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Abstract

Cosine modulated �lter banks are �lter banks whose impulse responses are obta-

ined by modulating a window with cosines. Among their applications are video

and audio compression and multitone modulation. Their continuous time coun-

terpart is known as local cosine bases. While there is an extended literature on

the discrete time case, both for single and multiple overlapping, the continuous

time case has received less attention and only the single overlapping case has

been solved. This work gives a solution to the problem of continuous time local

cosine bases with multiple overlapping via a general theory that emphasizes the

deep connection between discrete and continuous time. A sampling theorem

for local cosine basis and an e�cient algorithm to compute the expansion of a

signal are also given.



1 Introduction

Cosine modulated �lter banks (CMFB) are �lter banks whose impulse responses

are obtained by modulating a window with harmonic trigonometric functions

[1, 2, 3]. Among their advantages are easy design and fast computation with an

FFT-like algorithm. The fact that they can be interpreted as a \smooth DCT,"

make them interesting for compression purposes [4, 5]. Recently they have also

found application in multitone modulation systems [6].

In discrete time, the �rst perfect reconstruction (PR) version of CMFB has

been introduced by Princen et Bradley [7]. In such a construction the �lter

length L is twice the sampling period M , giving rise to single overlapping

CMFB. The �rst result on the multiple overlapping case, more precisely for

L = 2kM , is due to Malvar [8]. In [9] Poize, Renaudin and Venier show that

it is not necessary to use cosines as modulating functions, as long as the mo-

dulating functions enjoy some type of symmetry and periodicity. All the cited

works use an algebraic approach, relying on popular signal processing tools like

z-transform and polyphase components [2].

The continuous-time case has received less attention in the signal processing

literature. The continuous-time counterpart of CMFB is known as local cosine

bases (LCB) and it has been introduced by Coifman and Meyer [10]. Such a

device has been used by Auscher, Weiss and Wickerhauser in [11] to construct

the Lemari�e and Meyer wavelet [12]. Recently, Matviyenko [13] introduced

biorthogonal LCB, showing that the dual is still an LCB, but with a di�erent

window. All the cited works consider only the single overlapping case. The only

result known to the authors for multiple overlapping in continuous time, is due

to Malvar that in [14] shows that by modulating a raised cosine, one obtains an

orthonormal basis for L2(R).

Bernardini and Kova�cevi�c in [15] explore both continuous and discrete time.

Inspired by [11], they approach the problem with a vector space point of view,

interpreting PR as a decomposition of `2(Z) (or L2(R)) into a direct sum of

subspaces of compactly supported signals. The theory presented in [15] works

both in continuous and discrete time and, like [9], relies only on symmetries,

but it is usable only in the single overlapping case.

The goal of this paper is twofold: a �rst immediate one is to give a solution to

the problem of continuous-time LCB with multiple overlapping; a second result
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is to present a general theory of LCB that emphasizes the deep connection

between discrete and continuous time. The approach is similar to the one used

in [15]: we will study LCB via the orthogonality of some subspaces of L2(R) or

`2(Z). The theory relies upon the idea of folding operator1 that has an intuitive

interpretation. Using this concept, one can deduce the constraints that a window

must satisfy in order to have PR. The idea of folding operator can be readily

extended to the discrete-time case by simple \sampling." For reasons of space,

we will develop in details only the continuous-time case, by simply pointing out

how the theory should be modi�ed in discrete time.

The outline is as follows. In Section 2 we present the notation and give the

problem statement. In Section 3 we introduce the framework that will be used in

this paper. In Section 4 we revisit the continuous time, single overlapping case

using the techniques introduced in Section 3. In Section 5 we attack the case

of arbitrary overlapping. In Section 6 we discuss the main di�erences between

continuous and discrete time and present a sampling theorem and a Mallat-

like algorithm for LCB. In Section 7 we show how to design a continuous-time

window with arbitrary smoothness. Section 8 gives the conclusions.

2 Notation and problem statement

2.1 Notation

The scalar product between two vectors f; g of vector space V will be denoted

as hf; giV or hf; gi when no confusion about the vector space can arise. For

complex signals, we will suppose the scalar product linear with respect to the

second argument, that is, hf; �gi = �hf; gi and, consequently, hf; �gi = ��hf; gi,
where �� is the conjugate of � 2 C . Sometimes we will need to write \the scalar

product between g and f translated of j." Such an operation will be expressed

by writing hf(� � j); gi. Similarly, the expression \apply the operator P to f

translated of j" will be written as Pf(� � j). Continuous and discrete-time

signals will be di�erentiated by writing their argument between parenthesis or

square brackets, respectively (e.g., f(x) or w[n]).

2.2 Problem statement

In continuous time, a local cosine basis (LCB) is made of functions

1Matviyenko [13] also introduces a folding operator, but it is slightly di�erent from ours.
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gj;k(t)
4
=
p
2w(t� j) cosk(t � j); j 2Z; k 2 N; (1)

where w(t) is a function having as support an interval [a; b] and cosk(t) is de�ned

as

cosk(t)
4
= cos

�
�(k +

1

2
)(t� 1

2
)

�
: (2)

We assumed, without loss of generality, an elementary shift step of 1. Other

steps can be obtained by scaling.

In a discrete-time cosine modulated �lter bank (CMFB), the generic basis

function has the form

gj;k[n]
4
=
p
2w[n�Nj] cosk(n=N � j + �N ); j; n 2Z; k= 0; 1; : : : ; N � 1:

(3)

with �N
4
= 1=2+1=2N . Note that in the discrete-time case one cannot normalize

the elementary step N by scaling.

If the window length a� b is less or equal to twice the elementary step, the

support of w(t) (or w[n]) overlaps only the support of adjacent windows. This

is the single overlapping case depicted in Figure 1a. If a � b is greater than

twice the elementary step, the support of w(t) intersects also the support of

non-adjacent windows and we have the multiple overlapping case, depicted in

Figure 1b.

The main objective in our study of continuous-time LCB is to �nd conditions

on w(t) that lead to functions in (1) to form an orthonormal basis for L2(R).

Similarly, in the study of CMFB, one searches for conditions on w[n] such that

the functions in (3) form an orthonormal basis of `2(Z).

3 The framework

3.1 Vector spaces characterization: continuous time

As a �rst step, it is instrumental to \collect" together the functions gj;k(t),

k = 0; 1; : : : , relative to the same translation j. Let Vj be the subspace of L
2(R)

generated by their linear combinations, that is

Vj
4
= span fgj;kgk2N: (4)

With this de�nition of Vj, orthonormality of functions gj;k can be split into two

types of orthogonality:
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� an \external" orthogonality between vector spaces Vj and Vk, j 6= k.

� an \internal" orthogonality between two functions gj;k and gj;`, k 6= `,

belonging to the same vector space Vj.

Such a separation will make the study of LCB easier. Completeness is also split

in two parts:

� \external" completeness: L2(R) = �j2ZVj ,

� \internal" completeness: functions fgj;kgk2Nform a basis for Vj .

Actually, we just need to check the external completeness, since the internal one

is automatically granted by de�nition (4).

As a second step, let us give a characterization of the functions belonging to

Vj . Note that vector space Vj is just a translated version of V0; more precisely,

f(t) 2 V0 , f(t � j) 2 Vj . Because of this, we can limit ourselves to the study

of V0.

