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Correspondence

Lag-Windowing and Multiple-Data-Windowing Are Il. MuLTIPLE WINDOW SPECTRUM ESTIMATORS

Roughly Equivalent for Smooth Spectrum Estimation Factoring the non-negative matri®(0) from (3) into Q(0) =

. . ) . V*V, we obtain the equivalent representations
Michael L. McCloud, Louis L. Scharf, and Clifford T. Mullis

S(”") = [VD(e ™)yl

9

Abstract—There is no fundamental difference between lag-windowing M IN—1 » -
a correlation sequence and multiple-windowing a data sequence when the = Z Z VinYne 7" (4)
objective is to reduce the mean-squared error of a spectrum estimator. =1 | n—o

By analyzing the approximate low-rank factorization of a bandlimiting

Toeplitz operator, we find that lag-windowed (or spectrally smoothed) o YN-—1; . .
spectrum estimators have multiple-data-windowed implementations. This where{vi. },,—, is the window sequence formed from tfta row

makes the Blackman-Tukey—Grenander—Rosenblatt spectrogram equiva- Of V, and M = rank Q(0)). An implementation of this estimator
lent to the Thomson spectrum estimator (and vice-versa), meaning BTGR employing a bank of windowed periodograms is shown in Fig. 1.

spectrograms may be implemented in a multichannel filterbank version Notice that this decomposition is valid for any spectrum estimator
of the Thomson estimator. that satisfies conditionB1)-P3)
When the windows are thé/-dominant Slepian sequences [5]
I. INTRODUCTION weighted by the square root of the corresponding eigenvalues, we
Nonparametric estimators of the power spectrum are often cofiave the Thomson estimator [3]. We will use the term Thomson
puted as Blackman-Tukey—Grenander—Rosenblatt (BTGR) [1], [@$timator to mean any multiple data window estimator employing a
lag-windowed spectrograms or as Thomson multiple-data-windowg&@all number of windows (relative to the data length).
estimators [3]. Although these two procedures appear to be quite
different, we will argue that they are essentially equivalent. That
is, the net effect of lag-windowing is the same as multiple data-
windowing. This result will follow from the factorization of the kernel We define the BTGR lag-window spectrum estimator with positive

I1l. LAG-WINDOW SPECTRUM ESTIMATORS

matrices for lag-windowed spectrum estimators. semidefinite window sequenc{euk}‘_"(j\}_l) by
The estimation problem is as follows. We are giv&hsamples

y=(yo --- yn—1)" from a complex wide sense stationary (WSS) . ) N—1 )
random proces$y., } with autocorrelation sequende;. } and power Spr(e’’) = Z wiire "
spectral density{S(e’?), -7 < 6 < 7} k=—(N—1)

x L 0—é) & 5. do

re = Bly.yl ] (1) = / W (=) Sp(e?) 32 ®)
. - Py
S(e’) = e )

In these two formulas;; is the biased estimator of the autocorrelation

We seek to estimatS(ef”) from this finite length realizatioty. sequence, anaaP(eje) is the periodogram:

We will only consider estimator@(d"), which possess the fol-

lowing properties: | A
P1) quadratic in the dat&(e’’) = y*Q(f)y (y* denotes the =5 > ntnor OSKSN—-1; iop=7;
Hermitian transpose of); sk
P2) non-negativeS(e’?) > 0; o N-1 o
P3) modulation invariant(D(e’?)y) Q(8)(D(e’?)y) = y* Sp(e’y= > e’
Q(f — &)y, whereD(e’?) = diag1,e’?, ..., e/ VD9 jg k=—(N—1)
a modulation matrix. _ l’vy*\IJ(e".g)‘Il*(e"ﬁ)y
It has been shown [4] that any spectrum estimator that enjoys : _ : ,
the preceding properties must be a quadratic form in the complex where®(e/’) =[1 e ... DN (6)

demodulated dat®D (e ~?)y: o
5 e . i0 _jo The last expression fol5,(e’’) may be substituted into (5)
5(e”) =y"D(e")Q(O)D(e™Ny;  Q(0) > 0. G 1o produce the following representation for the BTGR spectrum

This representation will allow us to explore the similarities betweggstimator:

different estimation procedures. . v ; 0.
g Sit(e”) = y'D(’YWD(e )y
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Fig. 1. Multichannel filterbank implementation of the multiple window estimator.

allows us to include in our discussion estimators, such as the DanielFor any eigenvalue € A(E) with corresponding eigenvector

spectrogram [6], that are based on manipulating the periodogramuin= (uo,...,un_1)", we havelu = Eu, from which it follows
the frequency domain. that (Au); = (Eu),. Therefore
|Awi| = |(Eu)|
IV. EQUIVALENCE OF LAG-WINDOWED AND - R I ) . o
MULTIPLE-WINDOWED SPECTRUM ESTIMATORS = ‘/ E(e’)U(e”")e’ ﬁ‘ (since®” (e’ )u =U(e"))
We claim that lag-windowed spectrum estimators are basically = 0 o g db
equivalent to a multiple-data-window implementation usifg3 S/ [E(e)U(e™)e"™ | 5
data windows, wher@xj3 is the resolution bandwidth employed. _”_W V2, e 1/2
We will defend this claim for “good” lag-window estimators that < </ Ez(eﬁ) d_) </ |U(€je)|2 ﬁ) (12)
approximate the ideal lowpass filter of bandwidh3. We choose T \J=x 2x — 27
this characterization of good windows because it encapsulates the < e (23)

roperties of a desirable window sequence: namely, out-of-ban . .
EejeF():tion and minimal distortion in the Crlnain lobe. Y W%ere (12) follows from the Cauchy—Schwartz inequality, and (13)

- 40 . . follows from the orthonormality of the eigenvectors Bf and the
Let W(e’") be the real, non-negative symmetric frequency re- . .

. Nel . ) ound from (10). Sincex™u = 1, we see that at least one of the
sponse of a lag-window sequen¢e,. } ) of bandwidth2zj3.

0 he 1 —(f\%—;} ] . il entries inu, sayu, satisfies|us| > 1/\/A_". Hence, our bound on
Let B(e’) be the frequency response of the ideal lowpass filter %fach eigenvalue is

bandwidth2z3. We assume that’ (¢’?) and B(¢’?) are normalized

so that Al < eV'N. (14)
o I o I In particular, the matrix norm oE satisfies
w2y 2 o [7 preny o ®
. 2 . 2 ’ |IE|l2 = max |\ < V/Ne. (15)
Define the real, symmetric error function To complete our analysis, we use the Hoffman—Wielandt theorem

for perturbed matrices, which is stated in the following theorem [7].
Theorem 1:Let A,E be two N x N matrices. Assume thaA

A IO _ 1 (9°
E(e”) = B(e”) = W(e™). ) is Hermitian and thata + E is normal. Let{Ai,....Ax} be the
o ) ) _ ) _eigenvalues oA arranged in decreasing order, and{l&t, ..., Ax}
We sayW(e’?) is a “good” lowpass filter (and, hence, window) if be the eigenvalues oA + E arranged so thaRe, > Relo >
> . > ReAn. Then
</ E*(e") .d—e> <e (10) S "
. 2 Z|/\i -\ < E||2.
=1
for ¢ a small positive number. Proof: See [7] O

Each of these frequency responses defines a corresponding Toepliwe may use this theorem to see that {gr;

. = {eigenvalues of
matrix: I = {eig

B} and {v;} = {eigenvalues oW}, each arranged in increasing

W= [ W(EHe)e () ;l_e >0 order, we have
™
o N
. » » » .
B= | B(E")¥( ) () ;ﬁ 20 (11) T hi—mlP <e (16)
T T o=l
E= /W E(@) TP (") ;l—e Therefore, fore small, B and W have equivalent eigenvalue dis-

—r m tributions. We know [5] thatB has approximatelyV3 dominant



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999 841

—
€
e,

Q

<051 i

5 10 15 20 25 30 35 40 45 50
Index Number, k

Fig. 2. First 50 eigenvalues corresponding to the three window sequences: Spectral Smoothing, Bartlett, and Kéiser3fur.
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Fig. 3. Result of estimation for full rank and reduced rank Spectral Smoothing.

eigenvalues, and therefore, f® corresponding to a smad, we V. EXacTLY Low-RANK BTGR SPECTRUM ESTIMATORS

have The low-rank factorization is trivial for estimators based on sums

rank W) ~ N 3 (17) of sinusoids (Hamming, Hanning, Blackman, etc.). This comes im-
T mediately from the definition of the window sequences. For example,
Hence, “good” lag-windowed spectrum estimators may be impl&1€ generalized Hamming window defined by
mented by a multiple window estimator wits /N3 data windows
corresponding to the weighted dominant eigenvector$vof wr, = a + bcos(Ak) (18)
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Fig. 4. Result of estimation for full rank and reduced rank Bartlett window.

