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initial signal depicted in Fig. 1. The errors of the obtained solutions
are incorporated into Table I, from which it is seen that the quality
of locally regularized solutions compares favorably with that of not
only direct solutions but also of the quality of globally regularized
solutions.

As an example of image reconstruction, the 8-bit initial image
depicted in Fig. 4(a), which had square support region with di-
mensions 16� 16, was reconstructed from its noisy 2-D Fourier
transform phase. It turned out that even a very small noise level (D =

10
�12 rad2) led to dramatic distortion of the image reconstructed

by conventional direct algorithm [Fig. 4(b)] according to (9). The
same effect took place for larger noise variances (D = 10

�10;

10
�8 rad2). On the contrary, global RA allows reconstruction of

the image that has all the details of the initial one [Fig. 4(c)–(e)] that
points to significant smoothing of all undesirable fluctuations in the
reconstructed image.

V. CONCLUSION

In this correspondence, it was pointed out that the problem of
the reconstruction of finite discrete signals and images from noisy
phase samples of their Fourier transforms is ill-posed with respect
to the phase distortion. The regularizing algorithms developed for
reconstruction of discrete finite signals and images from their noisy
Fourier transform phases have led to significant quality growth of
the reconstruction compared with the existing conventional direct
approach developed in [6] and [7]. These algorithms significantly
(in some cases more than 100 times) improve the accuracy of the
reconstruction that allows them to be used as a practical tool for
signal reconstruction in conditions of the magnitude uncertainty in
the frequency domain.
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Cone–Kernel Representation versus
Instantaneous Power Spectrum

G. Viswanath and T. V. Sreenivas

Abstract—The Cone–Kernel representation (CKR) and the instan-
taneous power spectrum (IPS) are two time–frequency representations
(TFR’s) where the cross-terms are localized in the region of auto-terms.
Exploring their relationship for discrete sequences, we show that the IPS
kernel is only two extreme terms of the CKR kernel. Further comparing
other properties of these two TFR’s, viz., invertibility, aliasing, and noise
robustness, we show that there is aliasing in some transform domains
for signals sampled at Nyquist rate and that the CKR has better noise
robustness than the IPS.

I. INTRODUCTION

Time–frequency representations (TFR’s) are a more natural and ef-
fective method of representing nonstationary signals, such as speech,
than quasi-stationary representations. Here, we consider a class
of TFR’s whose cross-terms are localized in the region of auto-
terms. The Cone–Kernel representation (CKR), instantaneous power
spectrum (IPS), and Rihachzek distribution share this property. This is
a unique property among many TFR’s because the interference terms
generated by the quadratic TFR’s for multicomponent signals get
localized at the signal terms themselves and do not cause additional
ambiguity about the number of signal components in the TFR.
Although there are some limitations of these TFR’s, such as not being
a proper density function, these TF representations could be useful
for accurately detecting time-varying signal components; in fact, it
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has been shown [1] that the CKR gives an accurate estimate of time
discontinuities. In addition, for speech and music signals, frequency
plays a more important role than amplitude in their perception. Hence,
this class of TFR’s hold better promise for speech and music spectral
estimation. Interestingly, we find that CKR is related to IPS, which is
a TFR that has been ignored for a long time because of the side-lobe
leakage problem. The connection shown here would provide a means
for trading complexity with performance within this class of TFR’s.