If a function f 2 V0, then there exists a real, square summable sequence �k,

k 2 N, such that

f(t) =
X
k2N

�kg0;k(t) =
X
k2N

�kw(t) cosk(t) = w(t)
X
k2N

�k cosk(t) = w(t)s(t) (5)

that is, if f(t) 2 V0, then f can be written as the product of the window

w(t) with a function s(t)
4
=
P

k2N�k cosk(t), belonging to the space C0 4
=

span fcoskgk2N. The translated version of C0 will be called Cj . Functions in

C0 are not in L2(R); however, space C0 is an Hilbert space when endowed with

the scalar product

hs1; s2iC0
4
=

Z 1=2

�1=2
s1(t)s2(t)dt: (6)

The reason for limiting the integral in (6) between �1=2 and 1=2 stems from

the fact that every cosk(t) is symmetric around �1=2, antisymmetric around

1=2, and skew periodic with period 2, that is,

cosk(�1� t) = cosk(t) cosk(1� t) = � cosk(t) cosk(t+ 2) = � cosk(t) (7)

Because of the symmetries in (7), every function belonging to C0 is uniquely

determined by the values assumed on [�1=2; 1=2]. De�nition (6) follows from

such a fact. We can characterize C0 as follows
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Property 1. The vector space C0 is the space of the functions that are square

summable on [�1=2; 1=2] and enjoy symmetries (7).

Proof. We give just a sketch of the proof. Since functions in C0 are square

summable and periodic with period 4, they can be expressed with a Fourier

series. Skew periodicity implies that only odd harmonics are used and symmetry

around �1=2 implies that the series contains only cosines.

Since V0 = w C0, that is, V0 is a \windowed" version of C0, we obtain the

following characterization of V0.

Property 2. The vector space V0 is the space of functions that can be written

as f(t) = w(t)s(t), with s(t) 2 C0.

We will need some other vector spaces similar to C0, but di�ering in the

symmetry signs. More exactly, we will consider vector spaces

C�0
4
=

�
s(t) 2 L2([�1=2; 1=2]) : s(�1 � t) = �s(t); s(1 � t) = +s(t)

	
;(8a)

S0 4
=

�
s(t) 2 L1([�1=2; 1=2]) : s(�1 � t) = +s(t); s(1 � t) = +s(t)

	
;(8b)

S�0
4
=

�
s(t) 2 L1([�1=2; 1=2]) : s(�1 � t) = �s(t); s(1 � t) = �s(t)	 :(8c)

It is possible to prove that functions in C�0 are skew periodic with period 2,

while functions in S0 and S�0 are periodic with period 2.

We report here some useful properties enjoyed by vector spaces C0, C�0 , S0
and S�0 . The proofs can be found in Appendix A, Proofs A.1, A.2 and A.3.

Property 3. For every j 2Z, C2j = C0, and C2j+1 = C�0 .

Property 4. Every function s(t) 2 C0 is antisymmetric around 2` + 1=2 and

symmetric around (2` � 1) + 1=2, ` 2 Z. Dually, every function s(t) 2 C�0 is

symmetric around 2`+ 1=2 and antisymmetric around (2`� 1) + 1=2, ` 2Z.

Property 5. If s1; s2 2 C0 or s1; s2 2 C�0 , then s1s2 2 S0; if s1 2 C0, s2 2 C�0 ,
then s1s2 2 S�0 .

3.2 Vector spaces characterization: discrete time

The theory presented in this work does not use any particular characteristic of

continuous time and everything could be repeated also in discrete time, with

just a change of language. For sake of convenience, let us just summarize the

characterization of V0 in discrete time because we will need it in Section 6.2.
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Property 6. The vector space V0 contains the functions f [n] that can be writ-

ten as f [n] = w[n]s[n], with s[n] satisfying the symmetries

s[N � 1� n] = �s[n] s[�N � 1� n] = s[n]: (9)

3.3 The folding operators

The following operators acting on compactly supported functions of L2(R) will

prove useful.

Q+
0 f(t)

4
=
X
`2Z

f(t + 2`) + f(1 � t+ 2`)

Q�0 f(t)
4
=
X
`2Z

f(t + 2`)� f(1 � t+ 2`)

Q�0 f(t)
4
=
X
`2Z

(�1)` [f(t + 2`)� f(1 � t+ 2`)]

(10)

Operators (10) will be called folding operators. The one with the most intuitive

action is Q+
0 , whose action can be described as \folding" f(t) around the sym-

metry points 1=2+ `, ` 2Z(Figure 2). Operators Q�0 and Q�0 act like Q+
0 , but

they weight di�erently each term in the sum. It is easy to prove that the result

of operators (10) belongs to S0, S�0 and C0, respectively. Note that the weights
that each operator (10) assigns to the symmetry points 1=2+ ` match with the

weights of the corresponding vector space. The folding operators (10) will be

used to simplify scalar products, according to the following property.

Property 7. Let s(t) 2 S0 and let r(t) be a function with compact support,

then Z
R

r(t)s(t) dt =

Z 1=2

�1=2

Q+
0 r(t)s(t)dt; (11)

Similar equalities hold also for s(t) 2 S�0 and s(t) 2 C0 with operators Q�0 and

Q�0 , respectively.

Proof. We just give a graphical sketch of the proof. Figure 3 shows that one

can \fold" the left hand integral of (11) around the symmetry point 1=2 without

changing the value. Such a folding can be repeated for every symmetry point

of s(t) to obtain the right side of (11).

It is worth giving a �nite dimensional version of Property 7. Suppose one

wants to compute the scalar product hr; si between r 2 RN and s 2 C, the

vector space of \symmetric" vectors such that sk = sN�1�k, k = 1; : : : ; N
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(sk is the k-th component of s). Clearly one can compute hr; si by replacing

r with its projection on the space C. Such a projection associates to r the

vector of components (rk+ rN�1�k)=2, that is, it operates a folding of r around

(N � 1)=2. In the same spirit, one can interpret the integral in (11) as a scalar

product between r(t) and s(t) 2 S0 and Q+
0 as a projection on S0. However,

such an interpretation is not technically correct because S0 is not a subspace of
L2(R).

An intuitive appealing interpretation of (11) is shown in Figure 2. All the

\pieces" of s(t) (Figure 2a) match together when s(t) is folded. When s(t) is

folded r(t) is \drawn" with it (Figure 2b). If s(t) has antisymmetry points, r(t)

must be folded in an \anti-symmetrical way" (that is, with a change of sign).

3.4 Internal orthogonality

Let z(t) be the indicator function of the interval [�1=2; 1=2]. We will prove

internal orthogonality via the following lemma.

Lemma 1. If the window w(t) veri�es the the power-complementarity condi-

tions

Q+
0 (w

2) =
X
`2Z

w2(t � 2`) +w2(1 � t� 2`) = 1; 8t 2 [�1=2; 1=2]; (12)

then linear mapping

� : w(t)s(t) ! z(t)s(t): (13)

maps V0 into L2([�1=2; 1=2]) preserving the scalar product, that is

hw(t)s0(t); w(t)s1(t)i =
Z 1=2

�1=2

s0(t)s1(t)dt; 8s0; s1 2 C0: (14)

The action of � can be graphically described as in Figure 4. Functionw(t)s(t)

(Figure 4a) is \unwindowed" and the resulting function s(t) 2 C0 (Figure 4b) is
forced to zero outside the interval [�1=2; 1=2] (Figure 4c). It is clear from the

same �gure that � can be inverted by extending by symmetry the function in

Figure 4c to R and multiplying the result by w(t).

Since the functions fcosk(t)gk2Nform an orthonormal basis of C0, internal
orthogonality follows from (14) and (6) with s0(t) = cosk(t), s1(t) = cosj(t).