Full Rank

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency

Fig. 5. Result of estimation for full rank and reduced rank Kaiser window.

has the estimator matrix where
W=a11" 4 _ [\Il(p"’)q: @)+ T T ()] (19)
wherel = [1,1,..., l]T and, hence, has rank 3 independent\of W) = OK +1 +1 Z <9 B @) (22)
In a similar fashlon, we find that the Blackman window has rank 7.
The Daniell estimator [6] is given by The window sequence corresponding to this estimator is

5 = 1(9 E7s >) (20)
2K +1 +1 :Z_[ wy = 1+ Z cos( ik (23)
- 2[ +1 U
— / W (e.i(9—<f)))3P(€j<f») (21_@ (21)
—7 ™

so we see thaW has rank2 K + 1.
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VI. EXAMPLES REFERENCES

We will demonstrate the low-rank multlple window implementation 1] R. B. Blackman and J. W. Tukey, “The measurement of power spectra
of several commonly used BTGR window sequences for a 12th-order from the point of view of communications engineeringgll Syst. Tech.
moving average process. In each case, our data length is 300 samples, J., vol. 33, pp. 185-282; 485-569, 1958.

which means the Rayleigh limit to resolution 2s/300. We will [2] U. Grenander and M. Rosenbla8tatistical Analysis of Stationary Time
employ the Bartlett, Kaiser, and Spectral Smoothing windows. The,, Series New York: Wiley, 1957.

: . ’ | . L ?3] D. J. Thomson, “Spectrum estimation and harmonic analystsgc.
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bandwidth over which the smoothing is to occur (we chodse [4] C. T. Mullis and L. L. Scharf, “Quadratic estimators of the power
0.01 so that2w3 is 27/100, which is three times the Rayleigh spectrum,” inAdvances in Spectrum Analysis and Array Processing:

Volume | Englewood Cliffs, NJ: Prentice-Hall, 1991, pp. 1-57.

limit).
Tti)1 . | fth tri ding t h wind [56] D. Slepian, “Prolate spheroidal wave functions, Fourier analysis, and
€ elgenvalues or the matrices corresponding 1o each Window af€’ ,cartainty—V: The discrete caseBell Syst. Tech. J.vol. 57, pp.

shown in Fig. 2. It is clear that each allows an extremely low-rank  1371-1430, 1978.
multiple window implementation. The results of the spectral estima{6] P. J Daniell, “Discussion on the symposium of autocorrelation in time
tion are shown in Figs. 3-5 for the full-rank BTGR implementation __ Series,”J. Roy. Stat. Socvol. 8, pp. 88-90, 1946.

and for the reduced rank multiple window implementation. In all ofm ﬁ}eigmli)nsdsc' JohnsoMatrix Analysis - New York: Cambridge Univ.

the figures, the solid line is the exact MA spectrum. It can be seefy] a. T. Walden, “Estimated cross spectrum matrices and their inverses,”
that the low-rank approximations to the lag-windowed estimators give  submitted for publication.

results that are very close to the full-rank estimates.

VIl. CONCLUSION
We have argued that BTGR spectrum estimators are essentially

multiple-data-window estimators. This correspondence was shown A Nonparametric Phase Estimation
for estimators employing “good” lag-window sequences, meaning Method for SIMO Systems Based on
they approximate an ideal lowpass filter with sm&dl error. In this Second-Order and Higher Order Statistics
case, the kernel is low rank—an observation made experimentally

in [8]—and a lag-window estimator may be implemented as a Zhen Mao and Zhi Ding

multiple-data-window estimator employiny' s windows, wherej

is the normalized bandwidth over which the BTGR smoothes the . .
iodoaram estimate Abstract—n this correspondence, we present a nonparametric phase es-

periodog : . . timation algorithm for linear single-input multiple-output (SIMO) chan-
Does the argument go the other way? That is, can every multiplgsis. Given an unknown stationary input signal with known statistics, our

data windowed spectrum estimator be realized as a lag-windowaggbroach is to obtain the joint minimum mean square phase estimation

or spectrally smoothed BTGR spectrum estimator? The answerP$ed on the polyspectra and the cross-spectra of the SIMO channel

. _outputs. By utilizing both higher order and second-order statistics of the
no because the representations of (3) and (4) allowafty non channel outputs, our approach is shown to be more accurate and reliable

negative definite (Hermitian) matrix or kern€(0). Only those than methods based on higher order statistics alone. It can be applied to
kernelsQ(0) = V*V that approximate Toeplitz matric8% whose SIMO channels with common zeros.

spectrumi¥’(¢??) is narrowband will have BTGR representations. In

fact, from the argumentation in [3] and [4], it is exactly these kernels I. INTRODUCTION
that produce good bias-variance tradeoffs for reduction in mean- . I . . .
squared error. Therefore, we may say thatrowbandlag-windowed The problem  of Cha”?e' |dent|f|cat|on for linear smgle-lnpu_t
and good multiple-data-windowed spectrum estimators are roug;]hfmm'ple'OLItpUt (SIMO) linear systems is often encountered in

equivalent, allowing for the exception that a bad muItipIe-WindO\gommun'Cat'ons’ surveillance, and geophysical signal processing.

. . . n_blind SIMO system identification, both the channel input and
spectrum estimator may have no lag-windowed representation. Tis - .

. . the channel response are unknown. Channel identification must rely
result shows that there is no fundamental difference between la

windowing a correlation sequence amtiltiple windowing a data _e%cluswely on the channel output and known statistics of channel

T in \,lt. Once the SIMO system is estimated, its input signal can be
sequence when the objective is to reduce the mean-squared error% ;
extracted by deconvolution.

a spectrgm es.tlmator. . . . For single-input single-output systems, phase information of the
Thgre is a slight comput.atlonal advantage to' the muIUpIg Yv'ndoé%annel frequency response is contained in the higher order statistics
technique when the effective rank of the lag-window matrix is ey channel output signals. Existing nonparametric algorithms typically
small (<6). This saving comes about from the fact thsitpoint ilize the polyspectra of channel outputs for phase recovery of
FFT's can be used for the multiple window procedure, whereagnminimum-phase systems. In [3], a simple nonparametric FFT
the lag-windowed estimation requir@sV-point FFT's to estimate method was presented for channel phase recovery from polyspectra.

the correlation sequence. Tr_]e rank_ of the commonly used Wmdov‘f\/lanuscript received December 1, 1995; revised September 1, 1998. This
sequences tends to meet this requirement. work was supported in part by the National Science Foundation and by the

Finally, mean squared error computations are somewhat easietJfArmy Research Office under Grant DAAH04-G4-G-0252. The associate
carry out for multiple windowed spectrum estimators than for |a§_ld|tor coordinating the review of this paper and approving it for publication
windowed estimators (see, for example, [4]). Therefore, one way t s Prof. Kon Max Wong.
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wn [K] of subsequenceg;[n]. The SIMO system is fully characterized by
the magnitude and the phase of each transfer funciiofw) =
i S0 hi[k]e’ . If the background noise levetZ is known,
> hl[n] yi[k] the magnitude H;(w)| can typically be estimated from the power
wok] spectrum ofy; [k]
Tk o hyln) yalk] Pi(w) = o |Hi(w)]* + 3.
. w [k] Thus, the key obstacle in blind channel identification is the
: P estimation of the channel phasgw) = /ZH;(w) from its output
_ $ statistics. For a SIMO linear system with a common stationary
hy [n] y”[k] input, channel phase information is contained in both the polyspectra

and the cross-spectra of output signals. If only the second-order
statistics are used, then common zeros among subchannels cannot
be identified [9]. To resolve the ambiguity caused by common zeros
Unfortunately, polyspectra tend to be unreliable when available daenong subchannels, higher order statistical information should be
length is short. Moreover, errors in polyspectral phase unwrappiegploited jointly with second-order statistics. In the next section, a
can be particularly exacerbating. minimum mean square phase error algorithm for SIMO channel phase

