariance methpdind the
tailed error distribution. A nonquadratic residual loss function us ewindowed methods], the lack of structural stability is also

for a fitting of observations is a key point tha’t separates the n V(V,knowledged. On the other hand, the question of structural stability
periodogram from the standard one. The Huber’s minimax robust SFgfnains open for some other methods, such as sineothness
tistics are applied for a choice of this residual function. The formul%sﬁors long autoregressive metharf Kitaga{wa and Gersch [6]. In
for the asymptotic bias and variance of the rohWsperiodogram are '

btained. The simulati . for t iod q rat addition, in the case akeighted least squares methotise effect of
obtained. The simulation given for tie-periodogram demonstrates , forgetting factor on stability is unknown. In nearly all cases but the
a radical improvement in the quality of the periodogram.

autocorrelation approach, the NEM is still positive (semi)definite,
but it is not Toeplitz. The main contribution of the paper is to
show that positive definite normal equation matrices still provide
The author would like to thank the two anonymous referees fgfabl_e -predic_ti_o n filter_s, prqvided that_ the as_socialﬁxp_lacement
their helpful comments. matrix is posn!\(e semldef!nlte. Then, in the IlghF of thIS. property,
structural stability of classicdéast squares methods examined (or
reexamined).
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J(a) = a'Ma 1)
be a quadratic criterion to be minimized with respect to the vector
of prediction parametera = [a;,...,ap]". Let us introduce the

- o following partition for M:
Structural Stability of Least Squares Prediction Methods :
o . =t @
Jerdme Idier and Jean-Fraois Giovannelli r R
so that the minimum of/(a) is reached by the prediction vector
a = R'r.

Abstract—A structural stability condition is sought for least squares ) o . -
linear prediction methods in the given data case. Save the Toeplitz case, Our first contribution is to propose a simple condition on the
the structure of the normal equation matrix yields no acknowledged structure of matrix3/ to ensure the stability of the allpole filter

guarantee of stability. Here! a new sufficient condition is provided, and defined bya. Equivalently, the issue is to guarantee that the roots of
several least squares prediction methods are shown to be structurally the monic polynomial

stable.

P
. INTRODUCTION A=) 220~ I‘Z“kzp - 3
This correspondence addresses stability conditions of linear pre- o -
diction filters in thegiven datacase. A simple condition of strict /Ié Within the unit circle.
stability of the prediction filter is proposed, which applies to least
squares estimates. Whereas general stability tests [1], as wellAasSufficient Condition
simpler sufficient conditions [2], are known to apply to the estimated For any square matri§) of sizen x n, let us denote, respectively,
predictor itself, the proposed condition applies to the normal equatigf [, |9, and Q] as the northwest, southeast, northeast, and south-
matrix (NEM). As a consequence, it shows that some least squaj@sst matrices of sizén—1) x (n—1) extracted fron(). According to
methods arestructurally stable i.e., that they ensure the predictorsych a notation, the matrik introduced in (2) is nothing budZ, and
stability for any data sequence. o
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Theorem 1: Let M be a positive definite matrix. Then, with theThis provides a simple alternative to (7) to conclude tAahas no
notations of (2) and (4% = R~ 'r defines a stable prediction filter roots outside the unit circle, but it does not prove that the roots are

if A > 0. strictly interior.
Proof: Let A be a monic polynomial of degreB, and letzo Remark 3: The condition A > 0 is clearly too restrictive:
stand for one of its roots Positivity of af M e could be required for “innovation-type” vectors