Proof of Lemma 1. To prove that (14) follows from (12), write explicitly the

scalar product hw(t)s0(t); w(t)s1(t)i
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hw(t)s0(t); w(t)s1(t)i =
Z
R

w2(t)s0(t)s1(t)dt: (15)

Since the functions s0; s1 2 C0, their product belongs to S0 (Property 5) and

one can apply Property 7 to rewrite (15) as

hw(t)s0(t); w(t)s1(t)i =
Z 1=2

�1=2

Q+
0 w

2(t)s0(t)s1(t)dt: (16)

Expression (16) is equal to (14) for every s0, s1 if and only if (12) is true.

In the single overlapping case, since the window support is [�1; 1], (12) assumes

the more usual form

w2(t) + w2(1� t) = 1 0 � t � 1=2

w2(t) +w2(�1� t) = 1 � 1=2 � t � 0:
(17)

3.5 Projection

We will search for an expression for the projection on V0 that does not depend

on the chosen basis. It is worth to spend a few words to explain why this could

be interesting. Let us start from a simpler case: a discrete-time modulated �lter

bank (cosine modulated or DFT �lter bank). Call N the sampling interval, w

the prototype �lter and let ck, k = 1; : : : ; N be the modulating functions (cosines

or complex exponentials). The basis associated with such a �lter bank is

gj;k[n] = w[n� Nj] ck[n�Nj]; j 2Z; k= 1; 2; : : : ; N: (18)

Note that in discrete time we have just a �nite number of modulating functions.

From a linear space point of view, to compute the �lter bank output at time j

corresponds to compute the scalar products

hf; gj;ki = hf; w[� �Nj]ck[� �Nj]i; k = 1; 2; : : : ; N: (19)

For the sake of simplicity, in the following, we will concentrate on the case j = 0.

With the usual scalar product of `2(Z), one can move the window w in (19) to

the same side of f to obtain

hf; g0;ki = hwf; cki; k = 1; 2; : : : ; N: (20)

Equation (20) can be interpreted as saying that the �lter bank output can

be obtained by windowing the input signal f with the prototype w and by

computing the scalar product of the result with the modulating functions.

If the window is rectangular (that is, the �lter bank implements a DCT or

a DFT), the product of the input signal with the window is the projection on
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V0 and (20) can be interpreted as two-step procedure: �rst f is projected on

V0, then the result is projected on basis vectors ck. The �rst projection is an

\external" projection and the second one an \internal" one. If the window is not

rectangular, the product with w is not a projection, since it is not idempotent.

We will see that to obtain a projection one must take one more step (folding).

To �nd the projection on V0 remember that, because of internal orthogona-

lity, the set fg0;kg forms an orthonormal basis of V0. Therefore, the projection

on V0 can be written as

P0f(t) =
X
k2N

g0;k(t)hf; g0;ki = w(t)
X
k2N

cosk(t)hf; w coski

= w(t)
X
k2N

cosk(t)

Z
R

f(x)w(x) cosk(x)dx:
(21)

Since cosk(t) 2 C0, we can apply Property 7 to rewrite (21) as

P0f(t) = w(t)
X
k2N

cosk(t)

Z 1=2

�1=2

Q�0 (wf)(x) cosk(x)dx: (22)

Remember that Q�0 (wf) 2 C0. Since cosines fcosk(t)gk2Nare an orthonormal

basis for C0, the sum in (22) is equal to Q�0 (wf) and (22) can be rewritten as

P0f(t) = w(t)Q�0 (wf): (23)

If our goal is to compute the scalar products hf; g0;ki we can exploit the iso-

morphism � between V0 and L2([�1=2; 1=2)] by simply expressing z(t)Q�0 (wf)
as a linear combination of fcosk(t)g. In discrete time this is just a DCT. This

is how the fast algorithm for discrete-time cosine modulated �lter banks works.

Indeed, such an algorithm can be described as follows

� The input signal is multiplied by the window (N products, with N the

window length) and folded (N=2 sums). This corresponds to the external

projection.

� The DCT (for which fast algorithms of complexity N logN exist) of the

resulting signal is computed. This corresponds to the internal projection.

3.6 Completeness

We will prove that completeness of LCB follows from power complementarity.

More formally,
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Property 8. If w(t) satis�es the power complementarity conditions (12) and

f(t) 2 L2(R) is orthogonal to every Vj , j 2Z, then f(t) = 0, that is,

(8j 2Z; f(t) ? Vj)) f(t) = 0; (24)

or, equivalently,

(8j 2Z; f(t � j) ? V0)) f(t) = 0; (25)

The proof of Property 8 is reported in Section 4.2 and Section 5.2, for the

single and multiple overlapping case, respectively.

In the proofs, for technical convenience, f(t) is supposed continuous. Since

the subset of continuous functions is dense in L2(R), completeness for continuous

functions implies completeness for L2(R). The proofs will use the auxiliary

signal

qt[2n+m]
4
=

8><
>:
Q�0 [w(�)f(� � 2n)] (t) if m = 0

Q�0 [w(�)f(� � (2n+ 1))] (t+ 1) if m = 1:
(26)

Since w(t+m)qt[2n+m] is the projection of f(t� (2n+m)) evaluated in t+m,

signal f is orthogonal to every Vn if and only if qt[n] = 0 for every t 2 [�1; 0],
n 2Z. We will prove that in such a case f = 0. To have an intuitive reason for

the choice of the signal (26), write explicitly the expression for Q�0 in (26) to

obtain, after some algebra,

qt[2n]=
X
`2Z

(�1)` [f(t + 2`� 2n)w(t+ 2`) � f(1 � t+ 2` � 2n)w(1� t + 2`)](27a)

qt[2n+1]=
X
`2Z

(�1)` [f(t + 2`� 2n)w(1 + t+ 2`) + f(1 � t+ 2`� 2n)w(2� t+ 2`)](27b)

Interpreting (27) with the help of Figure 5, one can see that the computation

of qt[n] requires always the same set of values of ff(t + 2i); f(t + 2i + 1)gi2Z,
for every n. Such a fact will be exploited in Section 4.2 and 5.2 to write (27) as

a PR �lter bank and prove the completeness.

4 Single overlapping revisited

In this section we brie
y revisit the single overlapping case [10] to show how the

framework presented in Section 3 can be used.

4.1 External orthogonality

We need to check Vj ? Vk, j 6= k, j; k 2Z. Because of the support restriction,
only Vj ? Vj+1 needs to be checked, which by translation invariance reduces
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to V0 ? V1. We will prove that external orthogonality follows from window

symmetry w(t) = w(�t). A simple consequence of window symmetry that will

be exploited in the following is that w(t � 1) = w(1 � t), that is, translating

w(t) is equivalent to taking its symmetric around 1=2.

Figure 6 shows the computation of the scalar product of a function f0(t) 2 V0

with a function f1(t) 2 V1. The proof of the orthogonality between V0 and V1

becomes immediate from symmetry considerations by rearranging Figure 6 as in

Figure 7. It is worth to summarize how the scheme of Figure 7 works, because

the same reasoning holds also for multiple overlapping and odd shifts.

1. Window w(t) is even; this implies that w(t � 1) can be obtained via a

symmetry around 1=2 and that the product w(t)w(t � 1) is symmetric

around 1=2.

2. The function s1(t) 2 C1 = C�0 (Property 3), while s0(t) 2 C0. Therefore,
they have di�erent symmetries around 1=2 and their product is antisym-

metric.

3. The overall product w(t)w(t � 1)s0(t)s1(t) is antisymmetric and its area

is zero.

4.2 Completeness

As anticipated, we will prove completeness by showing that if the auxiliary

signal qt[n] introduced in (26) is identically zero, then f = 0.

