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Correspondence

Lag-Windowing and Multiple-Data-Windowing Are
Roughly Equivalent for Smooth Spectrum Estimation

Michael L. McCloud, Louis L. Scharf, and Clifford T. Mullis

Abstract—There is no fundamental difference between lag-windowing
a correlation sequence and multiple-windowing a data sequence when the
objective is to reduce the mean-squared error of a spectrum estimator.
By analyzing the approximate low-rank factorization of a bandlimiting
Toeplitz operator, we find that lag-windowed (or spectrally smoothed)
spectrum estimators have multiple-data-windowed implementations. This
makes the Blackman–Tukey–Grenander–Rosenblatt spectrogram equiva-
lent to the Thomson spectrum estimator (and vice-versa), meaning BTGR
spectrograms may be implemented in a multichannel filterbank version
of the Thomson estimator.

I. INTRODUCTION

Nonparametric estimators of the power spectrum are often com-
puted as Blackman–Tukey–Grenander–Rosenblatt (BTGR) [1], [2]
lag-windowed spectrograms or as Thomson multiple-data-windowed
estimators [3]. Although these two procedures appear to be quite
different, we will argue that they are essentially equivalent. That
is, the net effect of lag-windowing is the same as multiple data-
windowing. This result will follow from the factorization of the kernel
matrices for lag-windowed spectrum estimators.

The estimation problem is as follows. We are givenN samples
y = (y0 � � � yN�1)

T from a complex wide sense stationary (WSS)
random processfyng with autocorrelation sequencefrkg and power
spectral densityfS(ej�);�� < � � �g

rk = E[ysy
�

s�k] (1)

S(ej�) = rke
�j�k

: (2)

We seek to estimateS(ej�) from this finite length realizationy.
We will only consider estimatorŝS(ej�), which possess the fol-

lowing properties:

P1) quadratic in the datâS(ej�) = y�Q(�)y (y� denotes the
Hermitian transpose ofy);

P2) non-negativeŜ(ej�) � 0;
P3) modulation invariant(D(ej�)y)�Q(�)(D(ej�)y) = y�

Q(� � �)y, whereD(ej�) = diag[1; ej�; . . . ; ej(N�1)�] is
a modulation matrix.

It has been shown [4] that any spectrum estimator that enjoys
the preceding properties must be a quadratic form in the complex
demodulated dataD(e�j�)y:

Ŝ(ej�) = y�D(ej�)Q(0)D(e�j�)y; Q(0) � 0: (3)

This representation will allow us to explore the similarities between
different estimation procedures.
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II. M ULTIPLE WINDOW SPECTRUM ESTIMATORS

Factoring the non-negative matrixQ(0) from (3) into Q(0) =
V�V, we obtain the equivalent representations

Ŝ(ej�) = kVD(e�j�)yk2

=

M

i=1

N�1

n=0

vi;nyne
�j�n

2

(4)

wherefvi;ngN�1n=0 is the window sequence formed from theith row
of V, andM = rank(Q(0)). An implementation of this estimator
employing a bank of windowed periodograms is shown in Fig. 1.
Notice that this decomposition is valid for any spectrum estimator
that satisfies conditionsP1)–P3).

When the windows are theM -dominant Slepian sequences [5]
weighted by the square root of the corresponding eigenvalues, we
have the Thomson estimator [3]. We will use the term Thomson
estimator to mean any multiple data window estimator employing a
small number of windows (relative to the data length).

III. L AG-WINDOW SPECTRUM ESTIMATORS

We define the BTGR lag-window spectrum estimator with positive
semidefinite window sequencefwkg

N�1
�(N�1) by

ŜBT(e
j�) =

N�1

k=�(N�1)

wkr̂ke
�j�k

=
�

��

W e
j(���)

ŜP (ej�)
d�

2�
: (5)

In these two formulas,̂rt is the biased estimator of the autocorrelation
sequence, and̂SP (ej�) is the periodogram:

r̂k =
1

N

N�1

n=k

yny
�

n�k 0 � K � N � 1; r̂�k = r̂
�

k

ŜP (ej�) =

N�1

k=�(N�1)

r̂ke
�j�k

=
1

N
y
�

	(ej�)	�(ej�)y

where	(ej�) = [1 ej� � � � ej(N�1)�]T : (6)

The last expression for̂SP (ej�) may be substituted into (5)
to produce the following representation for the BTGR spectrum
estimator:

ŜBT(e
j�) = y�D(ej�)WD(e�j�)y

W =
1

N

�

��

W (ej�)	(ej�)	�(ej�)
d�

2�
:

(7)

The BTGR spectrum estimator satisfies (3), withQ(0) = W: a
positive-definite Toeplitz matrix.

Notice that the representation given in (7) is valid for estimators
defined in either the time or frequency domain, as in (5). This
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Fig. 1. Multichannel filterbank implementation of the multiple window estimator.

allows us to include in our discussion estimators, such as the Daniell
spectrogram [6], that are based on manipulating the periodogram in
the frequency domain.

IV. EQUIVALENCE OF LAG-WINDOWED AND

MULTIPLE-WINDOWED SPECTRUM ESTIMATORS

We claim that lag-windowed spectrum estimators are basically
equivalent to a multiple-data-window implementation usingN�
data windows, where2�� is the resolution bandwidth employed.
We will defend this claim for “good” lag-window estimators that
approximate the ideal lowpass filter of bandwidth2��. We choose
this characterization of good windows because it encapsulates the
properties of a desirable window sequence: namely, out-of-band
rejection and minimal distortion in the main lobe.

Let W (ej�) be the real, non-negative symmetric frequency re-
sponse of a lag-window sequencefwkgN�1

�(N�1) of bandwidth2��.

Let B(ej�) be the frequency response of the ideal lowpass filter of
bandwidth2��. We assume thatW (ej�) andB(ej�) are normalized
so that

�

��

W 2(ej�)
d�

2�
=

�

��

B2(ej�)
d�

2�
= 1: (8)

Define the real, symmetric error function

E(ej�) = B(ej�)�W (ej�): (9)

We sayW (ej�) is a “good” lowpass filter (and, hence, window) if

�

��

E2(ej�)
d�

2�

1=2

< � (10)

for � a small positive number.
Each of these frequency responses defines a corresponding Toeplitz

matrix:

W =
�

��

W (ej�)	(ej�)	�(ej�)
d�

2�
� 0

B =
�

��

B(ej�)	(ej�)	�(ej�)
d�

2�
� 0

E =
�

��

E(ej�)	(ej�)	�(ej�)
d�

2�
:

(11)

For any eigenvalue� 2 �(E) with corresponding eigenvector
u = (u0; . . . ; uN�1)

T , we have�u = Eu, from which it follows
that (�u)i = (Eu)i. Therefore

j�uij = j(Eu)ij
=

�

��

E(ej�)U(ej�)ej�i
d�

2�
(since	�(ej�)u = U(ej�))

�
�

��

jE(ej�)U(ej�)ej�ij d�
2�

�
�

��

E2(ej�)
d�

2�

1=2 �

��

jU (ej�)j2 d�
2�

1=2

(12)

� � (13)

where (12) follows from the Cauchy–Schwartz inequality, and (13)
follows from the orthonormality of the eigenvectors ofE and the
bound from (10). Sinceu�u = 1, we see that at least one of the
entries inu, sayuk, satisfiesjukj � 1=

p
N . Hence, our bound on

each eigenvalue is

j�j � �
p
N: (14)

In particular, the matrix norm ofE satisfies

kEk2 = max
i

j�ij �
p
N�: (15)

To complete our analysis, we use the Hoffman–Wielandt theorem
for perturbed matrices, which is stated in the following theorem [7].

Theorem 1: Let A;E be twoN � N matrices. Assume thatA
is Hermitian and thatA + E is normal. Letf�1; . . . ; �Ng be the
eigenvalues ofA arranged in decreasing order, and letf�̂1; . . . ; �̂Ng
be the eigenvalues ofA + E arranged so thatRe�̂1 � Re�̂2 �
� � � � Re�̂N . Then

N

i=1

j�̂i � �ij2
1=2

� kEk2:

Proof: See [7].
We may use this theorem to see that forf�ig = feigenvalues of

Bg and f
ig = feigenvalues ofWg, each arranged in increasing
order, we have

1

N

N

i=1

j
i � �ij2 � �: (16)

Therefore, for� small,B andW have equivalent eigenvalue dis-
tributions. We know [5] thatB has approximatelyN� dominant
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Fig. 2. First 50 eigenvalues corresponding to the three window sequences: Spectral Smoothing, Bartlett, and Kaiser forN = 300.