Fortunately, for SIMO systems, additional statistical informatiogstimation will be presented that exploit both the second-order and
can be utilized. In particular, second-order statistics of SIMO systeitve higher order statistical information of output signals.
outputs contain additional phase information that can be used in
the phase estimation of channel frequency response. Second-order || MiniMUM MSE PHASE ESTIMATION ALGORITHM
cross-spectra of channel outputs are easier to estimate and tend
to be more ac_curate for limited data length. In fact, a SIM% SIMO Channel Phase Information
channel estimation based only on cross-spectra has been presented i ] ) )
in [9]. Thus, an algorithm utilizing information from higher order Since subchannel noises[k] are independent with zero mean, it
statistics and second-order cross-spectra is expected to generate H8g8rfollows that the cross spectrum between subsequgricgsand
performance than strictly higher order or second-order statistical””] iS given by
algorithms. _ _ Sij(w)=osHi(w)H] (w), 1<i,j<p.

In this correspondence, we will present a new nonparametric o
method for the phase identification of SIMO channels based &m addition, higher order statistics also provide additional phase
polyspectra and cross-spectra of the output signals. Our approadbrmation. Therefore, our algorithm should focus on the bispectra
is derived to minimize the joint mean square phase error between trehe trispectra of subchannel outputs as they can be estimated more
measured and the estimated spectral phases. As will become evidecurately from a fixed length data sequence [1] and [2], However, as
later, it is a simple linear approach that can be implemented througfil become apparent in the derivation, phase information from other
FFT directly. polyspectra can be similarly exploited either jointly or separately.

For notational simplicity, we only consider the casepof 2. Our
Il. PROBLEM DESCRIPTION derivation, however, does apply to more general SIMO systems. Since

L 2, IS an i.i.d non-Gaussian random sequence @pds a Gaussian
The SIMO system model can be used for communication systew ise, the trispectra of the two outputs are given [1] by

with multiple antenna elements. Given sufficient channel bandwidth,
the analog channel output in quadrature amplitude modulation (QAM)T; (w1, w2, ws) = Yae Hi(w1) H;(w2) H; (w3) H (w1 + wa + w3)
systems can be sampled at higher than the baud rate to yield i=1,2. (3.1)
an equivalent SIMO linear system model [5], [6]. In geophysical

exploration, multiple sensors can also be used to record multigtere, we denotey,, # 0 as the fourth-order cumulant of the input

Fig. 1. Equivalent discrete SIMO system model.

output signals driven by a common input. signal z, at zero lag. Consequently, the trispectral phase and the
Let z, denote the i.i.d. non-Gaussian input of a system as showunbchannel phases are related via
in Fig. 1. Assuming that there agesubchannels in the SIMO system 3
with impulse responsels; [k], their outputsy;[%k] can be written as W, (wr,wa,ws) = Z@i(wk) —®i(wr twrtws), =12
[s ] k=1
gilkl = >0 arhilk —nl4+wilk], i=12,....p (21) (3.2)

] ) ] Similarly, the cross-spectral phadg.(w) satisfies
where w;[k] are channel noises that are stationary, Gaussian, and

independent of the channel input. Both x; and w;[k] are white Uiz (w) = @1(w) — P2(w). (3.3)

and zero mean with varianeg ando?2, respectively. . . .
. . . ogf 7 'SP y Based on the above measurable phase information from trispectra
Our goal is to identify the unknown linear system from output

signals {y:[k]}. Commonly known as blind channel identification and cros;-spectra, subchanr_lel phf_:tse_fun(_:tefzmsv) and(i)g.(“f') are
; o - ) ’t(% be estimated. Our phase identification is based on minimizing the
this task can rely on statistical knowledge of the channel inpu

sequence as well as the measurable output signal. Note that if ean square error between estimated spectral phases and measured

subchannels are FIR of known order, “deterministic” algorithms sz,rpectral phases. Let

also be applied [4]. Here, we assume no prior knowledge on the 3
model of the subchannels and use the statistical approach. AT (wi,wa, w) = Wi(wr,wa,wz) — > $i(w))
Based on the SIMO equivalent model, its second-order output J=!

statistics can be represented by the power spectra and cross spectra + <i>i(w 1+wetws), i=1,2. 3.4
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Fig. 2. Comparison of SIMO phase estimates.

Given the phase difference, the mean square error (MSE) of spectadl
phase can be defined as i

Vio(w)= D dia(n)e’™ (3.10)
MSEﬁ i |‘I/1)(w (I) ( )-|-(I) ( | dw ”:;00
7T ~ ~ -
bi(w)= > di(n)e™, i=12 (3.11)

Z'T / // |‘A\111(W1‘w2 Wd)l o n:fcx.:‘

By substituting (3.9)—(3.11) into (3.5) and using the orthogonality of
2(w1,wa,ws)[*] dwn dws duws. (3:3)  sinusoidal harmonics, the minimum mean square error is given by

We shall derive a nonparametric algorithm that will estimate the,gg —
L = vi(ni,na2,n ¥i(n,0,0
SIMO phase responses to minimize the MSE. Z ZZZ' (1, mz, na) Z(I (n )|

Note that the channel noises are assumed to be independent so that , 9 , 9
they do not affect the cross-spectrum. This additional assumption is F[9:(0, 1, O + [0, 0,m) ) + Z“'u”?("’&m

=1 Lny n2 ns n#0

important to the accuracy of cross-spectral phase information. Our A ) ) , 7o
approach may not be suitable when subchannel noises are strong and ~ — (,57' n)|” + [¢:(0,n,0) — ¢:(n)|” + [¢:(0,0,n)
correlated. bi(n)|?) Z|u (non,n)|* + 4:(0,0,0)

B. Algorithm Development .
O + > [wiln,nyn) + 6i(n)]* | + > [r2(n)

Because discrete Fourier transform (DFT) is used to determine i

Uy (wi,wa,ws), To(wr,wa,ws), and¥ 2 (w), both trispectral phases B . 5
are2m-periodic inwi, w2, andws, whereas the cross-spectral phase is = 01(n) + o2(n)[". (3.12)
also2-periodic inw. Moreover, the desired phase estimata$w)  Thus, the optimum solutiongs! ()} and {¢5 (1)} for this equation
andd, (w) are als@r-periodic. Hence, we can define the (imaginary}an be found as

cepstral sequences

$1(0) = g{sruh(o,o, 0) + 2(0,0,0) + 2¢12(0)} 3.13)
i ( nl,n7 713 = . Lo :
| G5(0) = S{(¢1(0,0,0) +302(0,0,0) — 2012(0)} (3.14)
u.l1 ,Wa, .ug)e J(nqwitnows+ngws) dw dws dws
(2 )? ; 1
T i (n) = —{5[¢1(n,0,0) + ¥1(0,m,0) + 11 (0,0,n)
i=1,2. (3.6 24
—1(n,n,n)] + [¥2(n,0,0) + ¢2(0,n,0) + ¢2(0,0,n)
We also have — Ya(n,n,n)] + 4¢12(n)} (3.15)
. - 1
B : i = — 3 (7 W U 1
Y12(n) = % o (w)e ™ dw (3.7) Py(n) = 24{[@/1(’% 0,0) + ¢1(0,7,0) + +1(0,0,7)]
1‘ T —¥1(n,n,n)] + 5[2(n,0,0) + 2(0,n,0) + ©2(0,0,n)
(;)i('n/) =5 bi(wye ™ dw, i=1,2. (3.8) — Ya(n,n,n)] —4i2(n)}. (3.16)

_ Similarly, if the bispectra of the channel outputs are not zero, then
Consequently, trispectrum phases and cross-spectrum phase cath@ehannel phases can be estimated jointly from the phases of cross-

written as spectra and bispectra. In particular, the phases of the bi-spectra are
_ _ related to the phase of the subchannels via
U (wi,ws,ws) = Z Z Z’U'i(m , Mg, ng)el M1 eI 22 N3 ws
ni ng ng Z(I) W) (I) u,l+w2), i =1,2.

i=12 (3.9)
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Define bi-cepstra as

/ 1 [T . —F(niwi+now
wi(nl’nz): W// \I/,'(o.)l,iuz)e J(niwitngws) duwy dws

i=1,2. (3.17)

The spectral MSE can be determined as

MSE= 3" [ZZ i) = S (s o, O + (0, m) P
i=1

ny no n
+ [¢i(nm)*) + 200i(0,0) + > (|¢i(n, 0) — &i(n) [
n#0
+ [0 (0,n) — di(n)[* + [Wi(n,n) 4+ ¢i(n)[*) + [¢:(0.0)

= 0O | + D [w12(n) = 61(n) + do(n)[. (3.18)

Thus, the optimum solution§s! (n)} and {4}(n)} that minimizes
the MSE can be obtained from

847

[3]. The phase estimates of the two subchannels are shown in Fig. 2.
The impulse responses of the two subchannels based on the estimated
phase and (ideally) known magnitude are shown in Fig. 3.