Proof of Property 8 (single overlapping). By using in (27) the fact that the win-

dow support is [�1; 1] and the window symmetry one obtains

qt[2n+m] =

8><
>:
f(t � 2n)w(t) + f(�1 � t � 2n)w(�1� t) if m = 0

f(t � 2n)w(�1� t)� f(�1 � t� 2n)w(t) if m = 1:
(28)

Rewriting (28) in matrix form gives2
4 qt[2n]

qt[2n+ 1]

3
5 =

2
4 w(�1� t) w(t)

�w(t) w(�1 � t)

3
5
2
4 f(�1 � t� 2n)

f(t � 2n)

3
5 : (29)

Because of the power complementarity conditions, the matrix in (29) is invertible

8t 2 [�1; 0]. This implies that if qt[n] � 0, then2
4 f(�1 � t� 2n)

f(t � 2n)

3
5 =

2
4 0

0

3
5 ; 8t 2 [�1; 0]; n 2Z: (30)
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Since for every t0 2 R there exist t 2 [�1; 0] and n 2Zsuch that t0 = t� 2n or

t0 = �1� t� 2n, equation (30) implies f(t) = 0, 8t 2 R.

5 Multiple overlapping in continuous time

Now we attack an original construction, namely the case of LCB with multiple

overlapping.

5.1 External orthogonality

In the case of multiple overlapping, window symmetry still leads to external

orthogonality, but only for odd translations. Indeed,

� if the window is even, one can write w(t � (2j + 1)) = w((2j + 1) � t),

that is, a translation of 2j+1 gives the same result of a symmetry around

(2j+1)=2. Therefore, the product w(t)w(t�(2j+1)) is symmetric around

(2j + 1)=2 = j + 1=2.

� The product s0(t)s1(t) is antisymmetric around (2j+1)=2 since s0(t) 2 C0
and s1(t) 2 C2j+1 = C�0 .

� The approach of the single overlapping case still works: w(t)w(t�(2j+1))

is symmetric around j+1=2, while s0(t)s1(t) is antisymmetric. Therefore,

the overall product is antisymmetric and the two spaces are orthogonal.

We can summarize such a fact in a property.

Property 9. If w(t) = w(�t), then V0 is orthogonal to V2j+1, for every j 2Z.

What happens for a translation of 2j? For even translations, both s0(t) and

s1(t) belong to C0; therefore, s0s1 2 S0 is symmetric around `+1=2, ` 2Z, and
the approach of the single overlapping case cannot be applied anymore.

How can we obtain orthogonality? The answer is contained in the following

property.

Property 10. Vector spaces V0 and V2j, j 2 Z, j 6= 0, are orthogonal if and

only if the window w(t) is self-orthogonal in the following sense

Q+
0 (w(�)w(� � 2j))

=
X
`2Z

w(t+ 2`)w(t+ 2`� 2j) +w(1� t+2`)w(1� t+ 2`� 2j) = 0; 8t 2 R:

(31)
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Proof. If V0 has to be orthogonal to V2j, the following must holdZ
R

w(t)w(t� 2j)s1(t)s2(t)dt = 0; 8s1(t) 2 C0; s2(t) 2 C2j = C0: (32)

In (32), s1(t)s2(t) 2 S0 (Property 5) and from Property 7 one obtainsZ 1=2

�1=2

�Q+
0 (w(�)w(� � 2j))

�
(t)s1(t)s2(t)dt = 0; 8s1(t); s2(t) 2 C0: (33)

Equation (33) is veri�ed if and only if (31) is true.

Equation (31) is not a continuous-time condition, but a continuum of discrete-

time conditions. To see it more clearly, de�ne the following discrete-time signal

vt[2n+m]
4
=

8><
>:
w(t+ 2n) if m=0

w(1� t+ 2n) if m=1:
(34)

Figure 8a shows the construction of signal vt[n], for t = 0:4. The values of

w(t) used to construct vt[n] are marked with little circles and the corresponding

samples of vt[n] are written next to them. Figure 8b shows a chart that can be

used to compute the positions of samples vt[n]. Figure 8b can also be used to

�nd, given t, a couple (t0; n), t0 2 [�1=2; 1=2], n 2Z, such that w(t) = vt0 [n].

Such a fact will be used for window design. By using (34), in (31) one obtains

X
`2Z

vt[2`]vt[2`� 2n] + vt[2`+ 1]vt[2`+ 1� 2n] = hvt[�]; vt[� � 2n]i = �(n); n 6= 0:

(35)

Note that (35) also includes the power complementarity condition hvt[�]; vt[�]i =
1. By interpreting equation (35) one can state the following property.

Property 11. The window w(t) enjoys power-complementarity and self-orthogonality

if and only if, for each t, vt[�] is a branch of a two-channel PR �lter bank.

Property 11 is interesting because two channel PR �lter banks have a nice

parameterization. Such a fact will be exploited in the section relative to window

design.

It is worth to point out two properties of vt[n] that come directly from

its de�nition (the �rst equality requires window symmetry) and that will be

exploited in the following

v�t[�n] = vt[n] (36a)

v1�t[2n+m] = vt[2n+ (1�m)]: (36b)

13



5.1.1 Other uses of the folding operator

In this section we show some other applications of the folding operator.

Window symmetry is a su�cient, but not necessary, condition for external

orthogonality for odd translations. To obtain a necessary condition one can

prove, with a reasoning similar to the one used in the case of even translations,

that external orthogonality for odd translations is equivalent to Q�0 w(t)w(t �
(2j + 1)) = 0 that can be rewritten as

X
`2Z

vt[2`]v�t[2j + 2` � 1]�
X
`2Z

vt[2`+ 1]v�t[2j + 2`]

=
X
`2Z

(�1)`vt[`]v�t[` + 2j � 1] = 0; 8j 2Z: (37)

Since every vt[n] is a branch of a PR �lter bank, equation (37) implies that

u[n]
4
= (�1)nv�t[n�1] must be the conjugate (in a PR sense) of vt[n]. Window

symmetry clearly ful�lls such a condition.

If LCB's are used for multitone modulation [6] the window at the receiver is

a distorted version ~w(t) of the window at the transmitter w(t). Because of this,

one can loose external orthogonality and this causes intersymbol interference.

To measure the deviation from orthogonality one could use the norm of the

folded product, kQ+
0 [w(t) ~w(t � 2j)]k. More generally, by using Property 7 and

the Cauchy-Schwarz inequality one can prove the following property.

Property 12. Let s1(t) 2 C0 and s2(t) 2 Cj, j 2 Z, and let w1(t), w2(t) be

two windows, then

max
ks1s2k=1

jhw1s1; w2s2ij =

8><
>:
kQ+

0 (w1w2)k if j even

kQ�0 (w1w2)k if j odd:
(38)

5.2 Completeness

Let f(t) 2 L2(R) be a continuous function and de�ne qt[n] as in (26). We want

to prove that qt[n] = 0 for all t and n, implies f = 0.