Fig. 3. Result of estimation for full rank and reduced rank Spectral Smoothing.

eigenvalues, and therefore, forW corresponding to a small�, we
have

rank(W) � N�: (17)

Hence, “good” lag-windowed spectrum estimators may be imple-
mented by a multiple window estimator with�N� data windows
corresponding to the weighted dominant eigenvectors ofW.

V. EXACTLY LOW-RANK BTGR SPECTRUM ESTIMATORS

The low-rank factorization is trivial for estimators based on sums
of sinusoids (Hamming, Hanning, Blackman, etc.). This comes im-
mediately from the definition of the window sequences. For example,
the generalized Hamming window defined by

wk = a+ b cos(�k) (18)
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Fig. 4. Result of estimation for full rank and reduced rank Bartlett window.

Fig. 5. Result of estimation for full rank and reduced rank Kaiser window.

has the estimator matrix

W = a11
T +

b

2
[	(ej�)	�(ej�) +	(e�j�)	�(e�j�)] (19)

where1 = [1; 1; . . . ; 1]T and, hence, has rank 3 independent ofN .
In a similar fashion, we find that the Blackman window has rank 7.
The Daniell estimator [6] is given by

Ŝ(ej�) =
1

2K + 1

K

i=�K

ŜP e
j(�� ) (20)

=
�

��

W e
j(���)

ŜP (e
j�)

d�

2�
(21)

where

W (ej�) =
1

2K + 1

K

i=�K

� � �
2�i

M
: (22)

The window sequence corresponding to this estimator is

wk =
1

2K + 1
1 +

K

i=�K

cos
2�

M
ik (23)

so we see thatW has rank2K + 1.
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VI. EXAMPLES

We will demonstrate the low-rank multiple window implementation
of several commonly used BTGR window sequences for a 12th-order
moving average process. In each case, our data length is 300 samples,
which means the Rayleigh limit to resolution is2�=300. We will
employ the Bartlett, Kaiser, and Spectral Smoothing windows. The
latter is defined bywk = sinc(��k) where � is the normalized
bandwidth over which the smoothing is to occur (we choose� =

0:01 so that 2�� is 2�=100, which is three times the Rayleigh
limit).

The eigenvalues of the matrices corresponding to each window are
shown in Fig. 2. It is clear that each allows an extremely low-rank
multiple window implementation. The results of the spectral estima-
tion are shown in Figs. 3–5 for the full-rank BTGR implementation
and for the reduced rank multiple window implementation. In all of
the figures, the solid line is the exact MA spectrum. It can be seen
that the low-rank approximations to the lag-windowed estimators give
results that are very close to the full-rank estimates.

VII. CONCLUSION

We have argued that BTGR spectrum estimators are essentially
multiple-data-window estimators. This correspondence was shown
for estimators employing “good” lag-window sequences, meaning
they approximate an ideal lowpass filter with smallL2 error. In this
case, the kernel is low rank—an observation made experimentally
in [8]—and a lag-window estimator may be implemented as a
multiple-data-window estimator employingN� windows, where�
is the normalized bandwidth over which the BTGR smoothes the
periodogram estimate.

Does the argument go the other way? That is, can every multiple-
data windowed spectrum estimator be realized as a lag-windowed
or spectrally smoothed BTGR spectrum estimator? The answer is
no because the representations of (3) and (4) allow forany non-
negative definite (Hermitian) matrix or kernelQ(0). Only those
kernelsQ(0) = V�V that approximate Toeplitz matricesW whose
spectrumW (ej�) is narrowband will have BTGR representations. In
fact, from the argumentation in [3] and [4], it is exactly these kernels
that produce good bias-variance tradeoffs for reduction in mean-
squared error. Therefore, we may say thatnarrowbandlag-windowed
and good multiple-data-windowed spectrum estimators are roughly
equivalent, allowing for the exception that a bad multiple-window
spectrum estimator may have no lag-windowed representation. This
result shows that there is no fundamental difference between lag-
windowing a correlation sequence andmultiple windowing a data
sequence when the objective is to reduce the mean-squared error of
a spectrum estimator.

There is a slight computational advantage to the multiple window
technique when the effective rank of the lag-window matrix is very
small (<6). This saving comes about from the fact thatN -point
FFT’s can be used for the multiple window procedure, whereas
the lag-windowed estimation requires2N -point FFT’s to estimate
the correlation sequence. The rank of the commonly used window
sequences tends to meet this requirement.

Finally, mean squared error computations are somewhat easier to
carry out for multiple windowed spectrum estimators than for lag-
windowed estimators (see, for example, [4]). Therefore, one way to
compute performance bounds for BTGR spectrograms is to analyze
the equivalent low-rank Thomson estimator.
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A Nonparametric Phase Estimation
Method for SIMO Systems Based on

Second-Order and Higher Order Statistics

Zhen Mao and Zhi Ding

Abstract—In this correspondence, we present a nonparametric phase es-
timation algorithm for linear single-input multiple-output (SIMO) chan-
nels. Given an unknown stationary input signal with known statistics, our
approach is to obtain the joint minimum mean square phase estimation
based on the polyspectra and the cross-spectra of the SIMO channel
outputs. By utilizing both higher order and second-order statistics of the
channel outputs, our approach is shown to be more accurate and reliable
than methods based on higher order statistics alone. It can be applied to
SIMO channels with common zeros.

I. INTRODUCTION

The problem of channel identification for linear single-input
multiple-output (SIMO) linear systems is often encountered in
communications, surveillance, and geophysical signal processing.
In blind SIMO system identification, both the channel input and
the channel response are unknown. Channel identification must rely
exclusively on the channel output and known statistics of channel
input. Once the SIMO system is estimated, its input signal can be
extracted by deconvolution.

For single-input single-output systems, phase information of the
channel frequency response is contained in the higher order statistics
of channel output signals. Existing nonparametric algorithms typically
utilize the polyspectra of channel outputs for phase recovery of
nonminimum-phase systems. In [3], a simple nonparametric FFT
method was presented for channel phase recovery from polyspectra.

Manuscript received December 1, 1995; revised September 1, 1998. This
work was supported in part by the National Science Foundation and by the
US Army Research Office under Grant DAAH04-G4-G-0252. The associate
editor coordinating the review of this paper and approving it for publication
was Prof. Kon Max Wong.

The authors are with the Department of Electrical Engineering, Auburn
University, Auburn, AL 36849 USA.

Publisher Item Identifier S 1053-587X(99)01347-1.

1053–587X/99$10.00 1999 IEEE



844 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999

Fig. 1. Equivalent discrete SIMO system model.

Unfortunately, polyspectra tend to be unreliable when available data
length is short. Moreover, errors in polyspectral phase unwrapping
can be particularly exacerbating.

Fortunately, for SIMO systems, additional statistical information
can be utilized. In particular, second-order statistics of SIMO system
outputs contain additional phase information that can be used in
the phase estimation of channel frequency response. Second-order
cross-spectra of channel outputs are easier to estimate and tend
to be more accurate for limited data length. In fact, a SIMO
channel estimation based only on cross-spectra has been presented
in [9]. Thus, an algorithm utilizing information from higher order
statistics and second-order cross-spectra is expected to generate better
performance than strictly higher order or second-order statistical
algorithms.

In this correspondence, we will present a new nonparametric
method for the phase identification of SIMO channels based on
polyspectra and cross-spectra of the output signals. Our approach
is derived to minimize the joint mean square phase error between the
measured and the estimated spectral phases. As will become evident
later, it is a simple linear approach that can be implemented through
FFT directly.

II. PROBLEM DESCRIPTION

The SIMO system model can be used for communication systems
with multiple antenna elements. Given sufficient channel bandwidth,
the analog channel output in quadrature amplitude modulation (QAM)
systems can be sampled at higher than the baud rate to yield
an equivalent SIMO linear system model [5], [6]. In geophysical
exploration, multiple sensors can also be used to record multiple
output signals driven by a common input.

Let xk denote the i.i.d. non-Gaussian input of a system as shown
in Fig. 1. Assuming that there arep subchannels in the SIMO system
with impulse responseshi[k], their outputsyi[k] can be written as

yi[k] =

1

n=�1

xkhi[k � n] + wi[k]; i = 1; 2; . . . ; p (2.1)

wherewi[k] are channel noises that are stationary, Gaussian, and
independent of the channel inputxk. Both xk andwi[k] are white
and zero mean with variance�2x and�2w, respectively.

Our goal is to identify the unknown linear system from output
signalsfyi[k]g. Commonly known as blind channel identification,
this task can rely on statistical knowledge of the channel input
sequence as well as the measurable output signal. Note that if the
subchannels are FIR of known order, “deterministic” algorithms can
also be applied [4]. Here, we assume no prior knowledge on the
model of the subchannels and use the statistical approach.

