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"1s; "2s beingN(0; 2), the l1-periodogram does not perform much
worse than the standardl2-periodogram.

V. CONCLUSIONS

A new type of the periodogram is developed for observations
contaminated by impulse random errors having an unknown heavy-
tailed error distribution. A nonquadratic residual loss function used
for a fitting of observations is a key point that separates the new
periodogram from the standard one. The Huber’s minimax robust sta-
tistics are applied for a choice of this residual function. The formulas
for the asymptotic bias and variance of the robustM -periodogram are
obtained. The simulation given for thel1-periodogram demonstrates
a radical improvement in the quality of the periodogram.
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Structural Stability of Least Squares Prediction Methods

Jérôme Idier and Jean-Fran¸cois Giovannelli

Abstract—A structural stability condition is sought for least squares
linear prediction methods in the given data case. Save the Toeplitz case,
the structure of the normal equation matrix yields no acknowledged
guarantee of stability. Here, a new sufficient condition is provided, and
several least squares prediction methods are shown to be structurally
stable.

I. INTRODUCTION

This correspondence addresses stability conditions of linear pre-
diction filters in thegiven datacase. A simple condition of strict
stability of the prediction filter is proposed, which applies to least
squares estimates. Whereas general stability tests [1], as well as
simpler sufficient conditions [2], are known to apply to the estimated
predictor itself, the proposed condition applies to the normal equation
matrix (NEM). As a consequence, it shows that some least squares
methods arestructurally stable, i.e., that they ensure the predictor
stability for any data sequence.
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Structural stability of theautocorrelation methodis a well-known
result. Because the NEM is positive definite and Toeplitz, the proof
can be identified to that of the stability of the prediction error
filter in the given covariancecase [3]. Thepost-windowedapproach
is also known to be structurally stable [4], although the associ-
ated NEM is not Toeplitz. With regard to other methods, such as
the covariance method, the modified covariance method, and the
prewindowed method[5], the lack of structural stability is also
acknowledged. On the other hand, the question of structural stability
remains open for some other methods, such as thesmoothness
priors long autoregressive methodof Kitagawa and Gersch [6]. In
addition, in the case ofweighted least squares methods, the effect of
a forgetting factor on stability is unknown. In nearly all cases but the
autocorrelation approach, the NEM is still positive (semi)definite,
but it is not Toeplitz. The main contribution of the paper is to
show that positive definite normal equation matrices still provide
stable prediction filters, provided that the associateddisplacement
matrix is positive semidefinite. Then, in the light of this property,
structural stability of classicalleast squares methodsis examined (or
reexamined).

II. CONDITIONS OF STABILITY

A. Problem Formulation

LetM be a positive definite matrix of given size(P+1)�(P+1)
defined as a function of the complex-valued data sequencex =
[x1; . . . ; xn; . . . ; xN ]t. Let = [1 j �at]t and

J(a) = y
M (1)

be a quadratic criterion to be minimized with respect to the vector
of prediction parametersa = [a1; . . . ; aP ]

t. Let us introduce the
following partition for M :

M =
� r

y

r R
(2)

so that the minimum ofJ(a) is reached by the prediction vector
â = R�1r.

Our first contribution is to propose a simple condition on the
structure of matrixM to ensure the stability of the allpole filter
defined byâ. Equivalently, the issue is to guarantee that the roots of
the monic polynomial

A(z) z
P �

P

k=1

akz
P�k

: (3)

lie within the unit circle.

A. Sufficient Condition

For any square matrixQ of sizen�n, let us denote, respectively,
Qj; jQ; jQ; andQj as the northwest, southeast, northeast, and south-
west matrices of size(n�1)�(n�1) extracted fromQ. According to
such a notation, the matrixR introduced in (2) is nothing butjM , and

� jM �Mj (4)

is the displacement matrix ofM , whose rank defines the distance
from Tœplitz matrices [7]. The following result shows that the
positivity of the displacement matrix plays a specific role with regard
to the stability of the estimated prediction filter.

1053–587X/98$10.00 1998 IEEE



3110 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 11, NOVEMBER 1998

Theorem 1: Let M be a positive definite matrix. Then, with the
notations of (2) and (4),̂a = R�1r defines a stable prediction filter
if � � 0.

Proof: Let A be a monic polynomial of degreeP , and letz0
stand for one of its roots

A(z) = (z � z0)B(z) (5)

whereB is a monic polynomial of degreeP � 1. In addition, let

�

A (z) = (z � z0=jz0j)B(z) (6)

be the polynomial obtained by shiftingz0 onto the unit circle. Finally,
let us denote ; ; and

�
, anda; b and

�
a as the innovation and

prediction vectors corresponding toA; B; and
�

A, respectively, in
conformity with the notation introduced in (3).