Proof of Property 8 (multiple overlapping). Observe Figure 5: when f(t) is transla-

ted, values f(t + 2` � 2n) and f(1 � t + 2` � 2n) fall alternatively under the

in
uence of two di�erent sets of window values. This suggests that qt[n] can be

written as a convolution. To such an end, de�ne
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g[2n+m]
4
=

8><
>:
f(t + 2n) if m = 0

f(1 � t + 2n) if m = 1;
(39)

u0[2n+m]
4
=

8><
>:
(�1)nw(t+ 2n) if m = 0

(�1)n+1w(1� t+ 2n) if m = 1;
(40)

u1[2n+m]
4
=

8><
>:
(�1)nw(1 + t+ 2n) if m = 0

(�1)nw(�t + 2n+ 2) if m = 1:
(41)

By using such signals one can rewrite (27) as

qt[2n] =
X
`2Z

g[2`� 2n]u0[2`] + g[2`+ 1� 2n]u0[2`+ 1]

=
X
`2Z

g[`� 2n]u0[`] (42a)

qt[2n+ 1] =
X
`2Z

g[2`� 2n]u1[2`] + g[2`+ 1� 2n]u1[2`+ 1]

=
X
`2Z

g[`� 2n]u1[`] (42b)

A possible interpretation of (42) is presented in Figure 9: values qt[n] can be

obtained by �ltering g[n] with a two channel �lter bank having u0[n] and u1[n]

as impulse responses. The even samples exit from u0, while the odd ones exit

from u1. Such a �lter bank structure will be even more interesting after we will

have proved a fundamental relationship between u0[n] and u1[n]. As a �rst step,

rewrite u0[n] and u1[n] in term of vt[n] and v�t[n] as follows

u0[2n+m] = (�1)n+mvt[2n+m]; u1[2n+m] = (�1)nvt[2n+m+ 1]

(43)

From (43) it is easy to prove that

hu0[�]; u0[�+ 2n]i = (�1)nhvt[�]; vt[�+ 2n]i = �(n)

hu1[�]; u1[�+ 2n]i = (�1)nhv�t[�]; v�t[�+ 2n]i = �(n);
(44)

that is, u0[n] and u1[n] are orthogonal to their even translation. Moreover, by

using (43) in (37) one can see that u0[n] and u1[n] are conjugate quadrature

�lters and the scheme of Figure 9 is a PR �lter bank! Therefore, if qt[n] = 0 for

every n 2Z, then g[n] = 0 because of the PR property. If such a fact is veri�ed

for every t, then f(t) = 0.

It is interesting to observe from the proof that a continuous-time LCB can be

interpreted as a continuum of discrete-time two channel �lter banks.

It is worth to summarize what we found so far:
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Theorem 1. Let w(t) be a continuous window satisfying symmetry, power

complementarity and self orthogonality constraints

w(t) = w(�t) (45a)X
`2Z

w2(t� 2`) + w2(1� t� 2`) = 1; (45b)X
`2Z

w(t+ 2`)w(t+ 2` � 2j) +w(1� t+ 2`)w(1 � t+ 2`� 2j) = 0: (45c)

De�ne V0 as the subspace of L2(R) spanned by fw(t) cosk(t)gk2Z, with cosk(t)

de�ned as in (2). Let Vj be the translation of V0 in the sense that f(t) 2 V0 ,
f(t�j) 2 Vj . Then L2(R) = �j2ZVj , and functions gj;k(t)

4
= w(t�j) cosk(t�j),

j; k 2Z, make an orthonormal basis for Vj.

6 Relation between discrete-time and continuous-

time cases, a sampling theorem and a Mallat

like algorithm for LCB.

6.1 Discrete-time case

The continuous-time theory can be easily rephrased in discrete time. This is

suggested from the fact that the conditions of Theorem 1 have \pointwise"

nature. For example, self orthogonality (45c) is a pointwise conditions and it

does not require t to belong to a continuous set. It is worth to emphasize the

major di�erences between the two cases.

� The elementary step cannot be normalized and we have one more para-

meter: the step size N . The cosine symmetries are not around �1=2, but
around �N=2.

� The scalar product is computed via sums and not integrals and properties

like Property 7 should be suitably rewritten. The folding operator remains

the same, but with t 2Z.
� The vector spaces Vj have �nite dimension, while in continuous time their

dimension is in�nite. This makes no di�erence because we never used the

internal structure of Vj.

� The proof of the fact that � is a unitary mapping still works. This time,

the role of L2([�1=2; 1=2]) is played by the space of sequences with support
f0; : : : ; N � 1g.
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� It is possible that the symmetry points do not belong to Z. This is not

a problem, since the proofs rely on the property that an antisymmetric

function has zero mean and this holds independently from the fact that

the symmetry point belongs or not to Z.

� Self-orthogonality condition (31) gives rise to a �nite set of constraints,

not a continuum.

6.2 A sampling theorem for LCB

In this section we will show that by sampling a continuous-time LCB with a

sampling lattice symmetric with respect to �1=2 (in this way the symmetry

characteristics of LCB still make sense) one obtains a discrete-time CMFB.

More precisely, the following property holds.

Property 13. Consider a continuous-time LCB with window w(t). For every

N 2 N, N > 0, de�ne V
(N)
0 as the space obtained by sampling V0, more precisely

V
(N)
0

4
= fr[n] : r[n] = f(1=2 + 1=2N + n=N ); n 2Z; f(t) 2 V0g : (46)

The vector space V
(N)
0 is a discrete-time local cosine space of dimension N and

relative to the window

wN [n]
4
= w(1=2 + 1=2N + n=N ) (47)

The sampling lattice in (46) has the \phase" �N
4
= 1=2 + 1=2N in order to

make it symmetric with respect to �1=2. It is clear that V (N)
0 has dimension

N since there are N independent samples (the ones inside [�1=2; 1=2]).
Together with the sampled window (47) we will also need the sampled ver-

sions of the generic signal f(t), the cosines cosk(t) and the basis functions gj;k.

They will be denoted as follows

fN [n]
4
= f(�N + n=N ) (48a)

c[n; k]
4
= cosk(�N + n=N ) (48b)

h
(N)
j;k [n]

4
= gj;k(�N + n=N ) = wN [n]c[n; k]: (48c)

By comparing (3) and (48b) one obtains at once the following corollary.

Corollary 1. Functions h
(N)
0;k [n], k = 0; 1; : : : ; N�1 form an orthonormal basis

for V
(N)
0 .

Property 13 is a \sampling" property. It is intuitive that going from V0 to

V
(N)
0 we will have some kind of aliasing. However, aliasing for LCB is di�erent
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from the usual one. The precise relationship is given in the following property,

whose proof is in Appendix A, Proof A.4.

Property 14. The following \aliasing relationships" hold

c[n; 2N � 1� k] = �c[n; k]; c[n; k+ 2`N ] = (�1)`c[n; k]; 8` 2Z (49)

Equations (49) have an intriguing interpretation: if one considers c[n; k] as a

\function valued signal" in k, equations (49) claim that c[n; k] is antisymmetric

around N � 1=2 and skew-periodic with period 2N , that is, the same type of

symmetries enjoyed by the cosine functions in time!

Proposition 1. Let f(t) 2 V0 have components ak with respect to the basis

g0;k(t) = w(t) cosk(t), k 2 N, let its sampled version fN be de�ned as in (48a)

and let bk be the components of fN with respect to the basis h
(N)
0;k , k = 0; : : : ; N�

1; then

bk =
X
`2Z

(�1)` �a2`N+k � a2`N+(2N�1�k)

�
(50)

Note that instead of the usual aliasing of the classical sampling theorem,

here we have a folding! Proposition 1 has an immediate corollary. First we need

a de�nition.

De�nition 1. De�ne BN as the \band limited" subspace of L2(R), that is,

BN
4
=
�
f : f 2 L2(R); hf; gj;ki = 0 8k � N; j 2Z	 : (51)

The projection on BN will be denoted as RN .

Corollary 2. Let f(t) 2 L2(R) and aj;k = hf; gj;ki, bj;k = hfN ; h(N)
j;k i. If

f(t) 2 BN , then

aj;k = bj;k; 8j 2Z; k= 0; : : : ; N � 1: (52)

Clearly, functions fgj;kgj2Z;k=0;:::;N�1 make an orthonormal basis for BN .