The CKR of a signalx(t) is defined as

CKR(t; !) =
1

�=�1

t+(j� j=2)

s=t�(j� j=2)

�(�)x s+
�

2
x
�
s�

�

2

� exp(�j!�)dsd�

=
1

�=�1

t+j� j

t

�(� )x(s)x�(s� �) exp(�j!�)ds d�

(1)

where�(t) is a finite length window. The IPS is also another TFR
whose cross-terms are localized in the region of auto-terms. The IPS
has been proposed as a representation of the power spectrum of a
signal at each instant. It has also been shown to be a Cohen’s class
TFR, which is defined as [2]

IPSx(t; !) =
1

2

1

�1

[x(t)x�(t� �) + x
�(t)x(t+ �)]

� exp(�j!�)d�: (2)

The IPS has not been very popular because of the side lobe leakage,
which is referred to as ringing. A smoothing window�(t) is intro-
duced in IPS to reduce ringing [3] (smoothing window introduces a
filter with a broader bandwidth), resulting in a modified IPS given by

IPSx(t; !) =
1

2

1

�1

[x(t)x�(t� �) + x
�(t)x(t+ �)]�(� )

� exp(�j!�)d�: (3)

II. DISCRETE DOMAIN CKR VERSUS IPS

For practical applications, whichever TFR is chosen, the signals
are discretized, and a finite window computation is often used.
Considering such a situation, for a discrete sequencex(n) and a
symmetric window�(n) 6= 0, �L � n � L, N = 2L + 1, the
discrete CKR and IPS can be expressed as

CKR(n; !) =
1

2L+ 1

L

k=�L
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+ x
�(n)x(n+ k))�(k)e�j!k (6)

=
1
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�(0)x�(n)x(n) + 2Re

L

k=1

fx(n)x�(n� k)

+ x
�(n)x(n+ k)g�(k)e�j!k : (7)

Consider the CKR over a window of three samples, i.e., a cone length
corresponding toL = 1 and IPS for a window ofN = 3

CKR(n; !) =
1

3
[�(0)x(n)x�(n) + 2�(1)Re(x(n)x�(n� 1)

+ x(n)x�(n+ 1)e�j!)]

IPS(n; !) =
1

2
[�(0)x(n)x�(n) + 2�(1)Re(x�(n)x(n� 1)

+ x
�(n)x(n+ 1)e�j!)]:

It is clear that both are identical except for a scale factor. For a larger
cone length, it can be seen that IPS is only a few terms of CKR. Let
us consider the kernels for IPS and CKR as

IPS(n; !) =
1

2

L

k=�L

RIPS(n; k)�(k) exp(�j!k)

where

RIPS(n; k) = x(n)x�(n� k) + x
�(n)x(n+ k) (8)

CKR(n; !) =
1

2L+ 1

L

k=�L

RCKR(n; k)�(k) exp(�j!k)

where

RCKR(n; k) =

n+k

m=n

x(m)x�(m� k): (9)

Thus, it turns out that IPS kernel is obtained by considering only the
two terms corresponding tom = n andm = n+k in the expression
for the CKR kernel. For CKR, the autocorrelation averaging is up
to a lag equal to the cone length, whereas IPS has a fixed averaging
using only the two extreme terms of the CKR kernel.

In the case of random signals (for the case in which the time-
varying signal may be corrupted with stationary noise), considering
the expectation of the TFR, we get

E[IPS(n; !)] =
1

2
k

�(k)E[x(n)x�(n� k)

+ x
�(n)x(n+ k)] exp(�j!k) (10)

=
1

2
k

�(k)RIPS(n; k) exp(�j!k) (11)

whereRIPS(n; k) is the nonstationary autocorrelation function. Sim-
ilarly

E[CKR(n; !)]

=
1

2L+ 1
E

L

k=�L

�(k)

n+k

u=n

x(u)x�(u� k) exp(�j!k)

=
1

2L+ 1

L

k=�L

(jkj + 1)�(k)R(n;k) exp(�j!k) : (12)

For a stationary signal,R(n; k) = R(k) for both IPS and CKR. Such
a case would be a windowed periodogram estimate, except that the
window function is modified by(jkj+ 1) for CKR, i.e., a circularly
shifted Bartlett window. Assuming�(k) to be a rectangular window,
at best, the frequency resolution of CKR(n; !) is half when compared
with that of IPS(n; !).

