
904 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999

A Refined Fast 2-D Discrete Cosine Transform Algorithm

Yuh-Ming Huang and Ja-Ling Wu

Abstract—In this correspondence, an index permutation-based fast two-
dimensional discrete cosine transform (2-D DCT) algorithm is presented.
It is shown that theN �NN �NN �N 2-D DCT, whereN = 2

m
N = 2

m
N = 2

m, can be computed
using onlyNNN 1-D DCT’s and some post additions.

Index Terms—Discrete cosine transform, fast algorithms, index per-
mutation.

I. INTRODUCTION

The DCT is widely used in many digital signal processing ap-
plications. Fast algorithms have been reported in the literature (i.e.,
[1]–[6]). Among those algorithms, [5] and [6] are believed to be the
most efficient 2-D DCT algorithms in the sense of minimizing any
measure of computational complexity.

Recently, Cho and Lee [7] have proposed a fast and modular DCT
algorithm in which an (N � N )-point 2-D DCT could be obtained
by computingN � N -point 1-D DCT’s andlog

2
N + 1 butterfly

stages. In a later work [8], they also provide regular expressions for
the input–output relations of the post-addition stages. However, the
number of required additions increases at the expense of improving
the regularity in the structure.

Based on the idea of [7], in this correspondence, an index
permutation-based fast 2-D DCT algorithm is proposed.

II. THE REFINED FAST ALGORITHM FOR COMPUTING THE 2-D DCT

For a given input data sequencefi; j ; 0 � i � N � 1; 0 � j �

N � 1, the denormalized 2-D DCT can be expressed as [1]

Ym;n =

N�1

i=0

N�1

j=0

fi; j cos
(2i+ 1)m�

2N
cos

(2j + 1)n�

2N

0 � m � N � 1; 0 � n � N � 1: (1)

After some permutation of the input data sequence [2], (1) can be
written as

Ym;n =

N�1

i=0

N�1

j=0

Xi; j cos
(4i+ 3)m�

2N
cos

(4j + 3)n�

2N

0 � m � N � 1; 0 � n � N � 1 (2.1)
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where

Xi; j =

f2i+1; 2j+1
0 � i; j � N=2� 1

f2i+1; 2N�2j�2
0 � i � N=2� 1; N=2 � j � N � 1

f2N�2i�2;2j+1
N=2 � i � N � 1; 0 � j � N=2� 1

f2N�2i�2;2N�2j�2
N=2 � i; j � N � 1:

(2.2)

Based on the idea of [7], let

Am;n =

N�1

i=0

N�1

j=0

Xi; j cos
(4i+ 3)m+ (4j + 3)n

2N
�

0 � m � N � 1; 0 � n � N � 1 (3.1)

and

Bm;n =

N�1

i=0

N�1

j=0

Xi; j cos
(4i+ 3)m� (4j + 3)n

2N
�

0 � m � N � 1; 0 � n � N � 1: (3.2)

Then

Ym;n = (Am;n +Bm;n)=2: (4)

Since4j + 3 andN are coprime to each other, i.e.,(4j + 3; N)1

= 1, the permutation(4j + 3)i+ j moduloN maps all values ofi.
Let qij be the quotient of(4j + 3)i + j divided byN . Hence, the
kernels of the 2-D transforms in (3.1) and (3.2) can be rewritten as
1-D DCT’s by replacingi with (4j + 3)i+ j �Nqij . That is

Am;n =

N�1

i=0

N�1

j=0

Xh(4j+3)i+ji ; j

� cos
(4j + 3)((4i+ 1)m+ n)� 4Nqijm

2N
�

=

N�1

i=0

N�1

j=0

Xh(4j+3)i+ji ; j

� cos
(4j + 3)((4i+ 1)m+ n)

2N
�

0 � m � N � 1; 0 � n � N � 1 (5.1)

and

Bm;n =

N�1

i=0

N�1

j=0

Xh(4j+3)i+ji ; j

� cos
(4j + 3)((4i+ 1)m� n)� 4Nqijm

2N
�

=

N�1

i=0

N�1

j=0

Xh(4j+3)i+ji ; j

� cos
(4j + 3)((4i+ 1)m� n)

2N
�

0 � m � N � 1; 0 � n � N � 1 (5.2)

where hxiN denotesx moduloN .
For the simplicity of notation,Xh(4j+3)i+ji ; j is denoted asXi; j .