In terms of innovation vectors, (5) reads

=
0

� z0
0

which provides the following expression for (1):

J(a) = y(Mj+ jz0j
2 jM � z0jM � z?0Mj) :

In the same way, (6) yields

J(
�
a) = y Mj+ jM �

z0
jz0j

jM �
z?0
jz0j

Mj

and a combination of the latter two equations provides the following
result:

J(a) = yjM jz0j
2 + (J(

�
a)� y(jM +Mj) )jz0j+

yMj :

Since neitherJ(
�
a) nor depend onjz0j; J(a) is a quadratic function

of jz0j. Moreover, sinceM is positive,jM is also positive, andJ(a)
passes through a unique minimum on+. It is easy to check that

@J(a)

@jz0j jz j=1

= J(
�
a) + y� (7)

which is strictly positive. As a function ofjz0j, we can conclude
that J(a) is strictly increasing for anyjz0j � 1. Hence, its unique
minimum is necessarily reachedstrictly insidethe unit circle. Then,
as a function ofa, sinceM is positive,J passes through a unique
minimum that is necessarily achieved for a polynomialÂ with all its
roots within the unit circle.

In the following, the matrixM will be said to becanonicalwhen
the conditions of Theorem 1 are fulfilled.

Remark 1: The conditions of Theorem 1 areM > 0 and� � 0,
but the slightly modified conditionsM � 0 and � > 0 are also
sufficient, as is apparent from (7) (note that� > 0) jM > 0).

Remark 2: Let �A(z) = (z � 1=z?0)B(z) the polynomial obtained
by “reflecting” z0 with respect to the unit circle, and let�a be the
corresponding prediction vector. Then, it is easy to show that

J(a)� jz0j
2J(�a) = (jz0j

2 � 1) y� : (8)

This provides a simple alternative to (7) to conclude thatÂ has no
roots outside the unit circle, but it does not prove that the roots are
strictly interior.

Remark 3: The condition M > 0 is clearly too restrictive:
Positivity of yM could be required for “innovation-type” vectors

= [1 j �at]t only. On the other hand,� � 0 depends on the
value of the upperleft entry�, whereas the estimatêa = (jM)�1r
does not depend on it. Actually, it can be shown that the conditions
of Theorem 1 can be relaxed under the following form:jM > 0 and
� � 0, where� = �, save thatryâ is the upper-left entry of�.
Yet, such broader conditions are not necessary, whereas they do not
enjoy the same simplicity as the original conditions of Theorem 1.

Example 1—Toeplitz Case:If matrix M is Toeplitz, then� = 0,
and (8) boils down to the simpler formJ(a) = jz0j

2J(
�
a). It is

interesting to notice that in the given covariance case, the latter
relation has a direct counterpart in terms of mean-squared prediction
error, which classically ensures the stability of the prediction error
filter [3].

Example 2—Diagonal Case:If matrix M is diagonal, the condi-
tions of Theorem 1 are fulfilled for any increasing series of positive
diagonal coefficients. This is a trivial example of a non-Toeplitz
canonical matrix.

Example 3—Mixed Case:It is easy to check that the set of canon-
ical matrices forms a convex cone. As a consequence, a positive
definite Toeplitz matrix whose diagonal entries are augmented by
any increasing positive sequence remains canonical.

Viewed as new possibilities of testing stability, the conditions of
Theorem 1 or the broader conditions of Remark 3 are only of moder-
ate interest since testing the positivity of a matrix is not simpler than
directly testing the stability of the estimated predictor with a standard
stability test. Moreover, such conditions are only sufficient, and they
are mainly restricted to normal equation approaches. Nonetheless,
they provide a new tool for the study ofstructural stabilityfor some
prediction methods, as shown in the following section.

III. A PPLICATION TO LEAST SQUARES

PREDICTION ESTIMATION METHODS

A. Basic Cases

The most classical least squares prediction estimation methods
correspond to quadratic formsJ(a) = kX k2. By construction,
the normal matrixM = XyX is positive semidefinite, and the
data matrixX differs according to the windowing assumption. The
four classical cases correspond to theautocorrelation method(AC),
the post-windowedmethod (POST), thecovariance method(COV),
and theprewindowed method(PRE) [5]. Simple calculations yield,
respectively

�AC = 0

�POST = x
?

Px
t

P

�COV = x
?

Px
t

P � x
?

Nx
t

N

�PRE = �x?Nx
t

N

wherexn [xn; . . . ; xn�P+1]
t. Obviously, matrixMAC is canon-

ical; given Remark 1,MPOST is also canonical ifxP 6= 0. On
the other hand, neitherMCOV nor MPRE are canonical (unless
xN = �xP , with j�j � 1, or xP = 0, respectively). In fact,
the existence of counterexamples shows that the covariance and the
prewindowed methods are not structurally stable [5].