Observe that the intersection BN\Vj (containing functions compactly supported

both in time and in \frequency") is a vector space of dimension N that has

fgj;kgk=0;:::;N�1 as a basis. It is instrumental to give an explicit expression for

RN .

Lemma 2. Let f(t) 2 L2(R). The projection of f(t) on BN is

(RNf)(t) =

Z
R

f(x)r(x; t)dx = hf; r(�; t)i; (53)
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where r(x; t) is de�ned as

r(x; t)
4
=
X
j2Z

N�1X
k=0

gj;k(x)gj;k(t): (54)

Proof. Write the projection on BN in terms of gj;k, j 2 N, k = 0; : : : ; N � 1

(RN f)(t) =
X
j2Z

N�1X
k=0

hf; gj;kigj;k(t) =
X
j2Z

N�1X
k=0

Z
R

f(x)gj;k(x)gj;k(t)dx

=

Z
R

f(x)
X
j2Z

N�1X
k=0

gj;k(x)gj;k(t)dx =

Z
R

f(x)r(x; t)dx:

(55)

The compact support of the functions fgj;kg allowed us to bring the sums inside

the integral.

Now we can give the sampling theorem for local cosine basis.

Theorem 2. If f(t) 2 BN , then f(t) can be recovered from its sampled version

fN [n] via

f(t) =
X
`2Z

fN [`]r(t; �N + `=N) (56)

If f(t) 62 BN , the quadratic norm of the reconstruction error is minimized by

sampling RNf instead of f .

Proof. Let f(t) 2 BN . Clearly hf; gj;ki = 0 for all k � N . Moreover, from

Corollary 2 it follows that, for each j 2 Zand k = 0; : : : ; N � 1, hf; gj;ki =
hfN ; h(N)

j;k i. Therefore, one can write

f(t) =
X
j2Z

X
k2N

hfN ; gj;kigj;k(t) =
X
j2Z

N�1X
k=0

hfN ; h(N)
j;k igj;k(t): (57)

By replacing the scalar product in (57) with its expression one obtains

f(t) =
X
j2Z

N�1X
k=0

 X
`2Z

fN [`]h
(N)
j;k [`]

!
gj;k(t)

=
X
`2Z

fN [`]

0
@X

j2Z

N�1X
k=0

gj;k(t)gj;k[�N + `=N ]

1
A =

X
`2Z

fN [`]r(t; `=N + �N )

(58)

The second part of the theorem is clear, since the reconstruction formula gives a

function of BN and RNf is the function of BN having minimum distance from

f(t).
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Note the necessity of projecting f(t) on BN before sampling it. This is similar

to what happens with the wavelet expansion using Mallat's algorithm: one must

�rst calculate a projection onto the space spanned by the scaling functions at a

chosen scale. Another example is the case of classical sampling: if the signal is

not band limited one must use a low-pass �lter (that is, the projection on the

space of band-limited signals).

6.3 A Mallat-like algorithm for continuous-time local ba-

ses

Let us exploit the results of the previous section to develop an algorithm to

compute hf; gj;ki.
If f(t) 2 BN it is clear that, because of Corollary 2, one can sample f(t)

and compute the scalar products in discrete time. This can be e�ciently done

with a CMFB. If f(t) is not band limited, we have, according to Theorem 2, to

project it on BN . By evaluating RNf at instants �N +n=N , n 2Z, one obtains

(RNf)(�N + n=N ) = hf; r(�; �N + n=N)i: (59)

The resulting analysis algorithm is shown in Figure 10a. Figure 10b shows the

corresponding synthesis scheme.

7 Window design

In this section we show how to design a window for a continuous-time, multiple

overlapping LCB. Let us state explicitly our objective

Problem 1. Let D 2 N. Design a D-time di�erentiable window satisfying the

constraints of power complementarity, symmetry and self-orthogonality.

Recall the de�nition (34) of the signal vt[n]. Remember that vt[n] is a branch

of a PR �lter bank. Let us, in this section, change the notation vt[n] into v(t;n).

We need to know how to obtain w(t) from the �lters v(t;n).

Property 15. For every t 2 R there exist q(t) 2 Z, � (t) 2 [0; 1=2] such that

w(t) = v(� (t); q(t)). Moreover, for every t0 2 R� (Z=2), the function � (t) is

arbitrarily di�erentiable in t0 and there exists a neighborhood of t0 such that

q(t) is constant.

Proof. Call tsin(t) (as triangular sinus) the function from R to [�1=2; 1=2]
shown in Figure 8b. It is clear from the �gure that 8t 2 R, there exists

20



n 2 Zsuch that w(t) = v(tsin(t);n). If tsin(t) � 0, we are done; other-

wise, exploit window symmetry to obtain w(t) = w(�t) = v(tsin(�t);�n), with
tsin(�t) = � tsin(t) > 0, since tsin(t) is odd.

The integer q(t) in Property 15 is not necessarily unique; indeed, for every

t 2Z=2, there exist two integers satisfying Property 15. We will avoid such an

ambiguity by imposing left continuity to q(t). By exploiting Property 15 we can

restate Problem 1 as follows

Problem 2. Find a family of �lters v(t;n), parameterized by t 2 [0; 1=2], such

that the corresponding window is D-time di�erentiable.

Every two channel �lter bank can be expressed via the lattice factorization

as a sequence of rotations and unit delays [1, 2]. Every rotation is identi�ed by

an angle ai, and a 2N -length �lter bank requires N rotations. Collect all the

angles in a vector a
4
= [a1; : : : ; aN ]. Let Ln(a) be the function giving the n-th

sample of the �lter relative to angles a. To determine a family of �lters, make

every angle ai function of t 2 [0; 1=2] and de�ne v(t;n) = Ln(a(t)). Note that

functions ai(t) have no constraint. With such a parameterization Problem 2

becomes

Problem 3. Find a set of functions ai(t), t 2 [0; 1=2], such that the window

w(t) = v(� (t); q(t)) = Lq(t)(a(� (t))) is D-time di�erentiable.

Now we have to map the requirement of window smoothness into constraints

on ai(t). Since Ln(a) and � (t) are arbitrarily smooth if t 2 R� (Z=2), it is clear

that, as long as q(t) does not change, w(t) is as smooth as a(t). Since for every

t 2 R� (Z=2) there is a neighborhood of t in which q(t) is constant, we have

the following property.

Property 16. If every function ai(t) is D-times di�erentiable in t0 2 R�
(Z=2), then w(t) is D-times di�erentiable in t0.

Therefore, to achieve smoothness in R� (Z=2) one can, for example, use for

every ai(t) a polynomial in t. Instead, if t0 2 Z=2, function q(t) assumes two

di�erent values in every neighborhood of t0 and we have continuity if

lim
�#0

Lq(t0+�)(a(� (t0 + �))) = lim
�#0

Lq(t0��)(a(� (t0 � �))): (60)

where lim�#0 denotes the limit for � going to zero from right. Call n1 and n2 the
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two constant values q(t0+ �), q(t0� �) in (60). Since, for �xed n, Ln(a(� (t))) is

a continuous function of t, one can rewrite (60) as

Ln1(a(� (t0))) = Ln2(a(� (t0))): (61)

Since � (t0) = j tsin(t0)j can only assume values 0, 1=2 if t0 2Z=2 (see Figure 8b),
conditions (61) can be rewritten as a set of boundary conditions on functions

ai(t) for t = 0; 1=2. Actually, it is shown in Appendix B that the window must

satisfy the following constraints on Z=2

w(0) = 1; w(1=2) = w(�1=2) = 1=
p
2; w(n=2) = 0; n 2Z; jnj> 1: (62)

Constraints (62) map themselves into constraints for ai(t). It is immediate to

see that if ai(t) are continuous and satisfy constraints (62), the limits in (60)

are necessarily equal.