III. PROPERTIES OFCKR AND IPS

In the light of above similarities, it is interesting to compare the
various properties of discrete IPS and discrete CKR. Some of the
important properties are discussed below, which help in establishing
the tradeoff between CKR and IPS.
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A. Inversion

Proposition: For finite-duration signals, if the first nonzero value
of the signal is known, then the signal can be recovered from the IPS.
When the first nonzero value is not known, then we can recover the
signal correct to a scale factor and constant phase shift. (The CKR
has been shown [4] to be invertible only if all the signal samples
are nonzero.)

Proof: We develop here an inversion algorithm for the discrete
IPS that is similar to the inversion algorithm for the short-time Fourier
transform magnitude [5]. Consider the IPS for a finite duration signal
x(n) 6= 0, jnj � L, and zero otherwise. From the discrete samples of
IPS(n; !k), �L � n � L, we can obtain the inverse discrete Fourier
transform for each slice ofn using aN -point DFT. Thus

RIPS(n; k) = [x(n)x�(n� k) + x
�(n)x(n+ k)]�(k)

= IDFT[IPS(n; !k)] (13)

where�L � n � L; �L � k � L. Let x(�L) be the first nonzero
sample. ConsideringRIPS(�L;1), we can rearrange to get

x(�L+ 1) =

R (�L;1)
�(1)

� x�(�L� 1)x(�L)

x�(�L)
=

RIPS(�L;1)

�(1)x�(�L)

(14)

becausex(�L� 1) = 0. Continuing this in a sequential manner

x(�L+ 2) =

R (�L+1;1)
�(1)

� x�(�L)x(�L+ 1)

x�(�L+ 1)
(15)

in which all the previous samples are known. However, the algorithm
began only with a nonzero value ofx(�L). Thus, for a general
complex signal, the reconstruction from IPS is accurate to within
a constant factor and a fixed phase delay. The above sequential
procedure assumes thatx(n) 6= 0. However, if for anyn x(n) is
zero, thenx(n+ 1) can be obtained fromRIPS(n� 1; 2) instead of
RIPS(n; 1). This can be shown as

x(n+ 1) =

R (n�1;2)
�(2)

� x�(n� 3)x(n� 1)

x�(n� 1)
(16)

where all the right-hand side terms are known. Extending this idea,
if there arem consecutive zeros in the signal, i.e.,x(n) is computed
to be zero forn1 � n < n1 +m andm < L� 1; then,x(n1 +m)
can be computed usingR(n1 � 1;m+ 1) instead of using previous
equation. This is given by

x(n1 +m) =

R (n �1;m+1)
�(m+1)

� x�(n1 �m� 2)x(n1 � 1)

x�(n1 � 1)
: (17)

Once a nonzero value is computed, the sequential inversion can
continue using (14). Note that the above expression is valid up to
m = L � 2, i.e., L � 1 consecutive zeros in the signal because
RIPS(n; k) is defined only within the range ofjnj; jkj � L.

For very long signals, IPS is computed by consecutive windowing
of the signal. In such a case, there should be overlap between windows
such that there is at least one nonzero sample in the region of overlap.
The above sequential algorithm can be then applied by knowing the
amount of overlap between adjacent windows.

B. Aliasing

Proposition: For real signals sampled at Nyquist ratefs, cross-
terms can cause aliasing in the transform domains of TFR if the
bandwidth of the signal is greater thanf

4
. The aliasing is due to the

cross-terms localized at the auto-terms in the TF domain. (It may be
noted that there is no aliasing along the frequency axis in the TF
domain.)

Proof: Consider a real signalx(n) = A cos(!1n + �1)) and
its CKR. We find an oscillating term along time in the TF domain,
whose frequency of oscillation is equal to twice the frequency of the
signal, i.e.,

RCKR(n; k) = 2(k+ 1) cos(!1k) +
2 cos(2!1n)

sin(!1)
sin(!1(k+ 1)):

(18)

In the case of IPS, it can also be seen that there is a similar oscillating
term whose frequency of oscillation is twice the signal frequency.