Based on the SIMO equivalent model, its second-order output
statistics can be represented by the power spectra and cross spectra

of subsequencesyj [n]. The SIMO system is fully characterized by
the magnitude and the phase of each transfer functionHi(!) =
1

k=�1
hi[k]e

jk!: If the background noise level�2w is known,
the magnitudejHi(!)j can typically be estimated from the power
spectrum ofyi[k]

Pi(!) = �
2

xjHi(!)j
2 + �

2

w:

Thus, the key obstacle in blind channel identification is the
estimation of the channel phase�(!) = 6 Hi(!) from its output
statistics. For a SIMO linear system with a common stationary
input, channel phase information is contained in both the polyspectra
and the cross-spectra of output signals. If only the second-order
statistics are used, then common zeros among subchannels cannot
be identified [9]. To resolve the ambiguity caused by common zeros
among subchannels, higher order statistical information should be
exploited jointly with second-order statistics. In the next section, a
minimum mean square phase error algorithm for SIMO channel phase
estimation will be presented that exploit both the second-order and
the higher order statistical information of output signals.

III. M INIMUM MSE PHASE ESTIMATION ALGORITHM

A. SIMO Channel Phase Information

Since subchannel noiseswi[k] are independent with zero mean, it
then follows that the cross spectrum between subsequencesyi[n] and
yj [n] is given by

Sij(!) = �
2

xHi(!)H
�
j (!); 1 � i; j � p:

In addition, higher order statistics also provide additional phase
information. Therefore, our algorithm should focus on the bispectra
or the trispectra of subchannel outputs as they can be estimated more
accurately from a fixed length data sequence [1] and [2], However, as
will become apparent in the derivation, phase information from other
polyspectra can be similarly exploited either jointly or separately.

For notational simplicity, we only consider the case ofp = 2. Our
derivation, however, does apply to more general SIMO systems. Since
xk is an i.i.d non-Gaussian random sequence andwk is a Gaussian
noise, the trispectra of the two outputs are given [1] by

Ti(!1; !2; !3) = 
4xHi(!1)Hi(!2)Hi(!3)H
�
i (!1 + !2 + !3)

i = 1; 2: (3.1)

Here, we denote
4x 6= 0 as the fourth-order cumulant of the input
signal xk at zero lag. Consequently, the trispectral phase and the
subchannel phases are related via

	i(!1; !2; !3) =

3

k=1

�i(!k)� �i(!1 + !2 + !3); i = 1; 2:

(3.2)

Similarly, the cross-spectral phase	12(!) satisfies

	12(!) = �1(!)� �2(!): (3.3)

Based on the above measurable phase information from trispectra
and cross-spectra, subchannel phase functions�̂1(!) and�̂2(!) are
to be estimated. Our phase identification is based on minimizing the
mean square error between estimated spectral phases and measured
spectral phases. Let

�	i(!1; !2; !3) = 	i(!1; !2; !3)�

3

j=1

�̂i(!j)

+ �̂i(!1 + !2 + !3); i = 1; 2: (3.4)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999 845

(a) (b)

Fig. 2. Comparison of SIMO phase estimates.

Given the phase difference, the mean square error (MSE) of spectral
phase can be defined as

MSE
1

2�

�

��

j	12(!)� �̂1(!) + �̂2(!)j
2
d!

+
1

(2�)3

�

��

[j�	1(!1; !2; !3)j
2

+ j�	2(!1; !2; !3)j
2] d!1 d!2 d!3: (3.5)

We shall derive a nonparametric algorithm that will estimate the
SIMO phase responses to minimize the MSE.

Note that the channel noises are assumed to be independent so that
they do not affect the cross-spectrum. This additional assumption is
important to the accuracy of cross-spectral phase information. Our
approach may not be suitable when subchannel noises are strong and
correlated.

B. Algorithm Development

Because discrete Fourier transform (DFT) is used to determine
	1(!1; !2; !3), 	2(!1; !2; !3), and	12(!), both trispectral phases
are2�-periodic in!1; !2, and!3, whereas the cross-spectral phase is
also2�-periodic in!. Moreover, the desired phase estimates�̂1(!)
and�̂2(!) are also2�-periodic. Hence, we can define the (imaginary)
cepstral sequences

 i(n1; n2; n3) =

1

(2�)3

�

��

	i(!1; !2; !3)e
�j(n ! +n ! +n ! )

d!1 d!2 d!3

i = 1; 2: (3.6)

We also have

 12(n) =
1

2�

�

��

	12(!)e
�jn!

d! (3.7)

�̂i(n) =
1

2�

�

��

�̂i(!)e
�jn!

d!; i = 1; 2: (3.8)

Consequently, trispectrum phases and cross-spectrum phase can be
written as

	i(!1; !2; !3) =
n n n

 i(n1; n2; n3)e
jn !

e
jn !

e
jn !

i = 1; 2 (3.9)

and

	12(!) =

1

n=�1

 12(n)e
jn! (3.10)

�̂i(!) =

1

n=�1

�̂1(n)e
jn!

; i = 1; 2: (3.11)

By substituting (3.9)–(3.11) into (3.5) and using the orthogonality of
sinusoidal harmonics, the minimum mean square error is given by

MSE=

2

i=1 n n n

j i(n1; n2; n3)j
2 �

n6=0

(j i(n; 0; 0)j
2

+ j i(0; n; 0)j
2 + j i(0; 0; n)j

2) +
n6=0

(j i(n; 0; 0)

� �̂i(n)j
2 + j i(0; n; 0)� �̂i(n)j

2 + j i(0; 0; n)

� �̂i(n)j
2)�

n

j i(n; n; n)j
2 + j i(0; 0; 0)

� 2�̂i(0)j
2 +

n6=0

j i(n; n; n) + �̂i(n)j
2 +

n

j 12(n)

� �̂1(n) + �̂2(n)j
2
: (3.12)

Thus, the optimum solutionsf�̂y1(n)g andf�̂y2(n)g for this equation
can be found as

�̂
y
1(0) =

1

8
f3 1(0; 0; 0) +  2(0; 0; 0) + 2 12(0)g (3.13)

�̂
y
2(0) =

1

8
f( 1(0;0; 0) + 3 2(0;0; 0)� 2 12(0)g (3.14)

�̂
y
1(n) =

1

24
f5[ 1(n; 0; 0) +  1(0; n; 0) +  1(0; 0; n)

�  1(n; n; n)] + [ 2(n; 0; 0) +  2(0; n; 0) +  2(0; 0; n)

�  2(n; n; n)] + 4 12(n)g (3.15)

�̂
y
2(n) =

1

24
f[ 1(n; 0; 0) +  1(0; n; 0) +  1(0; 0; n)]

�  1(n; n; n)] + 5[ 2(n; 0; 0) +  2(0; n; 0) +  2(0; 0; n)

�  2(n; n; n)]� 4 12(n)g: (3.16)

Similarly, if the bispectra of the channel outputs are not zero, then
the channel phases can be estimated jointly from the phases of cross-
spectra and bispectra. In particular, the phases of the bi-spectra are
related to the phase of the subchannels via

	i(!1; !2) =

2

k=1

�i(!k)� �i(!1 + !2); i = 1; 2:
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(a) (b)

Fig. 3. Comparison of SIMO impulse response estimates.

(a) (b)

Fig. 4. Comparison of MSE in SIMO impulse response estimates for different length.

(a) (b)

Fig. 5. Comparison of MSE in SIMO impulse response estimates at different SNR.
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Define bi-cepstra as

 i(n1; n2) =
1

(2�)3

�

��

	i(!1; !2)e
�j(n ! +n ! )

d!1 d!2

i = 1; 2: (3.17)

The spectral MSE can be determined as

MSE=

2

i=1 n n

j i(n1; n2)j
2 �

n

(j i(n; 0)j
2 + j i(0; n)j

2

+ j i(n; n)j
2) + 2j i(0; 0)j

2 +
n6=0

(j i(n; 0)� �̂i(n)j
2

+ j i(0; n)� �̂i(n)j
2 + j i(n; n) + �̂i(n)j

2) + j i(0; 0)

� �̂i(0)j
2 +

n

j 12(n)� �̂1(n) + �̂2(n)j
2
: (3.18)

Thus, the optimum solutionsf�̂y1(n)g and f�̂y2(n)g that minimizes
the MSE can be obtained from

�̂
y
1(0) =

1

3
f2 1(0;0) +  2(0; 0) +  12(0)g (3.19)

�̂
y
2(0) =

1

3
f( 1(0;0) + 2 2(0; 0)�  12(0)g (3.20)

�̂
y
1(n) =

1

15
f4[ 1(n; 0) +  1(0; n)�  1(n; n)]

+ [ 2(0; n) +  2(n; 0)�  2(n; n)] + 3 12(n)g (3.21)

�̂
y
2(n) =

1

15
f4[ 2(n; 0) +  2(0; n)�  2(n; n)]

+ [ 1(0; n) +  1(n; 0)�  1(n; n)]� 3 12(n)g: (3.22)

These phase estimates can be straightforwardly extended forp

subsystems. The MSE and a corresponding algorithm can be sim-
ilarly defined and derived when other polyspectral information is
to be exploited either jointly or separately. Because the algorithm
is nonparametric, it does not require any channel model or order
estimation. It is therefore simple and robust. Moreover, the DFT steps
can be easily and efficiently implemented using FFT.