The reasoning used to obtain (61) can be repeated for every order of di�e-

rentiability, giving rise to the following boundary conditions on the derivatives

of Ln(a(t)) with respect to t,

L(D)
n1

(a(� (t0))) = (�1)DL(D)
n2

(a(� (t0))): (63)

The term (�1)D in (63) comes from the fact that the derivative of � (t) is +1 or

�1 depending on the direction t approaches t0. Since every Ln(a(t)) is a linear

combination of products of sines and cosines of ai(t), it is possible to show that

equations (63) become a linear system in unknowns a(D)(0) and a(D)(1=2) that

can be solved with usual techniques. The obtained boundary conditions can be

easily matched by using for each ai(t) a polynomial in t.

Although everything can be carried out in closed form, because of the invol-

ved form of the functions Ln(a(t)) and their derivatives, a program for symbolic

mathematics can prove useful.

7.1 Continuous-time design with discrete-time techniques

and vice versa

Since the self-orthogonality conditions for discrete time are just the sampled

version of the continuous time ones, one can obtain a good discrete-time window

by sampling a continuous-time one. Such a fact can be exploited in two ways:

1. Design a discrete-time window (with some known technique, e.g., [1]) and

use its samples as \anchor points." The continuous-time window is obta-

ined by (non linear) interpolation.
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More precisely, suppose the discrete-time window has N samples between

0 and 1=2.2 Window samples w(�2N + `=2N ), ` 2Zcan be mapped into

angle values ai(n=2N ), n = 0; 1; : : : ; N � 1 that can be interpolated with

smooth functions.

2. Design a good continuous-time window, then obtain a good discrete-time

one by sampling. This approach could be used, for example, to transform

a window for N1 channels with a given overlapping, into a window for

N2 > N1 channels with the same overlapping. To do that, just interpolate

the original window to continuous time and sample the result.

7.2 Design example

Figures 11a shows the plots of the sinc function (dashed line) and of a twice

di�erentiable window for quadruple overlapping (continuous line). The window

frequency response is shown with continuous line in Figure 11b together the

frequency response of the single overlapping window shown in Figure 11c (dotted

line). Samples of the window of Figure 11a can be found in Table 1.

Figures 11e and 11f show time and frequency domain views of a window

obtained by interpolating, with the technique of Section 7.1, the discrete-time

window reported in [1] for M = 16, K = 4, !s = �=M . It is interesting to

observe that the resulting window does not satisfy the boundary conditions

in Z=2 and, therefore, is not continuous (the discontinuities are evident in

t = �2:5;�3;�3:5). However, allowing such discontinuities gives more freedom

to the window and the resulting frequency response has a better stopband at-

tenuation, although it decreases more slowly for high frequencies. It is worth

observing that the cosine window for double overlapping presented by Malvar

in [14] is discontinuous too.

8 Conclusions

A theory for local cosine basis with multiple overlapping has been presented.

Although only the continuous-time case has been studied in detail, the theory

works also in discrete time. Such a fact allowed us to obtain a sampling the-

orem for local cosine bases and an e�cient Mallat-like analysis algorithm. The

2For simplicity, the discrete-time window domain is supposed to be (1=2N)Zinstead of the

more commonZ.
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problem of window design has also been analyzed and some example of windows

for multiple overlapping have been given.
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A Proofs

Proof A.1. We will proof that C2 = C0 and C1 = C�0 . The property will follow

by induction.

Let s(t) 2 C0 and call s1(t) = s(t � 1). Since symmetries (7) are not inde-

pendent one another, but every two of them imply the third one, we just need

to prove that s1(t) is symmetric around 1=2, because skew periodicity is not

a�ected by translations.

s1(1 � t) = s(1� t� 1) = s(�t) = s(�1 � (�t)) = s1(t) (64)

Therefore, s1(t) 2 C�0 . To prove that C2 = C0, just observe that s(t � 2) =

�s(t) 2 C0.
Proof A.2. We will carry out the proof only for C0 since the proof for C�0
di�ers only in the signs. Function s(t) enjoys the following symmetries and

skew periodicity

s(t) = s(�1 � t) s(t) = �s(1 � t) s(t) = (�1)ns(t� 2n): (65)

From (65) it follows

s(4` + 1� t) = (�1)�2`s(1� t) = �s(t);
s(4` � 1� t) = (�1)�2`s(�1� t) = s(t):

(66)

Proof A.3. We just give the proof for s1; s2 2 C0. The proof for the other

cases di�ers only in the signs. Since s1 and s2 are both square summable on

[�1=2; 1=2], then s1s2 2 L1([�1=2; 1=2]). We just need to prove that s1s2 enjoys

the symmetries characteristic of S0
s1(1� t)s2(1� t) = (�s1(t))(�s2(t)) = s1(t)s2(t);

s1(�1 � t)s2(�1 � t) = s1(t)s2(t):
(67)
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Proof A.4. Let us rewrite de�nition (2) of cosk(t) as

cosk(t) = cos

�
2�(2k + 1)

4
(t� 1

2
)

�
: (68)

Using (68), one can write c[n; k] as

c[n; k] = cos

�
2�(2k + 1)

4
(1=2N + n=N )

�
= cos

�
2�(2k + 1)

4N
(n +

1

2
)

�
(69)

Using (69) for k1 = 2N � 1� k and k2 = k + 2`N , one obtains

c[n; 2N � 1� k] = cos

�
2�(4N � 2� 2k + 1)

4N
(n +

1

2
)

�

= cos

�
(2� � 2�(2k + 1)

4N
)(n +

1

2
)

�

= cos

�
(�2�(2k + 1)

4N
)(n+

1

2
) + (2n+ 1)�

�
= �c[n; k]

c[n; k+ 2`N ] = cos

�
2�(4`N + 2k + 1)

4N
(n+

1

2
)

�

= cos

�
(2`� +

2�(2k + 1)

4N
)(n +

1

2
)

�

= cos

�
2�(2k + 1)

4N
(n +

1

2
) + 2n`� + `�

�
= (�1)`c[n; k]

B Boundary conditions on vt[n] for t = 0; 1=2

B.1 Constraints for t = 0

Equation (36a) for t = 0 implies v0[n] = v0[�n]. Since hv0[�]; v0[� � 2j]i = �(j),

j 2Z, then v0[n] = �(n).

B.2 Constraints for t = 1=2

Equation (36b) for t = 1=2 gives v1=2[2n] = v1=2[2n+1] 8n. Therefore, equation
(35) becomes

hv1=2[�]; v1=2[�+ 2n]i = 2
X
`2Z

v1=2[2`]v1=2[2(`+ n)] = �[n]: (70)

Equation (70) claims that u[n]
4
= v1=2[2n] is a non-null �nite length signal

orthogonal to all its translations. This implies u[n] = 1=
p
2�[n], which in turn

implies

v1=2[2n] = v1=2[2n+ 1] = w(1=2� 2n) =
1p
2
�[n]: (71)

By window symmetry, one deduces from (71) the values assumed by the window

on 2Z� 1=2.
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Table 1: Samples of the window for quadruple overlapping shown in Figure 11

for t = 1=50 + n=25, n = 0; 1; : : : ; 99. The table must be read columnwise, top

to bottom, left to right.