RIPS(n; k) = 4 cos(!1k)(1 + cos(2!1n)): (19)

It may be noted that the frequency doubling does not cause any
aliasing along the frequency dimension of the TF plane. However,
there will be aliasing due to this frequency doubling in both the
ambiguity domain and spectral domain along doppler and frequency
directions, respectively (i.e., if the signal frequency is�

4 � !1 � �).
Therefore, an analytic signal or signal sampled at twice the Nyquist
rate(Fs = 4Fmax) is necessary to avoid aliasing in all the transform
domains of both CKR and IPS. For signals in noise at low SNR,
signal classification based on ambiguity domain is reported to be
robust [6]. In such cases, aliasing could introduce errors and affect
the performance.

C. Noise Robustness

Proposition: For a signal in additive white noise, the CKR esti-
mate tends to be unbiased for large cone lengths [4], whereas the
IPS is a biased estimator. For sinusoids in circularly complex white
Gaussian noise, CKR provides a better SNR than IPS.

Proof: Consider a signalx(n) = s(n) + ��(n), where�(t)
is stationary, zero mean unit variance and circularly complex white
noise.1 In addition, lets(n) = A exp(�j!0n); hence

E[IPSxx(n; !)] = IPSss(n; !) + �
2 = A

2 + �
2
: (20)

Thus, IPS is a biased estimate, whereas CKR is an asymptotically
unbiased estimator as shown in [4]. Let us define the SNR as the
ratio of sinusoid variance to that of other components. The second
moment of IPS is obtained as

E[IPS2(n; !)]

=

L

k =�L

L

k =�L

a

E[x(n)x�(n � k1)x
�(n)x(n� k2)]

+

b

E[x�(n)x(n� k1)x
�(n)x(n+ k2)]

+

c

E[x�(n)x(n+ k1)x
�(n)x(n� k2)]

+

d

E[x�(n)x(n+ k1)x
�(n)x(n+ k2)] exp(�j!(k1 � k2)):

(21)

Let us use the following new symbols:s1 = s(n); s2 = s(n� k1);
s3 = s(n); s4 = s(n � k2) and n1 = �(n); n2 = �(n � k1);
n3 = �(n); n4 = �(n � k2). Thus

a =

L

k =�L

L

k =�L

E[(s1 + n1)(s
�

2 + n
�

2)(s
�

3 + n
�

3)(s4 + n4)]

� exp(�j!(k1 � k2)) (22)
1It may be noted that we take the approach given in [7] in assuming a

complex white Gaussian noise to simplify the expressions for the variance of
noise terms.
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which can be further simplified as

s1s
�

2s
�

1s4 = A4 exp(j!1(k1 � k2))

s1s
�

2E[n�1n4] = A2�2 exp(�j!1k1)�(k2)

s1s
�

2E[n�1n4] = A2�2�(k1 � k2)

s�2s4E[n1n
�

1] = A2�2 exp(�j!1(k1 � k2))

s�1s4E[n1n
�

2] = A2�2 exp(�j!1k2)�(k1)

E[n1n
�

1]E[n�2n4] = �4�(k1 � k2)

E[n1n
�

2]E[n1n
�

4] = �4�(k1)�(k2):

(23)

Substituting these into (22) and simplifying, we get

E[IPS2(n; !)] = A4 + (2L+ 4)A2�2 + �4(2L+ 2): (24)

Thus,

SNRIPS =
A4

(L+ 2)A2�2 + �4(L+ 1)
: (25)

Similarly, the CKR variance is given by

E[CKR2(n; !)]