a = [1 | —a*]* only. On the other handA > 0 depends on the
value of the upperleft entry, whereas the estimate = (M) 'r
does not depend on it. Actually, it can be shown that the conditions
of Theorem 1 can be relaxed under the following fofd: > 0 and
where B is a monic polynomial of degre® — 1. In addition, let A > 0, whereA = A, save that'a is the upper-left entry of\.
Yet, such broader conditions are not necessary, whereas they do not
31 (2) = (2 = z0/|20]) B(2) 6) enjoy the same simplicity as the or_iginai_conditio_ns of Theorem 1.
Example 1—Toeplitz Casdf matrix M is Toeplitz, thenA = 0,
and (8) boils down to the simpler forni(a) = |z|*.J(a). It is
interesting to notice that in the given covariance case, the latter
° relation has a direct counterpart in terms of mean-squared prediction
prediction vectors corresponding té, B, and A, respectively, in error, which classically ensures the stability of the prediction error
conformity with the notation introduced in (3). filter [3].
In terms of innovation vectors, (5) reads Example 2—Diagonal Caself matrix M is diagonal, the condi-
tions of Theorem 1 are fulfilled for any increasing series of positive

A(z) = (2 — 20)B(2) (5)

be the polynomial obtained by shifting onto the unit circle. Finally,
let us denoter, 3, and &, anda, b anda as the innovation and

diagonal coefficients. This is a trivial example of a non-Toeplitz
*= {5} T {E} canonical matrix.
Example 3—Mixed Caselt is easy to check that the set of canon-
which provides the following expression for (1): ical matrices forms a convex cone. As a consequence, a positive

definite Toeplitz matrix whose diagonal entries are augmented by
any increasing positive sequence remains canonical.

Viewed as new possibilities of testing stability, the conditions of
Theorem 1 or the broader conditions of Remark 3 are only of moder-

J(a) = B" (M + |z0|* PI — z0]M — 25 M) 3.

In the same way, (6) yields ate interest since testing the positivity of a matrix is not simpler than
directly testing the stability of the estimated predictor with a standard
. - o .,
o ot AF_ 20 o % 5w stability test. Moreover, such conditions are only sufficient, and they
(a) =6 <M + M | zo] M |z0|MI)ﬁ are mainly restricted to normal equation approaches. Nonetheless,

they provide a new tool for the study sfructural stabilityfor some
and a combination of the latter two equations provides the followirgediction methods, as shown in the following section.
result:
I1l. A PPLICATION TO LEAST SQUARES
J(a) = el P8Izl + (J(;) — ,BT(LW'F M))B)|z0| + ﬁiMﬁ_ PREDICTION ESTIMATION METHODS

Since neither/ (&) nor 3 depend orjzo|, .J(a) is a quadratic function A Basic Cases

of |z0|. Moreover, sincél is positive,[} is also positive, and (a) The most classical ieast squares predicti)on estimation _methods
passes through a unique minimum Bn. It is easy to check that ~correspond to quadratic form#(a) = [ X«|*. By construction,
the normal matrixM = X'X is positive semidefinite, and the
I T(a data matrixX differs according to the windowing assumption. The
OJ(a) o + X .
I =J(a)+B8'A8 (7)  four classical cases correspond to theocorrelation methodAC),
Ol lzo1=1 the post-windowedmethod (POST), theovariance methodCOV),

o ) N ) and theprewindowed metho@PRE) [5]. Simple calculations yield,
which is strictly positive. As a function ofz|, we can conclude regpectively

that J(a) is strictly increasing for anyzo| > 1. Hence, its unique

minimum is necessarily reacheatrictly insidethe unit circle. Then, Aﬁgfr 0 .t
as a function ofa, since M is positive,.J passes thrqugh a unique icov _:X)iijt(P_ oxt
minimum that is necessarily achieved for a polynomiahith all its APRE _ohy TN
roots within the unit circle. O : T TXNEN
In the following, the matrixA/ will be said to becanonicalwhen wherex, £ [Zn,..., a;n,},ﬂ]t, Obviously, matrixA/*€ is canon-
the conditions of Theorem 1 are fuffilled. ical; given Remark 1MT95T s also canonical ifxp # 0. On