IV. SIMULATION RESULTS

To demonstrate the performance of this minimum MSE method,
we present an example of SIMO identification based on bispectra and
cross-spectra. In this example, a two subchannel system (p = 2) is
chosen, and the two subchannels are characterized by

H1(z) =
1� 2:95z�1 + 1:9z�2

1� 1:3z�1 + 1:05z�2 � 0:325z�3
(4.1)

H2(z) =
(1� 0:2z�1 + 0:04z�2)

(1� 1:352z�1 + 1:338z�2 � 0:662z�3 + 0:24z�4)

(4.2)

respectively. The input signalxk is an independent random sequence
with density function

f(x) = e
�(x+1)

u(x+ 1):

The noise is i.i.d. Gaussian, and the overall signal-to-noise ratio is
set at 12 dB. A total of 64� 20 input data samples are used for
spectral estimation.

In our simulation, channel output data are used to estimate the
bispectra and cross-spectra using 5� 5 and 5 � 1 smoothing
windows, respectively. The spectral phases are unwrapped under
the continuity assumption. From phases of estimated bispectra and
cross-spectrum, the two subchannel phases are estimated using the
minimum MSE method. The results are used to compare with a
nonparametric minimum MSE algorithm based on polyspectra alone

[3]. The phase estimates of the two subchannels are shown in Fig. 2.
The impulse responses of the two subchannels based on the estimated
phase and (ideally) known magnitude are shown in Fig. 3.

Next, we illustrate the impact of the data length and SNR on the re-
sult of the estimation algorithm. Results are averaged over 100 Monte
Carlo simulation runs. Under SNR= 10 dB, we determine the MSE
between the true channel impulse response and the estimated channel
impulse response. The comparative results in Fig. 4 demonstrate the
asymptotic improvement of the new method for larger number of data
samples. Last, we illustrate the effect of the channel signal-to-noise
ratio on the estimation result. The results are shown in Fig. 5.

V. CONCLUSION

In this correspondence, we presented a new nonparametric method
for the phase identification of SIMO channels based on the polyspec-
tra and the cross-spectra of subchannel outputs. Our approach is based
on the minimization of a joint mean square phase error between the
measured and the estimated phase of polyspectra and cross-spectra.
Our method is linear and can be implemented using FFT. It is readily
extendable to other spectral information sources as they become
available.
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Exploiting Input Cyclostationarity for Blind
Channel Identification in OFDM Systems

Robert W. Heath, Jr. and Georgios B. Giannakis

Abstract—Transmitter-induced cyclostationarity has been explored
recently as an alternative to fractional sampling and antenna array
methods for blind identification of FIR communication channels. An
interesting application of these ideas is in OFDM systems, which induce
cyclostationarity due to the cyclic prefix. In this correspondence, we
develop a novel subspace approach for blind channel identification using
cyclic correlations at the OFDM receiver. Even channels with equispaced
unit circle zeros are identifiable in the presence of any nonzero length
cyclic prefix with adequate block length. Simulations of the proposed
channel estimator along with its performance in OFDM systems com-
bined with impulse response shortening and Reed–Solomon coding are
presented.

I. INTRODUCTION

Recently, there has been interest in filter bank precoding for
communication systems impaired by frequency-selective fading chan-
nels [5], [14]. Although similar forms of precoding have been
considered in the past [7], current interest focuses on the intro-
duction of discrete-time cyclostationarity by the multirate precoder
to enable blind channel identification at the receiver. Transmitter-
induced cyclostationarity, which can be introduced either with filter
banks [5], repetition coding [14], or modulation [13], allows for
blind identification of arbitrary FIR multipath channels without
zero-restrictions as in blind fractional sampling methods [4]. One
application of transmitter-induced cyclostationarity for blind channel
identification is orthogonal frequency division multiplexing (OFDM)
systems that can be considered a special case of the precoding
structure presented in [5].

OFDM has found renewed interest in recent years due to applica-
tions such as digital terrestrial TV [12], indoor wireless networks
[2], and mobile communications [11], which are all systems that
require communication in severe multipath channels. By inserting
a cyclic prefix before each transmitted block longer than the order of
the channel, OFDM effectively turns a frequency-selective channel
into a flat-fading channel. This allows, for simple, one-tap vector
equalization at the expense of a loss of 10–25% in efficiency
due to the extra symbols required by the cyclic prefix [17] as
well as increased sensitivity to timing, frequency synchronization
[15], and transmission nonlinearities accentuated by the nonconstant
modulus of OFDM signals. Channel estimation in these systems
is performed by inserting training data in either the time or the
frequency domain, further decreasing the efficiency. Alternatively,
differential encoding may be used in place of equalization if a
constant modulus constellation (say, QPSK) is transmitted at the
expense of less bandwidth efficiency. Unfortunately, if the channel
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Fig. 1. OFDM transmitter.

impulse response is longer than the cyclic prefix, interference occurs,
and the simple equalization property is lost.

In this correspondence, we use the cyclostationarity induced by the
cyclic prefix in the OFDM system to develop an algorithm for blind
channel estimation. The subspace approach of [13] is generalized
here to multirate precoders and is proposed for OFDM systems as
an alternative to the nonlinear matching approach of [5]. The blind
nature of this estimation allows more data to be used for information
transfer or for coding. As shown in [6], this approach is robust to
the presence of stationary noise and channel overestimation error
and does not require the cyclic prefix to be longer than the channel
memory. Since we can estimate channels regardless of the cyclic
prefix and without training data, the conclusion in [17] that channel
coding is better than subchannel equalization must be re-evaluated. A
blind algorithm for equalization was considered in [3], which uses a
property of the digital-to-analog converter at the receiver and does not
employ a cyclic prefix. With the absence of a cyclic prefix, however,
this approach can only result in partial elimination of the intersymbol
interference caused by the channel.

This correspondence is organized as follows. In the next section, we
provide an overview of the OFDM system. Section III then considers
the problem of blind channel identification using the cyclostationarity
inherit in the OFDM transmitter. We present simulations of the
proposed algorithms in Section IV.

II. THE OFDM SYSTEM

Consider the OFDM transmitter in Fig. 1. The OFDM modulator
takes theM -point IDFT of a block ofM input symbols from the
coder and appends a sequence ofL < M symbols to the beginning
of each block (see Fig. 2). In this way, the OFDM modulator can be
viewed as a rateM=(M +L) block code operating in the real field.
To describe the input/output relationship at various points, letP =
M + L, and adopt the polyphase notationssm(n) = s(nM +m);
wp(n) = w(nP + p); xp(n) = x(nP + p) to denote themth or pth
symbol in thenth block of data at the input to the modulator, output
of the modulator, and at the output of the channel, respectively (see
Figs. 1–3). Then, the sequence to be transmitted is

wp(n) =

M�1

m=0

sm(n)ej m(p�L); p = 0; . . . ; P � 1 (1)

with theexp(j2�m(�L)=M) accounting for the cyclic prefix, which
is a repetition of the lastL frequency domain symbols as in Fig. 4.
During transmission,wp(n) is pulse-shaped withg(tr)c (t), propagates
through an unknown frequency selective channelg

(ch)
c (t), is degraded

by additive white Gaussian noise (AWGN)�c(t), and is filtered by
g
(rec)
c (t) on reception. With? denoting linear convolution, letgc(t) =
g
(tr)
c (t) ? g

(ch)
c (t) ? g

(rec)
c (t) and h(n) = gc(nT + �) denote the

orderLh composite discrete-time channel, and letv(n) = g
(rec)
c (t)?

�c(t)jt=nT+� denote the received AWGN (assuming Nyquist pulse
shaping). Note that the channel model explicitly incorporates the
symbol timing error � 2 [0; T ). Assuming that the block size

1053–587X/99$10.00 1999 IEEE
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Fig. 2. OFDM frame structure.

Fig. 3. Baseband equivalent transmission channel.