Next, we illustrate the impact of the data length and SNR on the re-
sult of the estimation algorithm. Results are averaged over 100 Monte
Carlo simulation runs. Under SNR 10 dB, we determine the MSE
between the true channel impulse response and the estimated channel
impulse response. The comparative results in Fig. 4 demonstrate the
asymptotic improvement of the new method for larger number of data
samples. Last, we illustrate the effect of the channel signal-to-noise
ratio on the estimation result. The results are shown in Fig. 5.

V. CONCLUSION

In this correspondence, we presented a new nonparametric method
for the phase identification of SIMO channels based on the polyspec-
tra and the cross-spectra of subchannel outputs. Our approach is based
on the minimization of a joint mean square phase error between the
measured and the estimated phase of polyspectra and cross-spectra.
Our method is linear and can be implemented using FFT. It is readily
extendable to other spectral information sources as they become
available.

31(0) = 5 {201(0,0) + :2(0,0) + 12(0)} (3.19)
S1(0) = H{(01(0,0) + 20(0,0) — ¥12(0)} (3.20)
Bl(n) = 15 {401 (n,0) 4 1(0,m) = 1 ()]
+ [ (0,m) + 2 (1,0) = Ya(n,m)] + B0i2(n)}  (3.21)
q;;r(n) = % {4[¥2(n,0) + 2(0,n) — Y2 (n,n)] (4
+ [¥1(0,n) + ¢¥1(n,0) — ¢¥1(n,n)] — 3¢12(n)}. (3.22) (2]

These phase estimates can be straightforwardly extended for
subsystems. The MSE and a corresponding algorithm can be sir{13-]
ilarly defined and derived when other polyspectral information is
to be exploited either jointly or separately. Because the algorithni]
is nonparametric, it does not require any channel model or order
estimation. It is therefore simple and robust. Moreover, the DFT stepg]
can be easily and efficiently implemented using FFT.

IV. SIMULATION RESULTS [6]
To demonstrate the performance of this minimum MSE method,
we present an example of SIMO identification based on bispectra arlél
cross-spectra. In this example, a two subchannel syspesm ) is (8]
chosen, and the two subchannels are characterized by
[l

B 1—295:7" +1.9277

T 1-1.32""+1.05272 —0.3252—3

_ (1-0.22""4+0.0427?)

T (1-1.352271 4+ 1.338272 — 0.6622 3 + 0.24z %)
(4.2)

Hi(z) (4.2)

Ho(z)

respectively. The input signal; is an independent random sequence
with density function

f(x)y=e Dy +1).

The noise is i.i.d. Gaussian, and the overall signal-to-noise ratio is
set at 12 dB. A total of 64x 20 input data samples are used for
spectral estimation.

In our simulation, channel output data are used to estimate the
bispectra and cross-spectra usingx55 and 5 x 1 smoothing
windows, respectively. The spectral phases are unwrapped under
the continuity assumption. From phases of estimated bispectra and
cross-spectrum, the two subchannel phases are estimated using the
minimum MSE method. The results are used to compare with a
nonparametric minimum MSE algorithm based on polyspectra alone
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Exploiting Input Cyclostationarity for Blind st P
Channel Identification in OFDM Systems c(n) O DT c;)plc w(n)
Parallel * Prefix

Robert W. Heath, Jr. and Georgios B. Giannakis
Fig. 1. OFDM transmitter.

Abstract— Transmitter-induced cyclostationarity has been explored
recently as an alternative to fractional sampling and antenna array X . L
methods for blind identification of FIR communication channels. An  iImpulse response is longer than the cyclic prefix, interference occurs,
interesting application of these ideas is in OFDM systems, which induce and the simple equalization property is lost.
cyclostationarity due to the cyclic prefix. In this correspondence, we  |n this correspondence, we use the cyclostationarity induced by the

develop a novel subspace approach for blind channel identification using ; - ; ;
cyclic correlations at the OFDM receiver. Even channels with equispaced cyclic prefix in the OFDM system to develop an algorithm for blind

unit circle zeros are identifiable in the presence of any nonzero length channel estimation. The subspace approach of [13] is generalized
cyclic prefix with adequate block length. Simulations of the proposed here to multirate precoders and is proposed for OFDM systems as
channel estimator along with its performance in OFDM systems com- an alternative to the nonlinear matching approach of [5]. The blind
bined with impulse response shortening and Reed-Solomon coding are patyre of this estimation allows more data to be used for information
presented. transfer or for coding. As shown in [6], this approach is robust to
the presence of stationary noise and channel overestimation error
I. INTRODUCTION and does not require the cyclic prefix to be longer than the channel
Recently, there has been interest in filter bank precoding fB}€MOry. Since we can estimate channels regardless of the cyclic
communication systems impaired by frequency-selective fading chdf€fix and without training data, the conclusion in [17] that channel
nels [5], [14]. Although similar forms of precoding have beer‘Fc_’d'ng is b_etter than sub_cha_nnel equallza_tlon mu_st be re-gvaluated.A
considered in the past [7], current interest focuses on the intfdind @lgorithm for equalization was considered in [3], which uses a
duction of discrete-time cyclostationarity by the multirate precod@oPerty of the digital-to-analog converter at the receiver and does not
to enable blind channel identification at the receiver. TransmittgfMPIOY a cyclic prefix. With the absence of a cyclic prefix, however,
induced cyclostationarity, which can be introduced either with filtdhiS @Pproach can only result in partial elimination of the intersymbol
banks [5], repetition coding [14], or modulation [13], allows fofNterference caused by the channel. _
blind identification of arbitrary FIR multipath channels without TNiS correspondence is organized as follows. In the next section, we
zero-restrictions as in blind fractional sampling methods [4]. Orfgovide an overview of the OFDM system. Section IIl then considers
application of transmitter-induced cyclostationarity for blind chann&t® Problem of blind channel identification using the cyclostationarity
identification is orthogonal frequency division multiplexing (OFDM)Nherit in the OFDM transmitter. We present simulations of the
systems that can be considered a special case of the precodfRPesed algorithms in Section IV.
structure presented in [5].
OFDM has found renewed interest in recent years due to applica- Il. THE OFDM SySTEM

tions such as digital terrestrial TV [12], indoor wireless networks consider the OFDM transmitter in Fig. 1. The OFDM modulator
[2], and mobile communications [11], which are all systems th@lxes thels-point IDFT of a block of M input symbols from the
require communication in severe multipath channels. By insertiRgqer and appends a sequencelof M symbols to the beginning

a cyclic prefix before each transmitted block longer than the order §f cach block (see Fig. 2). In this way, the OFDM modulator can be
the channel, OFDM effectively turns a frequency-selective channgbwed as a ratéf/(M + L) block code operating in the real field.
into a flat-fading channel. This allows, for simple, one-tap vectofy describe the input/output relationship at various points et
equalization at the expense of a loss of 10-25% in ef'ficieon_i_L‘ and adopt the polyphase notations(n) = s(nM + m).
due to the extra symbols required by the cyclic prefix [17] 8%,(n) = w(nP+p), z,(n) = x(nP +p) to denote thenth or pth
well as increased sensitivity to timing, frequency synchronizatiogmpol in thenth block of data at the input to the modulator, output

[15], and transmission nonlinearities accentuated by the nonconsigitne modulator, and at the output of the channel, respectively (see
modulus of OFDM signals. Channel estimation in these Systelfgys. 1-3). Then, the sequence to be transmitted is

is performed by inserting training data in either the time or the

frequency domain, further decreasing the efficiency. Alternatively, _ S25 (=L _

differential encoding may be used in place of equalization if a wp(n) = Z sm(n)e’ 3 > p=0,.,

constant modulus constellation (say, QPSK) is transmitted at the m=0

expense of less bandwidth efficiency. Unfortunately, if the channith theexp(j27mm(—L)/M) accounting for the cyclic prefix, which

is a repetition of the last frequency domain symbols as in Fig. 4.