=

L

k =�L

L

k =�L

n+k

m =n

n+k

m =n

(s1s
�

2s
�

3s4 + s1s
�

2E[n�3n4]

+ s1s
�

3E[n�2n4] + s�2s4E[n1n
�

3] + s�3s4E[n1n
�

2]

+E[n1n
�

2]E[n�3n4] +E[n1n
�

3]E[n�2n4])

� exp(�j!1(k1 � k2)): (26)

The arguments in the above summation can be simplified by direct
substitution fors and n

s1s
�

2s
�

3s4 = A4 exp(+j!1(k1 � k2))

s1s
�

2E[n�3n4] = A2�2 exp(�j!1k1)�(k2)

s1s
�

3E[n�2n4] = A2�2 exp(�j!1(m1 + k1))

� exp(j!2(m2 + k2))

� �(m1 �m2 + k1 � k2)

s�2s4E[n1n
�

3] = A2�2 exp(j!1(m1 � k1=2))

� exp(�j!1(m2 � k2=2))

� �(m1 �m2 + k1 � k2)

s�3s4E[n1n
�

2] = A2�2 exp(�j!1k2)�(k1)

E[n1n
�

2]E[n3n
�

4] = �4�(k1)�(k2)

E[n1n
�

3]E[n�2n4] = �4�(m1 �m2 + k1 � k2):

(27)

Substituting these terms in (26) and simplifying, we get the variance
and SNR as

VarCKR =
�4

4
+A2�2; SNRCKR =

A4(L2 + 3L+ 2)

4A2�2 + �4
: (28)

We can see that the CKR has a significant SNR advantage over the
IPS even at minimum cone length ofL = 2.

Simulation: To verify the noise robustness property of CKR and
IPS discussed above, a simulation experiment is conducted using a
stationary signal in stationary noise situation. The CKR cone width
is chosen as 128 and IPS window width also as 128. A sinusoid of
frequency!1 = 900 Hz, Fs = 8 KHz is chosen for simulations. The
signal is zero padded, and a DFT of orderN = 8192 is computed.
The maximum value of spectrum atn = 800 is obtained for both
CKR and IPS. The associated frequency is used as the estimate of
instantaneous frequency. This is repeated over ten different noise
realizations. The mean and variance of the estimate is shown in
Table I. (The mean and variance are computed by finding the peaks

TABLE I
MEAN AND VARIANCE OF IF ESTIMATE OF A SINUSOID AT

FREQUENCY 900 HZ BASED ON PEAKS IN CKR AND IPS DOMAINS

TABLE II
COMPARISON OF THEPROPERTIES OF THECKR AND THE IPS

at each instant of time.) The spectral discretization leads to an error
of �1 Hz. We can see that, as expected, CKR has no bias upto 0
dB SNR, whereas IPS has a large bias, which increases with the
amount of noise. In addition to the bias, we can also compute the
variance of the frequency estimation error (different from the variance
of the noise terms derived earlier), as indicative of the effect of noise
terms on the signal component. From Table II, it can be seen that
CKR provides an order of magnitude smaller variance than IPS, as
expected. In addition, the variance diverges at about 10 dB lower for
CKR than IPS.

IV. SUMMARY

We have explored the relation between two unique TFR’s (the
CKR and the IPS) whose cross-terms are localized in the region of
auto-terms. Interestingly, they both have similarities in the structure
of the kernel. The CKR kernel has the number of terms depend on
the cone-length, whereas the IPS has a fixed number of two terms
corresponding to the extreme terms of CKR. An inversion algorithm
is developed for the IPS, thus making both the transforms invertible.
In the presence of noise, the CKR is an unbiased estimator unlike
the IPS and has a large advantage in terms of SNR in the transform
domain. However, the frequency resolution of CKR is half that of
IPS. For real signals, the oscillating component along the auto-terms
of both CKR and IPS has twice the signal frequency, which can cause
aliasing in the ambiguity domain.
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Hybrid Linear/Bilinear Time-Scale Analysis

Martin Pasquier, Paulo Gon¸calvès, and Richard Baraniuk

Abstract—We introduce a new method for the time-scale analysis
of nonstationary signals. Our work leverages the success of the
“time–frequency distribution series/cross-term deleted representations”
into the time-scale domain to match wideband signals that are better
modeled in terms of time shifts and scale changes than in terms of
time and frequency shifts. Using a wavelet decomposition and the
Bertrand time-scale distribution, we locally balance linearity and
bilinearity in order to provide good resolution while suppressing
troublesome interference components. The theory of frames provides
a unifying perspective for cross-term deleted representations in
general.