Fig. 4. OFDM receiver.

M is greater thanLh, only two blocks can overlap due to ISI.
We use polyphase notation to separate the channel outputx(n) =

L

l=0 h(l)w(n� l)+ v(n) into one part that depends on the present
symbols sm(n) and one part that depends on the past symbols
sm(n�1); m 2 [0;M�1]. Then, the input to the OFDM demodulator
for p 2 [0; P � 1] is

xp(n) =

M�1

m=0

sm(n)ej m(p�L)

L

l=0

h(l)e�j ml

�

P�1

r=0

�(r � (p� l)) +

M�1

m=0

sm(n� 1)ej m(p�L)

�

L

l=0

h(l)e�j2�m(l�P )
�(r � (p� l+ P )) + vp(n) (2)

where the summation over deltas constrains the ranges of(p� l) and
(p� l + P ) to lie in [0; P � 1]. Assuming correction for frequency
offset [15], the demodulator then removes the firstL symbols
corresponding to the cyclic prefix and takes theM -point DFT
to obtain yk(n) = 1

M

M�1
p=0 xp+L(n)e

�j pk, which, in general,

equals

yk(n) =
1

M

M�1

m=0

sm(n)

M�1

p=0

e
j p(m�k)

L

l=0

h(l)e�j ml

�

P�1

r=0

�(r � (p+ L� l))

=
1

M

M�1

m=0

sm(n� 1)

M�1

p=0

e
j p(m�k)

L

l=0

h(l)e�j m(l�P )

�

P�1

r=0

�(r � (p+ L� l+ P )) + vk(n) (3)

wherevk(n) is the transformed noise. By choosing the cyclic prefix
to be as long as the order of the channel, e.g.,L � Lh, the second
sum in (3) becomes zero because(p�l+L+p) 2 [P; 2P+Lh�1] 62
[0; P � 1]. The sum overp in the first term becomes�(m� k) since
(p� l+ L) 2 [0; P � 1], and thus, (3) simplifies to (in the absence
of noise)

yk(n) = sk(n)H
2�

M
k : (4)
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Fig. 5. OFDM receiver with impulse response shortening.

Fig. 6. Averaged channel estimates� standard deviation forP = 19; M = 15; I = 100; and SNR= 20 dB.

The fact that OFDM effectively turns a frequency-selective fading
channel into a flat-frequency fading channel is evident in (4). Clearly,
equalization amounts to correctingyk(n) for a phase and a scale
factor for eachk. In fact, for PSK constellations incorporated with
subchannel differential encoding, channel estimation is unnecessary.
Unfortunately, many applications use nonconstant modulus symbol
sets to improve transmission efficiency, thus requiring the estimation
of fH(2�k=M)gM�1

k=0
.

The ease in equalization due to (4) is not without drawbacks. The
presence of the DFT at the receiver places stricter requirements on
synchronization [15]. Additionally, (4) exhibits reduced performance
in spectral nulls. In wireline transmission schemes such as discrete
multitone transmission (DMT), the channel knowledge is used by
the transmitter for adaptive loading and/or power control [1]. In
broadcast and wireless OFDM, this problem is resolved by using
coding. A variety of schemes for coding have been proposed, typically
employing some sort of convolutional coding, interleaving, and
concatenation [8], for the purpose of correcting the resulting bursty
errors.

Since the length of the cyclic prefix is chosena priori, interference
occurs as shown in (3) due to the coefficients ofh(l), for l > L. This

creates problems in channel estimation that relies on the structure in
(4) and results in symbol errors caused by the ISI term. This problem
can be eliminated by employing decision feedback [16] or impulse
response shortening [9]. Since decision feedback has a complexity
that increases with the size of the DFT, we focus on impulse response
shortening (see Fig. 5), which consists of designing a prefiltera(n)
such that the composite channela(n)?h(n) has energy concentrated
in the desired duration chosen for the cyclic prefix [9]. In the next
section, we develop an algorithm for blind channel estimation that
does not require the channel to be shorter than the cyclic prefix.
We apply impulse response shortening when the channel duration
exceeds the duration of the cyclic prefix. This approach allows for
a reduction of the cyclic prefix and elimination of training data so
that the system can provide a higher data rate or greater reliability
through increased coding.

III. B LIND CHANNEL IDENTIFICATION

With the presence of a cyclic prefix in the OFDM transmission
scheme, we are motivated to look for cyclostationarity in the output of
the encoder as in [5]. Assume the symbolssm(n) from the encoder in
Fig. 1 are white and zero-mean with variance�2s , takeP > M , and,
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Fig. 7. Channel error versus number of symbols forM = 15; P = 19; I = 100; SNR = 20 dB.

Fig. 8. Channel error versus SNR forM = 15; P = 19; I = 100120 M data.

Fig. 9. Channel error versus size of cyclic prefix forM = 15; I = 100120 M data (withP = M + Lh varying accordingly).

using (1), examine the time-varying correlationcww(nP + p; � ) :=
Efwp(n)w

�

p+� (n)g at the output of the modulator

cww(nP + p; � ) =

M�1

m =0

M�1

m =0

E sm (n)s�m (n) e
j m (p�L)

� e
�j m (�+p�L)

P�1

r=0

�(r � (p+ � )) (5)

= �
2
sM �(� ) + �(� �M)

P�M�1

r=0

�(p� r)

+�(� +M)

P�1

r=M

�(p� r) : (6)

Since the right-hand side of (6) depends only onp, the output of
the encoder is cyclostationary with periodP . Note that if we take
P = M , then (6) would instead becomecww(nP+p; � ) = �2sM�(� )
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Fig. 10. Channel error versus overestimated order forM = 15; I = 100; 120 M data (withP = M + Lh varying accordingly).

Fig. 11. Channel error versus overestimated order forM = 15; P = 19; I = 100120 M data.

Fig. 12. Channel error versus number of blocks of data forM = 15; P = 19; I = 100 for the one cycle approach with cycles1 . . . 6.

because of the orthogonality of the exponentials, and periodicity is
lost. Linear, time-invariant filtering does not change cyclostationarity;
consequently, we expect periodicity in the time-varying correlation
at the output of the channel

cxx(nP + p; � ) =

L

l=0

h(l)h�(l+ � � q)cww(n� l; q)

+ cvv(nP + p; � ) (7)

which is indeed the case. If the noise is AWGN, then it
has a time-varying correlation that simplifies tocvv(nP +

q; � ) = �2v�(� ) in (7). To avoid stationary noise, we con-
sider the cyclic correlation, which is defined as the Fourier
series expansion of the time-varying correlationCyy(k; � ) =

(1=P ) P�1

p=0
cyy(p; � ) exp(�j2�kp=P ). The cyclic correlation

of the encoder output isCww(k; � ) = (�2sM=P )f�(�)�(k) +

[�(� + M) exp(�j2�kM=P) + �(� � M)]E(k)g with E(k) :=
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Fig. 13. Channel error versus number of blocks of data forM = 15; P = 19; I = 100 for the two cycle approach with cycle 1 and cycles2; . . . ; 7.
Cycles are ordered4; 3; 5; 1; 2; 6 from top to bottom at120 M.

Fig. 14. RMS symbol estimation error—Adequate length cyclic prefix.

exp(�j�k(L�1)=P ) sin(�kL=P)= sin(�k=P ). We write the cyclic
correlation of the channel output in (7) as

Cxx(k; � ) =

L

l=0

M

q=�M

h(l)h�(l+ � � q)Cww(k; q)e
�j kl

+ Cvv(k; � ): (8)

The cyclic correlation of the noise isCvv(k; � ) = �2v�(� )�(k), which
is zero for nonzero cyclesk. Subsequently, we will assume thatk 6= 0
to avoid stationary noise.

The Z transform of the cyclic correlation with respect
to � defines the cyclic spectrum. For a particular cycle
k 6= 0, the output cyclic spectrum isSxx(k; z) = Sww(k; z)
H(exp(�j2�k=P )z�1)H�(z�), where Sww(k; z) = �2s(M=P )
f�(k) + [z�Mexp(�j2�kM=P)+zM ]E(k)g. Interestingly, if we
examine two cyclesk1 and k2, we can take the ratio of the cyclic

spectra to find

Sxx(k1; z)Sww(k2; z)H ej k z�1

= Sxx(k2; z)Sww(k1; z)H ej k z�1 : (9)

In the following development, we will only consider admissible
cyclesk, as defined in the following proposition.

Proposition 1: A cycle k is admissible ifk 6= 0, andCww(k; � )
is nonzero for at least one lag� . This occurs ifk is chosen such that
kL modP 6= 0. The set of all admissible cycles is nonempty, e.g.,
chooseL even andP odd.