Manuscript received August 14, 1997; revised June 23, 1998. This wdaring transmissionw,(n) is pulse-shaped Witbﬁtf)(t), propagates

was supprted by the Office of Naval Research under Grant N00014-95-1-09@ﬁ0ugh an unknown frequency selective Cham&g‘p (t), is degraded
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G. B. Giannakis was with the Department of Electrical Engineerinq)rdeth composite discrete-time channel, anduét) = g(rCC) (t) *
University of Virginia, Charlottesville, VA 22903-2442 USA. He is now ) . ' : N
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P=M+L

Length L Cyclic Prefix M Frequency Domain Points

Fig. 2. OFDM frame structure.

W(n) —_— ] g(lr)(t) g(t) ,\*j g (t) .X(t) —— x(n)

Fig. 3. Baseband equivalent transmission channel.

= 3 Remove

Serial
x(n) to
Parallel

C(n)

=1 Synchronization

Fig. 4. OFDM receiver.

M is greater thanL,, only two blocks can overlap due to ISI.equals
We use polyphase notation to separate the channel output = M1 M1 L

IL:hO h(l)w(n —1) +v(n) into one part that depends on the preseq{k(n) _ 1 Z Sm (1) Z i ZEp(m—k) Z h(l)e—j%\—/’['ml
symbols s,,,(n) and one part that depends on the past symbols =~ M <= — —
$m(n—1), m € [0, M —1]. Then, the input to the OFDM demodulator

P_1
forp € [0.P —1]is x> 8(r—(p+L-1)
r=0
M—1 Ly, = Mot Ly ’
:E,)('n,) — Z s,,,(n)ej%\_}rm@_[‘) Zh(l)e_j%\_}r'”l — i Z s,,,,('n, _ 1) Z E’,Jﬁp(m—l,») Zh(l)e—Jﬁm(l—P)
m=0 =0 m=0 p=0 =0
P—1 M—1 ) Pt
X 38— (p=D)+ D suln— 1! F0=D X D 8(r = (p+ L—1+P))+uvr(n) 3
r=0 m=0 r=0

iorm(l—P) , wherewv;(n) is the transformed noise. By choosing the cyclic prefix
X Zh(l)e’ ! ( b=l P))t ) () to be as long as the order of the channel, elgz L, the second
sum in (3) becomes zero becauge-I+L+p) € [P,2P+L,—1] ¢

[0, P — 1]. The sum ovep in the first term become&m — k) since
(p— 1+ L) €[0,P — 1], and thus, (3) simplifies to (in the absence
of noise)

=0

where the summation over deltas constrains the ranggs-ef) and
(p — 1+ P) to lie in [0, P — 1]. Assuming correction for frequency
offset [15], the demodulator then removes the fifst symbols
corresponding to the gyclic prefix angw takes thé-point DFT ye(n) = sk(n)H<27T L)
to obtain yx(n) == 310" 2,41 (n)e 737, which, in general, M

(4)
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Remove
Prefix
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x(n) to /8(1'1)
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Fig. 5. OFDM receiver with impulse response shortening.

Real(h)

Imag(h)
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Fig. 6. Averaged channel estimaté¢sstandard deviation foP = 19, M = 15, I = 100, and SNR= 20 dB.

The fact that OFDM effectively turns a frequency-selective fadingreates problems in channel estimation that relies on the structure in
channel into a flat-frequency fading channel is evident in (4). Clearl{4) and results in symbol errors caused by the ISI term. This problem
equalization amounts to correcting.(n) for a phase and a scalecan be eliminated by employing decision feedback [16] or impulse

factor for eachk. In fact, for PSK constellations incorporated withresponse shortening [9]. Since decision feedback has a complexity
subchannel differential encoding, channel estimation is unnecessapt increases with the size of the DFT, we focus on impulse response
Unfortunately, many applications use nonconstant modulus symis@rtening (see Fig. 5), which consists of designing a prefiltey

sets to improve transmission efficiency, thus requiring the estimatigHch that the composite chanmgh) () has energy concentrated

of {H(2mk/M)}M=1, in the desired duration chosen for the cyclic prefix [9]. In the next

The ease in equalization due to (4) is not without drawbacks. Tﬁgction, we develop an algorithm for blind channel estimation that

presence of the DFT at the receiver places stricter requirements\dﬁﬁaS not require the channel to be shorter than the cyclic prefix.

synchronization [15]. Additionally, (4) exhibits reduced performan(:ee apply impulse response shortening when the channel duration

. - S . e%(ceeds the duration of the cyclic prefix. This approach allows for
in spectral nulls. In wireline transmission schemes such as discrete . . ; S -
a Teduction of the cyclic prefix and elimination of training data so

multitone tr_ansmlssmn (D_MT)’ th? channel knowledge is used t?Nat the system can provide a higher data rate or greater reliability
the transmitter for adaptive loading and/or power control [1]. 'ﬂwrough increased coding.

broadcast and wireless OFDM, this problem is resolved by using
coding. A variety of schemes for coding have been proposed, typically

employing some sort of convolutional coding, interleaving, and Ill. BLIND CHANNEL IDENTIFICATION
concatenation [8], for the purpose of correcting the resulting burstywith the presence of a cyclic prefix in the OFDM transmission
errors. scheme, we are motivated to look for cyclostationarity in the output of

Since the length of the cyclic prefix is chosapriori, interference the encoder as in [5]. Assume the symbaglg») from the encoder in
occurs as shown in (3) due to the coefficient& (), for/ > L. This Fig. 1 are white and zero-mean with variancg take P > M, and,
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Fig. 9. Channel error versus size of cyclic prefix faf = 15, 7 = 100120 M data (with P = M + L, varying accordingly).

using (1), examine the time-varying correlatien,, (nP + p; 1) := 9 . L
E{w,(n)w;,-(n)} at the output of the modulator =SM|S(T) +8(r =) D dp 1)
r=0
P—1
M—1 M-1 . +6(+ M) S(p—r)|. (6)
Cww(NP +p;7) = Z Z E{sml('n)sf,*,,z(77)}(3'72/‘77n1(')_r') 7§1

m1=0 mg=0

. P—1 Since the right-hand side of (6) depends only jgnthe output of
x e~ arme(rr=l) Z 5(r—(p+7)) (B) the encoder is cyclostationary with peridd Note that if we take
r=0 P = M, then (6) would instead becomg,, (n P+p; 1) = o2 M5(7)
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Fig. 12. Channel error versus number of blocks of dataMbe= 15, P = 19, I = 100 for the one cycle approach with cyclés. . 6.

because of the orthogonality of the exponentials, and periodicityvgich is indeed the case. If the noise is AWGN, then it
lost. Linear, time-invariant filtering does not change cyclostationaritjfas a time-varying correlation that simplifies te.,.(nP +

consequently, we expect periodicity in the time-varying correlation r) = 035(7) in (7). To avoid stationary noise, we con-
at the output of the channel

Ly,

Cea(nP +pi7) = Zh(l)h*(l +7 = @) ewu(n =15 q)

=0

+ cou(nP 4+ p;7)

@)

sider the cyclic correlation, which is defined as the Fourier
series expansion of the time-varying correlati@én,,(k;7) =
(1/P) Zf;ol cyy(p;7) exp(—j2wkp/P). The cyclic correlation
of the encoder output i€y (k;7) = (aZM/P){6(T)6(k) +
[6(T + M)exp(—j2nkM/P) + 6(t — M)]E(k)} with E(k) :=
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Fig. 14. RMS symbol estimation error—Adequate length cyclic prefix.

exp(—jmk(L—1)/P)sin(wkL/P)/sin(wk/P). We write the cyclic spectra to find

correlation of the channel output in (7) as ) ) i am
Sew(ki; 2)Sww(ka; 2)H (! P2277)

Ly, M 2w

Copull;T) = Z Z ORI+ 7 — q)Cwuw(k; q)eﬂz%kl = Suo (k25 2) Sww (k13 C)H(ej%kllil)- 9)
=0 q=—M . . . L
+ Coulk: 7). @) In the following development, we will only consider admissible

cyclesk, as defined in the following proposition.