B. Regularized Methods

Kitagawa and Gersch [6] have proposed asmoothness priors long
autoregressive method, which is based on a penalized least squares
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criterion based on the prewindowed approach

JPREKG (a) = yMPRE + �

P

p=1

p2ka2p (9)

where� is a regularization parameter, andk is the so-calledsmooth-
ness order. The justification stems from the Parseval’s relation [6]

1=2

�1=2

dkA(e2i�f )

dfk

2

df = (2�)2k
P

p=1

p2ka2p:

Criterion (9) can be put into the form of (1), which yields

MPRE
KG =MPRE + � diagfp2kgp=0;...;P :

The same regularization technique applies to the other windowing
alternatives. In particular, the regularized form of the autocorrelation
method has been studied in [8] in the context of Doppler spectral
analysis. Since the associated NEMMCOV

KG has the mixed structure
of Example 3, we can conclude that theregularized autocorrelation
methodis structurally stable for any smoothness orderk � 0 and
any � � 0. Furthermore, it remains stable if the penalizing term
incorporates several terms corresponding to different smoothness
orders. Finally, the smoothness order need not be restricted to entire
values. For instance, the canonical matrix obtained fork = 1=2
has a null second-order displacement rank [7], which is a potentially
interesting property with a view to fast inversion.

The following corollary shows that the original regularized prewin-
dowed method of Kitagawa and Gersch becomes structurally stable
beyond a certain level of regularization. Similar results can be derived
for the regularized versions of the covariance and modified covariance
methods.

Corollary 1: For any k > 0; MPRE
KG is canonical if � >

P
p=1 jxN+1�pj2=(p2k � (p � 1)2k).

Proof: Matrix MPRE
KG is positive definite. Its displacement ma-

trix reads�PRE
KG = �D � x

?
Nx

t

N , with D diagfp2k � (p �
1)2kgp=1;...;P : From [9, Th. 32, p. 45]

det�PRE
KG = �p 1� ��1x?ND

�1
x
t

N

P

1

(p2k � (p� 1)2k)

and it is apparent that the condition� � x
?
ND

�1
x
t

N is necessary to
the positive semidefiniteness of�PRE

KG . Actually, it is also sufficient
since theP � 1 other conditions that express the positivity of the
minors are similar but less restrictive thandet�PRE

KG � 0.
The particular casek = 0 provides a method that has been

proposedper se in the context of linear minimum free energy
estimation by Silverstein [10]. It basically reduces to adding a
positive constant� to the main diagonal of the NEM. Obviously,
the autocorrelation version is still canonical since the NEM remains
Toeplitz, positive definite. On the other hand, the casek = 0 is
excluded from the canonicity condition of Corollary 1. Yet, it is
intuitive that such a method becomes structurally stable for large
values of�. This is actually so, since, from the sufficient condition
of stability kâk < 1=P [2], it is possible to deduce that� > krkpP
ensures that̂a defines a stable prediction filter.

C. Adaptive Versions

In order to extend least squares prediction methods to adaptative
contexts, the normal approach is to reweight the successive terms
of the criterion according to a forgetting factor. The resulting NEM
readsM = Xy�X, where� is a diagonal matrix with geometrically
increasing positive entries on its main diagonal. For instance, let us

define�AC
 = diagf
N�kgk=1;...;N+P in the autocorrelation case
and�COV
 = diagf
N�kgk=P;...;N�1 in the covariance case, with
0 < 
 � 1. Then, we can deduce

�AC

 = (1� 
)MjAC (10a)

�COV

 = (1� 
)MjCOV + 
N�Px?Px

t

P � x
?
Nx

t

N : (10b)

As a consequence, structural stability is preserved by the adaptative
version of the autocorrelation method. In the same way, this could be
shown for the adaptative postwindowed method. On the other hand,
the adaptative version of the covariance method is not guaranteed to
be structurally stable. However, from (10b), it becomes stable if

is chosen such as

(1� 
)xyNMjCOVxN + 
N�P x
t

NxP
2
> x

t

NxN
2
:

IV. CONCLUSION

In the framework of least squares prediction in the given data
case, the estimated prediction vectorâ is the solution of a normal
equation. In order to computêa, it is a classical result that the
complexity of the appropriate generalized Levinson algorithm linearly
increases with respect to the distance of the normal equation matrix to
Toeplitz, i.e., the rank of the displacement matrix [7]. In this paper, we
have shown that the positive definiteness of the displacement matrix
ensures that the estimated prediction filter is stable (provided that the
normal equation matrix is also positive definite). This result provides
a unifying sufficient condition that proves that some classical least
squares prediction methods are structurally stable: the autocorrelation
method, the postwindowed method, and the autocorrelation version
of the regularized method proposed by [6]. It also provides a
simple lower bound on the regularization parameter for the original
(prewindowed) version to be structurally stable.
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à l’Art de l’Ingénieur. Paris, France: Masson, 1986, vol. 1.

[10] S. D. Silverstein, “Linear minimum free energy estimation: A computa-
tionally efficient noise suppression spectral estimation algorithm,”IEEE
Trans. Signal Processing, vol. 39, pp. 1348–1359, June 1991.