Then, it can be seen that the 2-D input data sequence is grouped into

1(a; b) denotes the gcd ofa andb.
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N distinct data sets of sizeN , that is,f(Xi; j ; 0 � j � N�1); 0 �
i � N � 1g, and the equations

N�1

j=0

Xi; j cos
(4j + 3)((4i+ 1)m+ n)

2N
� (6.1)

and
N�1

j=0

Xi; j cos
(4j + 3)((4i+ 1)m� n)

2N
� (6.2)

correspond to one of the 1-D DCT’s of the data sequenceX̂i; j or
equal to zero with respect tom andn. That is, by defining

hil =

N�1

j=0

Xi; j cos
(4j + 3)l

2N
� (7)

we can see that (6.1) and (6.2) correspond to one of+hil or �hil
for somel = 0; 1; � � � ; N � 1 or equal to zero. Besides, through an
index permutation, (7) can be implemented by a 1-D DCT as

hil =

N�1

j=0

X̂i; j cos
(2j + 1)l

2N
� (8.1)

where

X̂i; j =
Xi; (j�1)=2 j: odd
Xi;N�1�j=2 j: even.

(8.2)

Hence, for the computation of an(N �N)-point 2-D DCT, only
the computation ofN�N -point 1-D DCT’s and some post-additions
are required.

Next, we will show that the post-addition stages can be imple-
mented by a butterfly-like structure. Since

cos
(4j + 3)((4(i+N=2) + 1)m+ n)

2N
�

= � cos
(4j + 3)((4i+ 1)m+ n)

2N
� (9.1)

and

cos
(4j + 3)((4(i+N=2) + 1)m� n)

2N
�

= � cos
(4j + 3)((4i+ 1)m� n)

2N
�: (9.2)

Hence,Ym;n can be expressed as in (10), shown at the bottom of
the page. LetXi; j+X(i+N=2); j = Ri; j ,Xi; j�X(i+N=2); j = Si; j .

For m even, since

cos
(4j + 3)((4(i+N=4) + 1)m+ n)

2N
�

= � cos
(4j + 3)((4i+ 1)m+ n)

2N
� (11.1)

Fig. 1. Signal flow graph for 4� 4 DCT.

and

cos
(4j + 3)((4(i+N=4) + 1)m� n)

2N
�

= � cos
(4j + 3)((4i+ 1)m� n)

2N
� (11.2)

Ym;n can be written as in (12), shown at the bottom of the page,
wherek = 0; 1; � � � ; N=4 � 1.

For example, ifN = 4, by (12), we have

Y2; n =
1

2

3

j=0

(R0; j �R1; j) cos
(4j + 3)(2 + n)

2N
�

+cos
(4j + 3)(2� n)

2N
� : (13)

Ym;n =

1

2

N=2�1

i=0

N�1

j=0

(Xi; j +X(i+N=2); j) cos
(4j + 3)((4i+ 1)m+ n)

2N
� + cos

(4j + 3)((4i+ 1)m� n)

2N
� ; for m even

1

2

N=2�1

i=0

N�1

j=0

(Xi; j �X(i+N=2); j) cos
(4j + 3)((4i+ 1)m+ n)

2N
� + cos

(4j + 3)((4i+ 1)m� n)

2N
� ; for m odd

(10)

Ym;n =

1

2

N=4�1

i=0

N�1

j=0

(Ri; j +R(i+N=4); j) cos
(4j+3)((4i+1)m+n)

2N
�+cos

(4j+3)((4i+1)m�n)

2N
� ; for m = 2(2k)

1

2

N=4�1

i=0

N�1

j=0

(Ri; j �R(i+N=4); j) cos
(4j+3)((4i+1)m+n)

2N
�+cos

(4j+3)((4i+1)m� n)

2N
� ; for m = 2(2k+1)

(12)
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(a)

Fig. 2. Signal flow graph for 8� 8 DCT. (a) First stage of the post-addition
stages.