Proof: If kL modP 6= 0, it follows that sin(�kL=P) 6= 0,
which for k 6= 0 implies thatE(k) 6= 0, and hence,Cww(k; � ) 6= 0
for at least one� , namely,� = M or � = �M .

To solve for the channel, we write (9) in matrix form. With
0 as transpose, leth = [h(0) � � � h(Lh)]

0 and Dk(Lh) =
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Fig. 15. Estimated probability of bit error with adequate-length cyclic prefix.

Fig. 16. RMS symbol error—Inadequate length cyclic prefix.

diag(1; . . . ; exp(j2�kLh=P )). Then, letT (w)
k

denote the(2M +

Lh +2) � (Lh + 1) Toeplitz matrix with first column [Cww

(k;�M); . . . ; Cww(k;M); 0; . . . ; 0] and first row [Cww(k;�M);

0; . . . ; 0]. Similarly, let T (x)
k

denote the(4M + 2L + Lh + 3)

�(2M + Lh + 2) matrix with first column [Cxx(k;�M � Lh);

. . . ; Cxx(k;M + Lh); 0; . . . ; 0] and first row [Cxx(k;�M � Lh);
0; . . . ; 0]. Then, we rewrite (9) and can solve for the channel (within
a scale nonidentifiable blindly) from

T h = 0; T := T
(x)
k
T

(w)
k

Dk � T
(x)
k
T

(w)
k

Dk : (10)
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Fig. 17. Estimated probability of bit error with inadequate-length cyclic prefix.

Note thatDk andT (w)
k are knowna priori while the coefficients

of T
(x)
k are the cyclic correlations at the receiver, which can be

consistently estimated using the sample cyclic correlation estimator
Ĉxx(k; �) = (1=N) N�1

n=0 x(n)x�(n+ � ) exp(�j2�kn=P ). Iden-
tifiability of the channel from (10) is established in the following
proposition.

Proposition 2: The channelfh(l)gLl=0 is uniquely identifiable
within a complex scalar from (10) if and only ifk1 andk2 are both
admissible, and there is nol 2 [1; Lh] such thatexp(�j2�k1l=P) =

exp(�j2�k2l=P).
Proof: The proof follows from the proof in [13] by noting that

the productT (x)
k T

(w)
k is a product of Toeplitz matrices, which is

Toeplitz.
One interesting pair of cycles isk and�k. BecauseCxx(�k; � ) =

C�
xx(k;��) exp(�j2�k�=P ) in Sxx(k; z) andSxx(�k; z), we can

solve for the channel from (10) using only one cyclic correlation,
which we call the one-cycle (OC) approach. Alternatively, with two
cycles, we can use a two-cycle (TC) approach and build three sets
of equations like (10) to possibly increase estimation accuracy. Note
that with slight modification, this channel identification formulation
can be applied to any transmitter that has a cyclostationary outputs.

Given a set of admissible cycles, it is desirable to know which
two cyclesk1 andk2 to choose to find the channel. From the cyclic
spectrum, we would like to pick the cycles such thatSww(k1; z) and
Sww(k2; z) are the “most different:” a requirement that is difficult
to quantify. SinceSww(ki; z) is only a function ofCww(ki;M) and
Cww(ki;�M), one option is to pickki such thatjCww(ki;M)j

(which conveniently equalsjCww(ki;�M)j) is maximum. From the
expression forCww(ki;M) (8), this occurs whenki is chosen such
that jE(k)j is maximized. Due to the odd symmetry of the sine
function, for anyk that maximizesjE(k)j, �k will also maximize
jE(k)j, and such a choice ofk and�k results in the OC solution
of (10). If we wish to use the TC solution, we should pick the
cyclesk1 andk2, which maximizesjE(k)j subject to the constraint

that jk2j 6= jk1j. With this choice of cycles, we will be estimating
the cyclic correlations that have the most significant energy when
compared with the noise power and using these coefficients to find
the channel. We use this method of cycle selection in the simulations
that follow.

IV. SIMULATIONS

In this section, we examine the performance of the OC, TC channel
estimates in the OFDM system. We use the root mean square error

(RMSE), which is defined as1
khk

1
I(L +1)

I

i=0 kĥ
i � hk2, and

the channel average bias 1
I(L +1)

L

l=0 j
I

i=0 ĥ
i(l) � h(l)j, both

averaged overI Monte Carlos to evaluate the channel error. To
evaluate the usefulness of the channel estimator in the receiver, we

employ the symbol RMSE1
�

1
IN

I

i=0
N

j=0 jŝ
i(l)� s(l)j2 and

the estimated probability of bit error.
Experiment 1: Here, we consider a two-ray multipath channel

hc(t) = e�j2�(0:15)rc(t�T=2; �)+ 0:8 e�j2�(0:6)rc(t� 5T=4; �),
whererc(t) is the raised cosine1 with rolloff � = 0:35 sampled at
t = 0; T; . . . ; 4T ; thus, Lh = 4. We usedI = 100, M = 15,
and 16 � QAM for modulation. In Fig. 6, withP = 19, we show
the average channel estimate for SNR= 20 dB and 120 M data
along with the channel error versus the number of blocks in Fig. 7.
The corresponding performance for 120 M data varied over SNR is
displayed in Fig. 8. From Figs. 7 and 8, we see that the estimator
is consistent and that the estimates improve as the noise power de-
creases. In Fig. 9, for SNR= 20 dB and 120 M symbols, we consider
the channel error asP = M + L and varies fromL = 1; . . . ; 15,
whereas the channel is fixed to observe how the estimate depends on
the differenceL = P �M . From Fig. 9, we see that although the
estimator works withL as small as1, increasing the length of the
cyclic prefix decreases the error. This is intuitively appealing because

1See [10] for information about the use of the raised-cosine pulse-shapping
filter in OFDM.
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we would like to trade off extra redundancy for error performance.
Next, we consider the channel RMSE for SNR= 20 dB when the
orderLh is overestimated andP = M + Lh in Fig. 10 and when
the order is overestimated withP = 19 in Fig. 11. In Fig. 10, we
see the beneficial effects of having a larger prefix, whereas Fig. 11
shows the graceful degradation when the channel is overestimated.

Experiment 2: In this experiment, we consider the effect of the
cycle chosen on the resulting channel error in estimating the two-
ray channel above. Fig. 12 considers the performance of the OC
approach forI = 100; P = 19; M = 15; SNR= 20 dB, and 120 M
symbols for cycles 1. . . 6, whereas Fig. 13 considers similarly the
performance using the TC approach with cycles 1 and 2. . . 7. Cycle
selection seems to have an effect on the channel error, but asymptotic
performance analysis is required to determine its precise role.

Experiment 3: Now, we look at the probability of bit error for
an OFDM system. In Fig. 14, we plot the RMS symbol estimation
error, and in Fig. 15, we plot the probability of bit error (assuming
Gray coding in selection of the 16 QAM symbols) estimated over
500 Monte Carlos of 500 M data for an OFDM system withM = 15
andP = 19, with and without a(15; 11) two symbol-error correcting
Reed–Solomon (RS) equivalent code for the artificial channelh =
[1; 2; 1;�1; 1]=

p
8. We used the standard OFDM ZF and MMSE

structures [12] to equalize theLh = 4 channel above. Next, we
consider the same channel andM = 15 and P = 17 to observe
the effects of channels longer than the cyclic prefix. We estimate the
channel as before but look at MMSE equalization with and without
the use of impulse response shortening [9] and RS(15;11) coding.
We used an eight-tap, zero-delay shortening filter derived from the
estimated channel. In Fig. 16, we plot the RMS symbol estimation
error, and in Fig. 17, we plot the estimated probability of error. For
comparison purposes, in Figs. 15 and 17, we plot the MMSE uncoded
and coded solutions for the case whenh(n) = �(n) as well as
when there is no attempt at equalization. In Fig. 15, we see that
the performance of the system using equalization with our channel
estimate approaches the performance of the case whereh(n) = �(n).
From Fig. 17, we see that impulse response shortening may be a
beneficial technique when combined with our channel estimate since
it reduces the the error floor present in the unshortened scenario.
Performance of impulse response shortening varies with the channel
and may be improved by changing shortening parameters. Further
improvements may be obtained using vector MMSE or vector MMSE
decision feedback equalizers at the expense of further complexity [6].

REFERENCES

[1] P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete
multitone transceiver loading algorithm for data transmission over spec-
trally shaped channels,”IEEE Trans. Commun., vol. 43, pp. 773–775,
Mar. 1995.

[2] L. J. Cimini, Jr., “Performance studies for high-speed indoor wireless
communications,”Wireless Pers. Commun., vol. 2, nos. 1–2, pp. 67–85,
1995.