The cyclic correlation of the noise &, (k; 7) = ¢26(7)6(k), which Proposition 1: A cycle k is admissible ifk # 0, and Cyw (k; 7)

is zero for nonzero cyclds. Subsequently, we will assume thiatt 0 is nonzero for at least one lag This occurs iff is chosen such that

to avoid stationary noise. kL mod P # 0. The set of all admissible cycles is nonempty, e.g.,
The Z transform of the cyclic correlation with respecthooseL even andP odd.

to 7 defines the cyclic spectrum. For a particular cycle Proof: If kL mod P # 0, it follows thatsin(xkL/P) # 0,

k # 0, the output cyclic spectrum i$,.(k;z) = Sww(k;z) which fork # 0 implies thatE(k) # 0, and henceC',..(k;7) # 0

H(exp(—j2rk/P)z"Y ) H*(=*), where Sy,w(k;z) = oZ(M/P) for at least oner, namely,r = M or 7 = —M. O

(6(k) + [e= M exp(—j2rnkM/P)+="|E(k)}. Interestingly, if we  To solve for the channel, we write (9) in matrix form. With

examine two cycles; and k2, we can take the ratio of the cyclic’ as transpose, leth = [h(0)---h(Ls)]" and Di(Ly) =
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diag 1. ....exp(j27kLy/P)). Then, let7,." denote the(2M + ..., C..(k; M + L1),0,...,0] and first row[C,.(k; —M — Ly),
Ly +2) x (L, + 1) Toeplitz matrix with first column[C'. 0,...,0]. Then, we rewrite (9) and can solve for the channel (within

(k; =M), ..., Cuww(k; M),0,....0] and first row[C\. (k; —M), @ Scale nonidentifiable blindly) from

0,...,0]. Similarly, let T,f‘) denote the(4M + 2L + Lj + 3)

X(2M + Ly + 2) matrix with first column|[C...(k; =M — Ly), Th=0, 7T:=[T07Dy, -7 7Dy,]. (10)
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Fig. 17. Estimated probability of bit error with inadequate-length cyclic prefix.

Note thatD andi(i“’) are knowna priori while the coefficients that |k2| # |k1|. With this choice of cycles, we will be estimating

of 7" are the cyclic correlations at the receiver, which can e cyclic correlations that have the most significant energy when
consistently estimated using the sample cyclic correlation estimag&mpared with the noise power and using these coefficients to find
Cowlk;T) = (1/N)ZN:UI a(n)a”(n+ 1) exp(—j2rkn/P). Iden- the channel. We use this method of cycle selection in the simulations
tifiability of the channel from (10) is established in the followingthat follow.
proposition.

Proposition 2: The channel{h(l)}f:“0 is uniquely identifiable IV. SIMULATIONS
within a complex scalar from (10) if and only ¥, andk. are both i, this section, we examine the performance of the OC, TC channel
admissible, and there is i [1. Ls] such thakxp(—j27kil/P) =  estimates in the OFDM system. We use the root mean square error

exp(—j2mkal/P). RMSE). which i " 1 1 T 0 —nl
Proof: The proof follows from the proof in [13] by noting that( SE), which is de |n.ed e}ﬁh_ll \/Q(Lh‘Fl)IZ’:A:Z‘O | I, and

the productZ " 7, is a product of Toeplitz matrices, which isthe channel average biasy, — > /% [ 25—, h*() — h(1)], both

c averaged oved Monte Carios to evaluate the channel error. To

Toeplitz. O
One interesting pair of cycles isand—k. Because,, (—k; 7) = evaluate the usefulness of the channel estimator in the receiver, we

Cro(k; =7) exp(—j2wkr/P) in S,.(k; ) andS...(—k; z), we can employ the symbol RMSE% ﬁ ZiI:(J Z]V:o |37(1) — s(1)|* and

solve for the channel from (10) using only one cyclic correlatiorthe estimated probability of bit error.

which we call the one-cycle (OC) approach. Alternatively, with two Experiment 1: Here, we consider a two-ray multipath channel

cycles, we can use a two-cycle (TC) approach and build three stét) = e™>"O")r (t = T/2,3) + 0.8 77> (%) (t = 5T /4, 3),

of equations like (10) to possibly increase estimation accuracy. Nowerer.(t) is the raised cosirtewith rolloff 3 = 0.35 sampled at

that with slight modification, this channel identification formulatiof = 0,7,...,4T; thus, L, = 4. We usedl = 100, M = 15,

can be applied to any transmitter that has a cyclostationary outpué$id 16 — QAM for modulation. In Fig. 6, with” = 19, we show
Given a set of admissible cycles, it is desirable to know whicte average channel estimate for SNR20 dB and 120 M data

two cyclesk; andk: to choose to find the channel. From the cycli@long with the channel error versus the number of blocks in Fig. 7.

spectrum, we would like to pick the cycles such tSat, (k:; z) and The corresponding performance for 120 M data varied over SNR is

Sww(ks2; z) are the “most different:” a requirement that is difficultdisplayed in Fig. 8. From Figs. 7 and 8, we see that the estimator

to quantify. SINCeS.. (ki; z) is only a function ofC.. (k;; M) and is consistent and that the estimates improve as the noise power de-
Cuww(ki; —M), one option is to pickk; such that|Cl., (ki; M)| Creases. In Fig. 9, for SNR 20 dB and 120 M symbols, we consider
(which conveniently equal’,..(ki; —M)|) is maximum. From the the channel error a8 = M + L and varies fromL = 1,...,15,
expression foiC,..(k:; M) (8), this occurs whek; is chosen such Whereas the channel is fixed to observe how the estimate depends on
that | E(k)| is maximized. Due to the odd symmetry of the sindhe differencel = P — M. From Fig. 9, we see that although the
function, for anyk that maximizes E(k)|, —k will also maximize —€stimator works withL as small asl, increasing the length of the
|E(k)|, and such a choice of and —k results in the OC solution cyclic prefix decreases the error. This is intuitively appealing because

of (10). If we wish to use the TC sqlution, we should pick the 1see [10] for information about the use of the raised-cosine pulse-shapping
cyclesk; and k-, which maximize§ E(k)| subject to the constraint filter in OFDM.
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we would like to trade off extra redundancy for error performance[7] J. W. Lechleider, “The optimum combination of block codes and
Next, we consider the channel RMSE for SNR20 dB when the receivers for arbitrary channels|EEE Trans. Communwol. 38, pp.
order L, is overestimated an® = M + L, in Fig. 10 and when 615-621, May 1990.

. . . . . . [8] B. L. Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency
the order is overestimated witR = 19 in Fig. 11. In Fig. 10, we division multiplex,” Proc. IEEE vol. 83, pp. 982—996, June 1995.

see the beneficial effects of having a larger prefix, whereas Fig. 1/b] P. Melsa, R. C. Younce, and C. E. Rohrs, “Impulse response shortening
shows the graceful degradation when the channel is overestimated. for discrete multitone transceiverdEEE Trans. Communvol. 44, pp.

Experiment 2: In this experiment, we consider the effect of the _ 1662-1672, Dec. 1996.