For m odd, let

kil =

N�1

j=0

Si; j cos
(4j + 3)l

2N
�: (14)

Since

cos
(4j + 3)((4(i+N=4) + 1)m+ n)

2N
�

= � sin
(4j + 3)((4i+ 1)m+ n)

2N
� (15.1)

and

cos
(4j + 3)((4(i+N=4) + 1)m� n)

2N
�

= � sin
(4j + 3)((4i+ 1)m� n)

2N
�: (15.2)

However

sin
(4j + 3)l

2N
� = � cos

(4j + 3)(N � l)

2N
� (16)

that is, the 1-D discrete sine transform can be directly computed
from the 1-D discrete cosine transform. Therefore, for somer and

(b)

Fig. 2. (Continued). Signal flow graph for 8� 8 DCT. (b) Second, third,
and fourth stages of the post-addition stages (forn is even).

s, 0 � r; s � N; Ym;n can be written as shown in (17), shown at
the bottom of the page, wherek = 0; 1; � � � ; N=4� 1, andGir and
His are, respectively, equal to�kir and�kis.

For example, ifN = 4; r = 3, ands = 1, by (17), we have

Y3; 2 =
1
2
f(�k03 + k11) + (k01 + k13)g:

As a result, the computation of an(N �N)-point 2-D DCT can be
achieved by recursively applying the above decompositions [(12) and
(17)]. The signal flow graphs for a 4� 4 and an 8� 8 DCT are
shown in Figs. 1 and 2, respectively.

Ym;n =

1

2

N=4�1

i=0

(Gir �G(i+N=4)(N�r)) + (His +H(i+N=4)(N�s)) for m = 2(2k) + 1

1

2

N=4�1

i=0

(Gir +G(i+N=4)(N�r)) + (His �H(i+N=4)(N�s)) for m = 2(2k+ 1) + 1

(17)
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(c)

Fig. 2. (Continued). Signal flow graph for 8� 8 DCT. (c) Second, third,
and fourth stages of the post-addition stages (forn is odd).

III. COMPLEXITY ANALYSIS OF THE POST-ADDITION STAGES

For the post-addition stages, letA(N) andB(N), respectively,
denote the number of all required additions and the number of
additions required in the final stage, and letC(N) denote the number
of nodes that do not require butterfly computations in the firstlog

2
N

stages. From (13) and (16), we haveC(4) = 2 and C(N) =
C(N=2) + N=2 for N � 8, andB(N) = N2

� 2N . Therefore,
A(N) = N2 log

2
N�C(N)+B(N) = N2(1+log

2
N)�3N+2.

IV. CONCLUSIONS

An index-permutation based 2-D DCT algorithm has been pre-
sented in this correspondence. The succinct derivation of the proposed
algorithm makes it easier to describe the process of how to map one
2-D DCT into a number of 1-D DCT’s. From the idea of [8], a
matrix-form-based systematic expression for the post-addition stages

in the proposed algorithm, which may improve the regularity of the
structure, is currently under investigation.
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An Effective Memory Addressing
Scheme for FFT Processors

Yutai Ma

Abstract—The memory organization of FFT processors is considered.
The new memory addressing assignment allows simultaneous access to all
the data needed for butterfly calculations. The advantage of this memory
addressing scheme lies in the fact that it reduces the delay of address
generation nearly by half compared to existing ones.

I. INTRODUCTION

Many high-speed FFT processors have been obtained by imple-
menting the fast Fourier transform in pipelined digital hardware with
a butterfly calculation unit, two-port data memory, ROM for storing
twiddle factors, and memory addressing controller integrated on a
chip. It is possible to use an in-place strategy that stores butterfly
outputs in those memory locations used by the inputs to the same
butterfly. The in-place strategy requires only a minimum amount of
memory. For this reason, only the in-place radix-2 decimation-in-time
version of the fast Fourier transform is considered here.

If the butterfly unit has parallel inputs and outputs, then the two
butterfly inputs will be accessed in the memory, and two butterfly
outputs will be written back to the same memory in each cycle. In
order to avoid this memory bottleneck, the two-port memory module

Manuscript received May 23, 1997; revised July 22, 1998. This work was
supported by the National Key Project of Fundamental Research, P.R. China.
The associate editor coordinating the review of this paper and approving it
for publication was Dr. Elias S. Manolakos.

The author was with the Center for High Performance Computing, Institute
of Computing Technology, Chinese Academy of Sciences, Beijing, P. R.
China. He is now with the Department of Electrical Engineering, Linköping
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