[3] M. de Courville, P. Duhamel, P. Madec, and J. Palicot, “A least
mean squares blind equalization techniques for OFDM systems,”Ann.
Telecommun., vol. 52, nos. 1–2, pp. 12–20, Jan.–Feb. 1997.

[4] Z. Ding, “Characteristics of band-limited channels unidentifiable from
second-order cyclostationary statistics,”IEEE Signal Processing Lett.,
vol. 3, pp. 150–152, May 1996.

[5] G. B. Giannakis, “Filterbanks for blind channel identification and
equalization,”IEEE Signal Processing Lett., vol. 4, pp. 184–187, June
1997.

[6] R. W. Heath, Jr., “Mitigating channel distortions in wireless orthogonal
frequency division multiplexing communication systems,” Dept. Elect.
Eng., Univ. Virginia, Charlottesville, Aug. 1997.

[7] J. W. Lechleider, “The optimum combination of block codes and
receivers for arbitrary channels,”IEEE Trans. Commun., vol. 38, pp.
615–621, May 1990.

[8] B. L. Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency
division multiplex,” Proc. IEEE, vol. 83, pp. 982–996, June 1995.

[9] P. Melsa, R. C. Younce, and C. E. Rohrs, “Impulse response shortening
for discrete multitone transceivers,”IEEE Trans. Commun., vol. 44, pp.
1662–1672, Dec. 1996.

[10] T. Pollet and M. Moeneclaey, “The effect of carrier frequency offset on
the performance of band limited single carrier and OFDM signals,” in
Proc. GLOBECOM, London, U.K., Nov. 18–22, 1996, pp. 719–723.

[11] H. Sari, G. Karam, and I. Jeanclaude, “An analysis of orthogonal
frequency-division multiplexing for mobile radio applications,” in
Prof. Vehic. Technol. Conf., Stockholm, Sweden, June 8–10, 1994,
pp. 1635–1639.

[12] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for
digital terrestrial TV broadcasting,”IEEE Commun. Mag., pp. 100–109,
Feb. 1995.

[13] E. Serpedin and G. B. Giannakis, “Blind channel identification and
equalization using modulation induced cyclostationarity,”IEEE Trans.
Signal Processing, vol. 46, pp. 3099–3104, Nov. 1998; see alsoProc.
31st Conf. Inform. Sci. Syst., Johns Hopkins Univ., Baltimore, MD, vol.
II, Mar. 19–21, 1997, pp. 792–797.

[14] M. K. Tsatsanis and G. B. Giannakis, “Transmitter induced cyclosta-
tionarity for blind channel equalization,”IEEE Trans. Signal Processing,
vol. 45, pp. 1785–1794, July 1997.

[15] J.-J. van de Beek, M. Sandell, and P. O. Börjesson, “ML estimation
of time and frequency offset in OFDM systems,”IEEE Trans. Signal
Processing, vol. 45, pp. 180–1805, July 1997.

[16] L. Vandendorpe, “MMSE equalizers for multitone systems without guard
time,” in Proc. Euro. Signal Process. Conf., Sept. 10–13, 1996.

[17] E. Viterbo and K. Fazel, “How to combat long echoes in OFDM
transmission schemes: Sub-channel equalization or more powerful chan-
nel coding,” inProc. GLOBECOM, Singapore, Nov. 14–16, 1995, pp.
2069–2074.

On the Equivalence of Blind Equalizers
Based on MRE and Subspace Intersections

David Gesbert, Alle-Jan van der Veen, and A. Paulraj

Abstract—Two classes of algorithms for multichannel blind equalization
are the mutually referenced equalizer (MRE) method by Gesbertet
al., and the subspace intersection (SSI) method by van der Veenet al.
Although these methods seem, at first sight, unrelated, we show here that
certain variants of the SSI and the MRE methods both optimize a new
blind criterion, which is referred to as maximum coherenceand, thus, are
equivalent.

Index Terms—Array signal processing, fractionally spaced equalization,
mobile communications, multichannel blind equalization.

I. INTRODUCTION

Blind equalization has been an active research area during the last
few years. Two major factors appear to drive the wide interest in
this topic. First, there is an increasing number of interesting and
promising applications in the area of digital communications: wireless
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(a) (b)

Fig. 1. (a) Equalizer with delayk and (b) superequalizer, combining the outputs of several equalizers at different delays.

or otherwise. Second, it was recognized that channel oversampling,
either temporally (fractionally spaced equalizers) or in space (antenna
arrays), leads to a multichannel data representation that offers several
new leverages for solving the blind equalization problem and, thus,
enhances its applicability.

From an algebraic perspective, oversampling leads to a low-rank
model for the output vector signal. This has been extensively ex-
ploited in the so-called second-order statistics and algebraic methods
for the single-input, multiple-output (SIMO) identification problem
[1]. At least three classes can be identified. The first tries to estimate
the channels, viz., e.g., [2]–[4], the second considers the estimation of
channel inverses (equalizers) [5]–[7], and the third attempts to recover
the transmitted symbols directly from a (typically small) batch of
output samples without resorting to channel/equalizer estimates [8],
[9].

Categories 2 and 3 have the advantage of bypassing the channel
estimation step, and this can result in increased robustness. The direct
symbol-estimation methods [8], [9] have sometimes been called row-
span methods as they exploit the row-span information of the data
matrix to find the vector of unknown symbols. Following a seemingly
different strategy, MRE techniques [6] estimate a collection of
channel equalizers by forcing them to produce the same (unknown)
output sequence up to fixed equalization lags. The goal of this
correspondence is to demonstrate that these two methods are, in fact,
identical with small differences arising only due to variations in the
implementation.

In this correspondence, we first provide a new perspective of
the row-span method of [9] by showing that the symbol estimates
produced by this technique can be regarded as the outputs of linear
equalizer averaged across all equalization lags. We show that these
equalizers optimize amaximal coherence(MC) criterion. Finally,
we show the equivalence between the MC criterion and a particular
member in the class of MRE criteria.

Notation: For a vectorx, xt is its transpose,x� its conjugate-
transpose, andkxk its `2-norm. A sequence (row vector) with entries
xi is denoted byx = [xi].

II. DATA MODEL

A. Data Matrices

A digital symbol sequence[si] is transmitted through a medium
and received by an array ofM � 1 sensors. The received signals
are sampledP � 1 times faster than the symbol rate, which, here,
is normalized toT = 1. Hence, during each symbol period, a total
of MP measurements are available, which can be stacked intoMP -
dimensional vectorsxi asxi = [x1i ; � � � ; x

MP

i ]t. Assuming an FIR
channel, we can modelxi as the output of anMP -dimensional vector
channel with impulse response[h0; h1; � � � ; hL�1], whereL denotes

the channel length. In the noise-free case,xi is then given by

xi =

L�1

k=0

hksi�k: (1)

Consider a finite block of data, and define themMP � N block-
Toeplitz data matrix

X (i) =

xi xi+1

. . . xi+N�1

xi�1 xi

. . .
. . .

. . .
. . .

. . .
. . .

xi�m+1

. . .
. . .

. . .

:

N is the block length, whereasm can be interpreted as the memory
of an equalizer acting on the rows ofX (i). Let n = L + m � 1.
From (1),X (i) has a factorization asX (i) = HS(i), whereH is an
mMP � n channel matrix, andS(i) is anL +m � 1 � N signal
matrix, viz.

H =

h0 � � � hL�1 0

. . .
. . .

. . .
0 h0 � � � hL�1

and

S(i) =

si si+1
. . . si+N�1

. . .
. . .

. . .
. . .

si�n+1
. . .

. . .
. . .

: (2)

We will assume thatH is tall (mMP � L+m�1) andS(i) is wide
(L+m�1 � N ) so that this is a low-rank factorization. This requires
at leastMP � 2 and a sufficiently largem andN . We assume that
H has full column rank; therefore, we can recover any row ofS(i) by
taking linear combinations of the rows ofX (i). Finally, the matrices
S(i) are supposed to have full row rank.