Remark 1: The conditions of Theorem 1 ate > 0 andA > 0, the other hand, neithed“®Y nor MFRE are canonical (unless
but the slightly modified conditiond/ > 0 and A > 0 are also xy = axp, with |a] < 1, or xp = 0, respectively). In fact,
sufficient, as is apparent from (7) (note that> 0 = M > 0). the existence of counterexamples shows that the covariance and the
Remark 2: Let A(z) = (z — 1/24)B(=) the polynomial obtained prewindowed methods are not structurally stable [5].
by “reflecting” zo with respect to the unit circle, and lat be the
corresponding prediction vector. Then, it is easy to show that  B. Regularized Methods

Kitagawa and Gersch [6] have proposedmoothness priors long

J(a) = |20’ J(8) = (|2o° = )BT AB. (8) autoregressive methoavhich is based on a penalized least squares

20
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criterion based on the prewindowed approach define 2" = diag{y" " }x=1,...
andT$°Y = diag{y" ~*}r=r...~—1 in the covariance case, with

P
: . : oL 0 < v < 1. Then, we can deduce
Tiit (@) = a' MM a+ > pHag L

p=1

©) |
AR = (1 - )M

Y

cOov ) CcOov N—P_x _t * t
Aﬂ’, = (1 - ”))Ml -+ Y XpXp —XNXN-

(10a)
where is a regularization parameter, ahds the so-calledmooth- (10b)
ness order The justification stems from the Parseval’s relation [6]

1/2
/[1ﬁ
Criterion (9) can be put into the form of (1), which yields

MEEE = MY 4 X diag{p**}p=o.... .

As a consequence, structural stability is preserved by the adaptative
version of the autocorrelation method. In the same way, this could be
shown for the adaptative postwindowed method. On the other hand,
the adaptative version of the covariance method is not guaranteed to
be structurally stable. However, from (10b), it becomes stabte if

is chosen such as

(1= )k M7 sen 4477

2 P

df _ (271_)'2#, szk(l/i-

p—1

d""’A(cQ'v’"f)
df*

t 2 t 2
xNxP| > |xNxN| .

The same regularization technique applies to the other windowing
alternatives. In particular, the regularized form of the autocorrelation IV.~ ConcLusion
method has been studied in [8] in the context of Doppler spectralin the framework of least squares prediction in the given data
analysis. Since the associated NEWIZSY has the mixed structure case, the estimated prediction vectois the solution of a normal
of Example 3, we can conclude that tregjularized autocorrelation equation. In order to computa, it is a classical result that the
methodis structurally stable for any smoothness ordep> 0 and complexity of the appropriate generalized Levinson algorithm linearly
any A > 0. Furthermore, it remains stable if the penalizing ternncreases with respect to the distance of the normal equation matrix to
incorporates several terms corresponding to different smoothn@seplitz, i.e., the rank of the displacement matrix [7]. In this paper, we
orders. Finally, the smoothness order need not be restricted to entia&e shown that the positive definiteness of the displacement matrix
values. For instance, the canonical matrix obtained o= 1/2  ensures that the estimated prediction filter is stable (provided that the
has a null second-order displacement rank [7], which is a potentialtgrmal equation matrix is also positive definite). This result provides
interesting property with a view to fast inversion. a unifying sufficient condition that proves that some classical least

The following corollary shows that the original regularized prewinsquares prediction methods are structurally stable: the autocorrelation
dowed method of Kitagawa and Gersch becomes structurally stabiethod, the postwindowed method, and the autocorrelation version
beyond a certain level of regularization. Similar results can be derivefl the regularized method proposed by [6]. It also provides a
for the regularized versions of the covariance and modified covariargimple lower bound on the regularization parameter for the original
methods. (prewindowed) version to be structurally stable.

Corollary 1: For any & > 0, MEEE
S e/ = (0 = 1)*).

Proof: Matrix MEEF is positive definite. Its displacement ma-
LRE — AD — xixY, with D = diag{p** — (p —

1)2%Y,1. p. From [9, Th. 32, p. 45]

is canonical if A >
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