9.9996401e-01 -5.9381407e-03 1.8085379e-05 4.7595983e-10

9.9714078e-01 -4.7960558e-02 1.4166675e-03 4.2825537e-06

9.9016782e-01 -7.7841672e-02 4.4108398e-03 5.6628850e-05

9.7956648e-01 -9.4160549e-02 7.6151584e-03 2.2891095e-04

9.6554735e-01 -9.7509738e-02 9.6795605e-03 5.1447048e-04

9.4793139e-01 -8.9927145e-02 9.8507279e-03 7.7856613e-04

9.2635105e-01 -7.4470997e-02 8.2055305e-03 8.5059323e-04

9.0057747e-01 -5.4862763e-02 5.5148390e-03 6.7567248e-04

8.7077650e-01 -3.5013478e-02 2.8145831e-03 3.6940426e-04

8.3751552e-01 -1.8345793e-02 9.0811603e-04 1.1469735e-04

8.0150050e-01 -7.0357110e-03 4.7636882e-05 5.0346091e-06

7.6323524e-01 -1.4464086e-03 -7.2658345e-05 -5.0535093e-06

7.2284268e-01 -2.9816804e-05 -3.7408560e-06 -7.7098491e-08

6.8006913e-01 1.5497145e-04 -1.3421552e-05 4.5354349e-07

6.3439941e-01 2.0748571e-03 -6.6962791e-05 5.3529318e-06

5.8531216e-01 6.4556683e-03 1.2499595e-04 -1.4042451e-05

5.3240283e-01 1.2107395e-02 7.9167361e-04 -1.0209609e-04

4.7561137e-01 1.7174185e-02 1.7640640e-03 -2.2973221e-04

4.1540335e-01 2.0085753e-02 2.5779724e-03 -3.0572754e-04

3.5272035e-01 2.0108382e-02 2.8111595e-03 -2.7511986e-04

2.8874577e-01 1.7453573e-02 2.3720158e-03 -1.7200151e-04

2.2468847e-01 1.3032317e-02 1.5345587e-03 -7.2085165e-05

1.6174465e-01 8.0605310e-03 7.1833684e-04 -1.8040071e-05

1.0122505e-01 3.7047671e-03 2.0664859e-04 -1.9987838e-06

4.4704868e-02 8.4915981e-04 2.0116661e-05 -3.4454387e-08
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Figure 1: Example of windows with single and multiple overlapping. (a) Single

overlapping case. Each window overlaps only with the adjacent ones. (b) Mul-

tiple overlapping case. Each window overlaps also with non adjacent windows.

(a)

(b)

Figure 2: Action of the folding operator when computing
R
R
r(t)s(t)dt, with

s(t) 2 S0. (a) Folding of function s(t) around the symmetry point 1=2 +Z

causes the overlay of the single pieces of the function. (b) Folding on r(t)

induced by the folding in (a).
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(a)

(b)

Figure 3: Proof of folding operator properties. Every plot symbolizes a scalar

product in L2(R) and should be read as \the integral of the product of the

two plotted functions." (a1) Continuous line shows a compact support function

r(t); dashed line shows a function s(t) of S0; dash{and{dot line shows the

position of 1=2. (a2) and (a3): the integral on R is split into two integrals

for x < 1=2 and x > 1=2, respectively. (a4): The integral for x > 1=2 is


ipped around 1=2. This, of course, does not change the value of the integral.

(a5): the integrals relative to (a2) and (a4) have the same support and they

can be summed together. Since the dashed plots are equal, the resulting plot

corresponds to
R 1=2
�1 r1(t)s1(t) + r2(t)s1(t)dt =

R 1=2
�1

(r1(t) + r2(t))s1(t)dt, that

is, the two continuous lines are added, while the dashed line remains the same.

(b1) to (b5): The same proof, but with s(t) 2 C0. The only di�erence is that

going from (b3) to (b4) one does not only 
ip the integral, but changes also the

signs of both lines.
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unwindowing

windowing

restriction

extension

η

η
−1

(a) (b) (c)

Figure 4: Graphical description of the unitary transformation � between V0 and

L2([�1=2; 1=2]). (a) Function w(t)s(t) belonging to V0. (b) Function S(t). (c)

Restriction of function s(t) to [�1=2; 1=2].
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(d
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Figure 5: Computation of the projection of qt[n] on V0 for n = 0; 1; 2. (a)

Window w(t). (b) Signal f(t). (c) and (d) translated versions f(t � 1) and

f(t � 2). To compute qt[n] one has to multiply the values of f(t � n) marked

with little circles by the corresponding window values, with a possible change

of sign, according to the little signs reported next to the window.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 6: Computation of the scalar product between a function of V0 and a

function of V1. Symbol 
 denotes the product of two signals; symbol
R
inside

a box means that the input signal is integrated over R. Dash{and{dot lines

denote the position of �1=2 and 1=2. (a) Window w(t) relative to space V0.

(b) Function s0 belonging to space C0. (c) Translated window w(t � 1). (d)

Function s1(t) belonging to space C1. (e) Function f0(t) = w(t)s0(t) 2 V0. (f)

Function f1(t) = w(t� 1)s1(t) 2 V1. (g) Product f0(t)f1(t).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 7: Rearrangement of the signals of Figure 6. (a) Window w(t) symmetric

with respect to 0, that is, w(t) = w(�t). (b) Window w(t � 1) = w(1 � t).

(c) Signal s0(t) 2 C0, symmetric around �1=2 and antisymmetric around 1=2.

(d) Signal s1(t) 2 C1, symmetric around 1=2. (e) Product w(t)w(t � 1) =

w(t)w(1 � t), symmetric around 1=2. (f) Product s0(t)s1(t), antisymmetric

around 1=2 because of the two di�erent types of symmetry of s0(t) and s1(t).

(g) Overall product w(t)w(t � 1)s0(t)s1(t), antisymmetric because product of

the symmetric function w(t)w(t� 1) with the antisymmetric one s0(t)s1(t). Its

integral is zero.
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Figure 8: (a) Example of construction of discrete-time signal vt[n]. (b) Trian-

gular sinus giving the position of the samples of vt[n].
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0 2
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q[2j]

q[2j+1]

Figure 9: Two channel perfect reconstruction �lter bank induced by the proje-

ction on V0.
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Figure 10: Mallat{like algorithm for local cosine bases. (a) Analysis: For each

n 2 Zthe scalar product of the input signal f(t) with the kernel r(t; n) is

computed. The resulting discrete-time sequence fN [n] is processed with a cosine

modulated �lter bank whose output are components aj;k. (b) Synthesis: The N

input signals aj;0; : : : ; aj;N�1 are sent into a synthesis �lter bank whose output is

the original sequence fN [n] because of the perfect reconstruction property. The

discrete-time sequence is sent into an interpolator that reconstructs the original

signal f(t) (or its projection on BN if originally f(t) was not band limited).
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Figure 11: Example of window design. Frequency scales are normalized to

the sampling frequency. (a) Continuous line: twice di�erentiable window for

quadruple overlapping. Dashed line: sinc function for the same sampling fre-

quency. (b) Continuous line: frequency response of the window in (a). Dotted

line: frequency response of the window in (c). (c) Single overlapping window

used for comparison. (d) \Zoom" on a tail of (a). This closer view explains why

the two tails are doomed to be di�erent: the �rst minimum of sinc(t) is around

t = �1:5, where w(t) must be zero. (e) and (f): Like (a) and (b), but for a

window obtained by interpolating a discrete-time one. Note that the window

has some discontinuities at t = �2:5;�3;�3:5. This is because the discrete-time

window did not satisfy the boundary conditions in Z=2. Despite of that, the
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