B. Equalizers

An equalizer with delayk acting onX (i) tries to reconstruct the
k + 1st row of S(i)

w
�

kX
(i) = [si�k si�k+1 � � �]:

See Fig. 1(a). SinceS(i) hasn rows, there is a total ofn possi-
ble delays, and hence, there aren different equalizerswk (k =
0; � � � ; n� 1). Note, in particular, thatw�

iX
(i) = [s0 s1 � � �], and

hence

w
�

iX
(i) = w

�

kX
(k)
; i; k = 0; � � � ; n� 1: (3)

If m is large enough, thenX (i) is rank deficient, leading to
nonuniqueness for the equalizersfwig. Any vector from the left null
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space ofX (i) may be added. The null space component is removed if
we require the equalizer to have minimum norm. We can also define
the equalizer to act on a minimal basis of the row span ofX (i) rather
thanX (i) itself. Thus, we introduce the SVD’s

X (i) = Ui�iV
(i)
; i = 0; � � � ; n� 1:

If X (i) has rankn, thenUi hasn orthonormal columns,V (i) has
n orthonormal rows, and�i is a diagonal matrix containing then
nonzero singular values. The rows ofV (i) form an orthonormal basis
for the row span ofX (i). A “normalized” equalizer acting onV (i)

is calledti, which is related towi via ti = �iU
�

i wi. Similarly to
regular equalizers, we have (fori; k = 0; � � � ; n � 1)

t
�

i V
(i) = [s0 s1 � � �]

and

t
�

i V
(i) = t

�

kV
(k)
: (4)

C. Superequalizers

Define

XT =

X (0)

...
X (n�1)

; VT =

V (0)

...
V (n�1)

: (5)

“Superequalizers” are long vectors that collect several equalizers with
different delays, each reconstructing the same sequence[s0 s1 � � �].
They act on the dataXT or on the normalized dataVT , respectively

w
� = [w�

0 � � � w�
n�1]; t

� = [t�0 � � � t�n�1]:
It is interesting to consider the superequalizer as combining the out-
puts of the regular equalizers, forming an average over all admissible
delays. (By itself, it can also be interpreted as an ordinary equalizer
of lengthn+m� 1 at delayn� 1.) See Fig. 1(b). Note that there is
an issue of how to weight the outputs of each equalizer to combine
them in an optimal fashion.

III. B LIND EQUALIZATION

A. Subspace Intersection Method

The problem of blind equalization is, for given a data matrixX , to
find a factorizationX = HS, whereS meets the required Toeplitz
structure. Since a Toeplitz matrix is generated by a single vector
in a linear way, this translates to findings = [s0 s1 � � � sN�1]
such thats lies simultaneously in row(X (0)), row(X (1)), � � �, and
row(X (n�1)), where “row(�)” stands for the row span. The goal of
subspace intersection methods (SSI’s) such as in [8] and [9] is to find
the single vectors, which is in the intersection of alln subspaces.

Numerically, there are several ways to compute the intersection.
The algorithm proposed in [8] constructs the union of the complement
of all row spans and takes the complement again. The problem with
this is that the complementary spaces can be highly dimensional
(orderN each). The “minimum noise subspace” (MNS) technique
[10] is a method to prune the dimensions of each complementary
space without changing the resulting union too much, thus greatly
reducing the complexity. Although it was proposed in a different
context, it could be translated to apply to the current situation, but
the pruning would still incur a loss in performance.

It was proven in [9] that since the rows ofV (i) form a minimal
and “orthonormal” basis for row(X (i)), the exact intersection can
also be obtained by constructing the matrixVT in (5) and looking for
the right singular vector corresponding to thelargest singular value
of VT . This computation has a complexity that is much smaller than
the algorithm in [8] and smaller than what the MNS technique would

give. Nonetheless, even with noise perturbations, we find exactly the
same output sequence as that produced by the algorithm in [8]. The
corresponding principal left singular vector ofVT can be interpreted
as the superequalizer that returns this sequence.

In particular, it is proven in [9] that iftssi is the principal left
singular vector ofVT andn = L+m� 1, then (without noise)

t
�
ssiVT = �[s0 s1 � � � sN�1]

where� is some nonzero scalar that makes the output sequence have
norm 1. Because of the normalization, the largest singular value
of VT is bounded by

p
n. This bound is attained whent�ssi =

[t�0 � � � t�n�1], where each component by itself is an equalizer on the
normalized signals [viz. (4)], returning a multiple�i of [s0 s1 � � �].
In fact, all scaling�i will be the same.

Thus, tssi is a superequalizer in the sense of Section II-C. The
corresponding equalizer on unnormalized dataXT is denoted by
wssi and related totssi via

wssi = [w�
0 � � � w�

n�1]
�
; wi = Ui�

�1
i ti: (6)

B. Maximal Coherence Criterion

The principal left singular vectortssi of VT can also be expressed
in terms of a criterion on the unnormalized received data. Indeed,
tssi can be written as

tssi = arg max
kuk =1

u
�RV u

whereRV = VTV
�
T . Define the (empirical) correlation matrices

Ri; j = X (i)X (j)

RX = XTX
�
T =

R0; 0 � � � R0; n�1

...
...

Rn�1;0 � � � Rn�1;n�1

and

R0 =

R0; 0 0

. . .
0 Rn�1; n�1

:

ThenRX = R1=2
0 RVR1=2�

0 , where

R1=2
0 =

R
1=2
0; 0 0

. . .
0 R

1=2
n�1; n�1

and R1=2
i; i := Ui�i.

It follows that w�RXw = u
�RV u for u = R1=2�

0 w. Now,
denote bywssi the corresponding superequalizer provided by the
SSI method [related totssi as in (6)]. By substitution,wssi is found
to optimize the constrained criterion

wssi = arg max
w R w=1

w
�RXw = arg max

w R w=1
Jssi (7)

whereJssi is given by

Jssi :=

n�1

i=0

w
�
iX (i)

2

and the constraint can be written as

w
�R0w =

n�1

i=0

w
�
iX (i)

2

= 1: (8)

Thus, the subspace intersection solution is also obtained by maxi-
mizing the power of the sum of all equalizer’s outputs, subject to
the constraint that the sum of the powers is kept constant.The SSI
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w
�Xmre = 0 Xmre: =

X (0) X (0) � � � X (0) �X (0)

�X (1) X (1) X (1) � � � X (1)

�X (2) �X (2) � � �
. . .

. . .
�X (n�1) �X (n�1)

(8a)

method maximizes the coherence of the equalizer’s outputs.Indeed,
in the noise-free case, all equalizers return thesameoutput sequence
[s0 s1 � � �] up to a common scaling. Note that this is true only in the
case of the constraint specified in (8).

C. The MRE Method

The idea behind the mutually referenced equalizer (MRE) method
for blind equalization [6] is to exploit the relations in (3) by finding
a vector ofn equalizersw = [w�0 � � � w�n�1]

� that simultaneously
minimizes all differenceskw�iX

(i)�w�kX
(k)k2. This can be written

as a least-squares problem,1 as shown in (8a) at the top of the page.
To avoid trivial solutions,w should be constrained, e.g., by fixing
one of its entries or its norm. Another suitable constraint is one that
keeps the sum of output powers to a constantw

�R0w = 1. The
motivation for this particular choice is that it avoids trivial null space
solutionsw�iX

(i) = 0 8 i, which is necessary in the noise-free case.
Thus, we obtain

wmre := arg min
w R w=1

Jmre

Jmre :=

n�1

i=0

n�1

k=0

w
�

iX
(i) �w�kX

(k)
2

: (9)

We elaborate and find

Jmre=w
�XmreX

�

mrew

=2w�

(n�1)R0;0 �R0;1 � � � �R0;n�1

�R1;0 (n�1)R1;1 �
...

...
�Rn�1;0 � � � (n�1)Rn�1; n�1

w:

It thus follows that

Jmre + 2Jssi = 2nw�R0w:

Under the constraintw�R0w = 1, we finally obtain

min
w R w=1

Jmre = 2n� max
w R w=1

Jssi:

This means thatwmre � wssi.
Hence, we conclude that the SSI method and the extended MRE

method under the output power constraint are identical. Note that the
MRE method can use several other constraints; however, only the
one presented here guarantees the equivalence of the two methods.

D. Remarks

The SSI method here is slightly different from the version in [9].
There, the sequence was extended with additional tail symbols, which
changed the definition ofVT such that only a single matrixV (0)

was needed so that only a single data matrix has to be normalized,
leading to computational savings. This implementation of the SSI
method is asymptotically identical to the one presented here, which

1The equation is reminiscent of the cross-relation method in [4], but this
connection is only optical. Here, we estimate equalizers and not the channel,
as in [4]. More importantly, the CR method does not cross-relate delays of the
full data matrices but rather theMP scalar subchannels so that the superscript
(i) in X (i) has a different meaning.

was chosen for expository reasons. With noise, the SSI method on
normalized dataVT and on original dataXT are slightly different.
The reason is that with noise, eachX (i) is always full rank, whereas
V

(i) is presumably obtained from a truncated SVD, resulting in an
approximaten-dimensional basis for the row span ofX (i). If we omit
the truncation, i.e., defineV (i) to contain allmMP right singular
vectors ofX (i), then the solution is exactly equal to the SSI method
on VT .
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