. . - . 0] T. Pollet and M. Moeneclaey, “The effect of carrier frequency offset on
cycle chosen on the resulting channel error in estimating the tw{}- the performance of band limited single carrier and OFDM signals,” in

ray channel above. Fig. 12 considers the performance of the OC proc. GLOBECOM London, U.K., Nov. 18-22, 1996, pp. 719-723.
approach fo = 100, P = 19, M = 15, SNR= 20 dB, and 120 M [11] H. Sari, G. Karam, and |. Jeanclaude, “An analysis of orthogonal
symbols for cycles 1.. 6, whereas Fig. 13 considers similarly the  frequency-division multiplexing for mobile radio applications,” in
performance using the TC approach with cycles 1 and.Z. Cycle Prof. Vehic. Technol. Conf.Stockholm, Sweden, June 8-10, 1994,

. . pp. 1635-1639.
selection seems to have an effect on the channel error, but asymptoitig |~ sari, G. Karam, and I. Jeanclaude, “Transmission techniques for

performance analysis is required to determine its precise role. digital terrestrial TV broadcasting/EEE Commun. Magpp. 100-109,
Experiment 3: Now, we look at the probability of bit error for Feb. 1995. ' _ _ o
an OFDM system. In Fig. 14, we plot the RMS symbol estimatioft3] E. Serpedin and G. B. Giannakis, “Blind channel identification and

error, and in Fig. 15, we plot the probability of bit error (assuming g?;r?glzgtr'gge::;ggvg?Oiglaggnégggigio?cﬁgcatfgg‘é{'fss TErancs ’

Gray coding in selection of the 16 QAM symbols) estimated over  31st Conf. Inform. Sci. Systlohns Hopkins Univ., Baltimore, MD, vol.
500 Monte Carlos of 500 M data for an OFDM system with= 15 Il, Mar. 19-21, 1997, pp. 792-797.
andP = 19, with and without 15, 11) two symbol-error correcting [14] M. K. Tsatsanis and G. B. Giannakis, “Transmitter induced cyclosta-

_ ; e tionarity for blind channel equalizationlEEE Trans. Signal Processing
Reed-Solomon (RS) equivalent code for the artificial chahnel vol. 45, pp. 1785-1794, July 1997.

[L.2,1, -1, 1]/‘/§ We used the standard OFDM ZF and IVIMSE[lS] J.-J. van de Beek, M. Sandell, and P. @Girjgsson, “ML estimation
structures [12] to equalize thé, = 4 channel above. Next, we of time and frequency offset in OFDM systemd$EEE Trans. Signal
consider the same channel add = 15 and P = 17 to observe Processing vol. 45, pp. 180-1805, July 1997.

the effects of channels longer than the cyclic prefix. We estimate tH&] L. Vandendorpe, “MMSE equalizers for multitone systems without guard

channel as before but look at MMSE equalization with and Withoﬂ?] témfhte'szr?thﬂo'FS;ggf ! mgsvesti' Sggﬁ;ftl'oﬁg_ﬁhizge{n OFDM

the use of impulse response shortening [9] and18Sl1) coding. transmission schemes: Sub-channel equalization or more powerful chan-
We used an eight-tap, zero-delay shortening filter derived from the nel coding,” inProc. GLOBECOM Singapore, Nov. 14-16, 1995, pp.
estimated channel. In Fig. 16, we plot the RMS symbol estimation 2069-2074.

error, and in Fig. 17, we plot the estimated probability of error. For

comparison purposes, in Figs. 15 and 17, we plot the MMSE uncoded

and coded solutions for the case whetw) = 6(n) as well as

when there is no attempt at equalization. In Fig. 15, we see that On the Equivalence of Blind Equalizers

the performance of the system using equalization with our channel Based on MRE and Subspace Intersections
estimate approaches the performance of the case viiede= 6(n).

From Fig. 17, we see that impulse response shortening may be a David Gesbert, Alle-Jan van der Veen, and A. Paulraj
beneficial techniqgue when combined with our channel estimate since
it reduces the the error floor present in the unshortened scenaridAbstract—Iwo classes of algorithms for multichannel blind equalization
Performance of impulse response shortening varies with the char®{él thg tfr?umagy refer_entced et9“a|('§esrl)(MRti) dmte):thod bé’ G\Ssg;”elt

. : f an € subspace Intersection metho y van der ve al.
?nd may be improved by .changlr?g shortening parameters. Furtﬁ!ﬁhough these methods seem, at first sight, unrelated, we show here that
improvements may be optalned using vector MMSE or vector M_Mst%rtain variants of the SSI and the MRE methods both optimize a new
decision feedback equalizers at the expense of further complexity [6nd criterion, which is referred to as maximum coherencend, thus, are

equivalent.
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Xitn—1
[x.-+n_ 1] Wan—1
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Fig. 1. (a) Equalizer with delay and (b) superequalizer, combining the outputs of several equalizers at different delays.

or otherwise. Second, it was recognized that channel oversamplitige channel length. In the noise-free casgejs then given by

either temporally (fractionally spaced equalizers) or in space (antenna 1

arrays), leads to a multichannel data representation that offers several x; = Z hesi s (1)

new leverages for solving the blind equalization problem and, thus, o

engi,nrﬁeznlt; appllgablllty. . . Clt()nsider a finite block of data, and define theli P x N block-
gebraic perspective, oversampling leads to a Iow-ra?oe litz data matrix

model for the output vector signal. This has been extensively ex- P

ploited in the so-called second-order statistics and algebraic methods

for the single-input, multiple-output (SIMO) identification problem

[1]. At least three classes can be identified. The first tries to estimate @ = | Xim1 X;

the channels, viz., e.g., [2]-[4], the second considers the estimation of .

channel inverses (equalizers) [5]-[7], and the third attempts to recover

the transmitted symbols directly from a (typically small) batch of Xi—m+1

output samples without resorting to channel/equalizer estimates [J%]'is the block length, whereas can be interpreted as the memory

[©]. _ _ of an equalizer acting on the rows éf). Letn = L+ m — 1.
Categories 2 and 3 have the advantage of bypassing the chamigl, (1), X has a factorization ag’) = HS", where™H is an

estimation step, and this can result in increased robustness. The di,;gﬁyp % n channel matrix, and”) is anL +m — 1 x N signal

symbol-estimation methods [8], [9] have sometimes been called rOWatrix, viz.

span methods as they exploit the row-span information of the data

matrix to find the vector of unknown symbols. Following a seemingly

different strategy, MRE techniques [6] estimate a collection of H= . . .

channel equalizers by forcing them to produce the same (unknown) 0 he --- hr_,

output sequence up to fixed equalization lags. The goal of thigq .

correspondence is to demonstrate that these two methods are, in fact, - ) -

identical with small differences arising only due to variations in the Si Sip1 T+ SipN—1

implementation. SO=1 - U B )
In this correspondence, we first provide a new perspective of . ) .

the row-span method of [9] by showing that the symbol estimates LSizngr 7o T R

produ.ced by this technique can be reggrded as the outputs of liNgar il assume that is tall mMP > L+m—1) andS® is wide
equalizer averaged across all equalization lags. We show that th@gf_m_1 < N) so that this is a low-rank factorization. This requires

equalizers optimize anaximal coherencdMC) criterion. Finally, ¢ 1ea5ta/ P > 2 and a sufficiently largen and V. We assume that
we show the equivalence between the MC criterion and a particul}qrhas full column rank: therefore. we can recover any ro§%t by

member n the class of MREt criteria. . ) taking linear combinations of the rows af"). Finally, the matrices
Notation: For a vectorx, x' is its transposex” its conjugate- () are supposed to have full row rank.

transpose, anffx|| its £,-norm. A sequence (row vector) with entries
x; is denoted byx = [z;].