I. INTRODUCTION

By displaying the time-varying frequency content of a non-
stationary signal in terms of time and frequency variables, joint
time–frequency and time-scale representations can reveal subtle
features that remain hidden from other methods of analysis. Each type
of representation matches a different class of signals. Time–frequency
representations are covariant to time and frequency shifts and match
signals with constant-bandwidth structure, such as narrowband radar
signals [1]. Time-scale representations are covariant to time shifts
and scale changes and match signals with proportional-bandwidth
structure, such as wideband sonar and acoustic signals [2], [3]. Many
different representations exist, both linear and nonlinear.

Linear representations, such as the short-time Fourier and Gabor
time–frequency representations and the wavelet time-scale repre-
sentation, offer the benefit of simple interpretation at the expense
of poor resolution. Bilinear representations such as the Wigner
time–frequency distribution [1] and the Bertrand time-scale distri-
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bution [3] were developed as high-resolution alternatives. While the
nonlinearity of the bilinear distributions sharpens the representation
of local signal structure, it also generates interference between
widely separated components that degrade the representation of
global structure. Traditionally, nonlinear interference due to these
cross-components has been suppressed via smoothing over the time-
frequency or time-scale planes [1], [2].

In [4] and [5], Qianet al. introduced an alternative approach to
time–frequency analysis that features an explicit and controllable
linear versus bilinear tradeoff. First, the signal is represented in
terms of a discrete sum of time–frequency concentrated atoms via
a linear Gabor transform. Then, the Wigner distribution, evaluated
on this linear signal decomposition rather than on the signal itself,
separates into two distinct components: the Wigner auto-components
of the atoms (the “quasilinear” part of the representation) and the
Wigner cross-components of the atoms (the bilinear part of the
representation). By limiting the number of cross-components entering
into the sum, such across-term deleted Wigner distributioncan
locally control the degree of nonlinearity of the time–frequency
representation and, furthermore, tune it for maximum concentration
with minimum cross components.

This time–frequency decomposition performs very well, but it is
matched only to signals possessing a constant-bandwidth structure. In
this correspondence, we extend the concept of hybrid linear/bilinear
analysis to the time-scale plane. Our approach is based on the
linear wavelet transform and the bilinear Bertrand distribution. In the
process of our development, we gain new insights into the procedure
of Qian et al. In Section II, we briefly review their approach to
quasilinearizing the Wigner distribution. In Section III, we transpose
the problem of hybrid linear/bilinear analysis to time-scale and
propose a frame-based solution. After discussing an implementation
of this new method in Section IV, we close with conclusions in
Section V.

II. HYBRID TIME–FREQUENCY ANALYSIS

A hybrid linear/bilinear system for time–frequency analysis con-
sists of three components:

1) a bilinear time-frequency mapping;
2) a discrete linear signal decomposition based on time-frequency

concentrated “atoms”;
3) a rule for determining which cross-components to include in

the overall signal representation.

In [4] and [5], Qianet al. utilize the bilinear Wigner distribution, a
linear Gabor transform with a Gaussian window, and a Manhattan
distance criterion.

A. Wigner Distribution

The Wigner distribution is, in many senses, the central bilinear
time–frequency distribution [1]. The cross-Wigner distribution of two
signalsr and s is defined as1

Wr;s(t; f) = r
�

t�
�

2
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�

2
e
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Whens = r, we have the Wigner distributionWs(t; f).
The excellent time–frequency localization properties of theauto-

componentsof the Wigner distribution result from its bilinear,
1Throughout this paper, integration bounds run from�1 to +1.

1053–587X99$10.00 1999 IEEE