X; Xi41 o X4 N1

ho --- h;i_ 0

B. Equalizers
An equalizer with delay: acting onX” tries to reconstruct the

Il. DATA MODEL k + 1st row of S

i *‘X’(l): Si—k  Si— -

A. Data Matrices Wy [sick  Sickg1 -]

A digital symbol sequencés;] is transmitted through a medium See Fig. 1(a). Sincé” hasn rows, there is a total ofi possi-
and received by an array dff > 1 sensors. The received signalsdle delays, and hence, there aredifferent equalizersw, (k =

are sampled® > 1 times faster than the symbol rate, which, herd). -+ n — 1). Note, in particular, thatv; X =[so s, -], and
is normalized tol’ = 1. Hence, during each symbol period, a totahence

o_f MmMr _measurements are avalla}ble, Whlgppc?n be sta_ckecMiR) Wi = wi ), i k=0, n—1. 3)
dimensional vectors; asx; = [z, ---, ;" |°. Assuming an FIR

channel, we can mode}; as the output of adf P-dimensional vector  If m is large enough, thent® is rank deficient, leading to
channel with impulse responfi&, h;, ---, hz_1], whereL denotes nonuniqueness for the equalizéns; }. Any vector from the left null



858 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999

space oft ) may be added. The null space component is removedgive. Nonetheless, even with noise perturbations, we find exactly the
we require the equalizer to have minimum norm. We can also defis@me output sequence as that produced by the algorithm in [8]. The
the equalizer to act on a minimal basis of the row spa’dt rather corresponding principal left singular vector Bf can be interpreted
than X itself. Thus, we introduce the SVD's as the superequalizer that returns this sequence.
YO — sy ® =01 _In particular, it is proven in [9] that it..; is the principal left
e ’ T ’ singular vector o’z andn = L + m — 1, then (without noise)
If X% has rankn, thenU; hasn orthonormal columns}y ) has
n orthonormal rows, an@, is a diagonal matrix containing the
nonzero singular values. The rows¥6f” form an orthonormal basis wherea is some nonzero scalar that makes the output sequence have
for the row span oft). A “normalized” equalizer acting o norm 1. Because of the normalization, the largest singular value
is calledt;, which is related tow; via t; = X,Uw;. Similarly to  of Vr is bounded by,/n. This bound is attained wheti,; =
regular equalizers, we have (fark =0, ---, n — 1) [to --- t;_1], where each component by itself is an equalizer on the
VO —(s s normalized signals [viz. (4)], returning a multipte of [so s1 --].
: = [50 51 - ] . .
In fact, all scalinga; will be the same.
and Thus, tss; is a superequalizer in the sense of Section II-C. The
th("i’ :tzv("'). (4) corresponding equalizer on unnormalized data is denoted by
w,s; and related tot,,; via

tiVr=oafso s1 -+ sn—i]

C. Superequalizers Wesi = [Wh - W _4]", Wi = Ui . ©)
Define
X v B. Maximal Coherence Criterion
Xr = : Vr = : . (5) The principal left singular vectar,,; of ¥ can also be expressed
ey y (-1 in terms of a criterion on the unnormalized received data. Indeed,

“Superequalizers” are long vectors that collect several equalizers W‘?t‘ﬁi can be written as
different delays, each reconstructing the same sequenca - --]. tes; = arg max u Ryu
They act on the datX+ or on the normalized datr, respectively lTull?=1

W= [w o whi]s £ =[5 - 5], where Rv = V¢ V. Define the (empirical) correlation matrices

R; Jj = rjt)(i)()t’(j)*
It is interesting to consider the superequalizer as combining the out- -

. . - R0,0 RO,nfl
puts of the regular equalizers, forming an average over all admissible . . )
delays. (By itself, it can also be interpreted as an ordinary equalizer Rx =XoXp = : :
of lengthn +m — 1 at delayn. — 1.) See Fig. 1(b). Note that there is | Rn—1,0 -+ Rn1,n-1
an issue of how to weight the outputs of each equalizer to combigad
them in an optimal fashion. [Ro.o 0

Ro = .
I1l. BLIND EQUALIZATION 0 Roi.n

A. Subspace Intersection Method ThenRx = RY?RvRe/*, where

The problem of blind equalization is, for given a data mafixto Ré/é 0
find a factorizationt = ‘HS, whereS meets the required Toeplitz RL/? _
structure. Since a Toeplitz matrix is generated by a single vector 0 12
in a linear way, this translates to findirg= [so s1 - - sn—1] 0 RS
such thats lies simultaneously in rowt(®), row(x"), ---, and

2 andR\/? = U,3,.
row (X("~1) where “row(-)" stands for the row span. The goal of b T . 12w
subspace intersection methods (SSI's) such as in [8] and [9] is to find! follows that w"Rxw = u"Ryu for u = R," w. Now,
the single vectos, which is in the intersection of alt subspaces. deénote byw..; the corresponding superequalizer provided by the
Numerically, there are several ways to compute the intersectior! m_ethod [related to..; as |n_(6)_]. By substitutionw..; is found
The algorithm proposed in [8] constructs the union of the complemdf} OPtimize the constrained criterion
of all row spans and takes the complement again. The problem with v . = arg max w'Rxw=arg max J.; (7)
this is that the complementary spaces can be highly dimensional W Row=1 wrRow=1
(order N each). The “minimum noise subspace” (MNS) techniqu@here J..; is given by

[10] is a method to prune the dimensions of each complementary 5

space without changing the resulting union too much, thus greatly T = i Wi
reducing the complexity. Although it was proposed in a different e — '
context, it could be translated to apply to the current situation, but ) )
the pruning would still incur a loss in performance. and the constraint can be written as
It was proven in [9] that since the rows &f*) form a minimal nl 2
and “orthonormal” basis for rowt(?), the exact intersection can W Row = Z HW‘?X“) ‘ =1 ®
=0

also be obtained by constructing the mafrix in (5) and looking for

the right singular vector corresponding to tlaggestsingular value Thus, the subspace intersection solution is also obtained by maxi-
of V. This computation has a complexity that is much smaller thamizing the power of the sum of all equalizer's outputs, subject to
the algorithm in [8] and smaller than what the MNS technique woulidhe constraint that the sum of the powers is kept consteme. SSI
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W Xppre =0

—xr-1 —_x =1

method maximizes the coherence of the equalizer's outjdeed, was chosen for expository reasons. With noise, the SSI method on

in the noise-free case, all equalizers returngameoutput sequence normalized datd’r and on original dataXr are slightly different.

[s0 51 -] up to a common scaling. Note that this is true only in th&he reason is that with noise, ead” is always full rank, whereas

case of the constraint specified in (8). V(@ is presumably obtained from a truncated SVD, resulting in an
approximate:-dimensional basis for the row span.tf® . If we omit

C. The MRE Method

The idea behind the mutually referenced equalizer (MRE) meth
for blind equalization [6] is to exploit the relations in (3) by finding
a vector ofn equalizersw = [wg --- w,,_;]* that simultaneously
minimizes all differencegw; X —w} X®)||2. This can be written
as a least-squares probléras shown in (8a) at the top of the page.
To avoid trivial solutions,w should be constrained, e.g., by fixing [1]
one of its entries or its norm. Another suitable constraint is one that
keeps the sum of output powers to a constaritRow = 1. The
motivation for this particular choice is that it avoids trivial null space
solutionsw; A') = 0 V¢, which is necessary in the noise-free case.

Thus, we obtain [3]

min
wH*Rogw=1

Winre 1= arg Jmre

(4]

n—1 n—1

Z Z Hw?X(iJ —WZR’(’C)HQ.

1=0 k=0

©)

']7717‘6 :
(5]
We elaborate and find

[6]

% qs 5k

J””,e =W ‘%mre‘%nu‘ew

(n—=1)Ro,0
—Rio

—Ro1

_RU,nfl
(’H—l)R]y] .

(7]

*

=2w

- Rn—] ,0 (n -1 )Rn_1 ,n—1 [8]

It thus follows that -
9
ere + 2Jssi = 277/W*R0W.
Under the constrain*Row = 1, we finally obtain

Jssi-

[20]
Jn”'e = 271 -

min
wH*Rogw=

max
wH*Rgw=1
This means thatv,.,.. = W..;.

Hence, we conclude that the SSI method and the extended MRE
method under the output power constraint are identical. Note that the
MRE method can use several other constraints; however, only the
one presented here guarantees the equivalence of the two methods.

D. Remarks

The SSI method here is slightly different from the version in [9].
There, the sequence was extended with additional tail symbols, which
changed the definition of such that only a single matrix (*)
was needed so that only a single data matrix has to be normalized,
leading to computational savings. This implementation of the SSI
method is asymptotically identical to the one presented here, which

1The equation is reminiscent of the cross-relation method in [4], but this
connection is only optical. Here, we estimate equalizers and not the channel,
as in [4]. More importantly, the CR method does not cross-relate delays of the
full data matrices but rather the/ P scalar subchannels so that the superscript
(i) in () has a different meaning.

the truncation, i.e., defin& ") to contain allm P right singular
ggctors of A, then the solution is exactly equal to the SSI method
on Vr.
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