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I. INTRODUCTION

Ann. Stat. vol. 18, pp. 1464-1469, 1990. Recently, we have suggested the constant false alarm rate (CFAR)
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bance in g staytionaryprggilﬁgscgvfhl\aangStDLiﬁ).lﬂoéeé?cglpc{n%f;?dég,ura.d aptlve_ subspace detec_tor .(CFAR ASD) [3] for dete_ctm_g a. target

1961. signaly in a complex multivariate measuremenivhose distribution

A. Wald, Sequential Analysis New York: Wiley, 1947. is complex normaly ~ CN[ue’*+,s?R)]. The signal scaling:
determines the null hypothesi$,: x = 0 and alternate hypothesis
H,: p> 0. We factor out a noise scaling’ from the noise covariance
structureR: a step to be clarified in the subsequent discussion.

When the noise covariance structure and scafh@nd o2 are

both known, the appropriate noncoherent detection statistic is the

matched filter magnitude-squared or the matched subspace detector

(MSD). This uses the inner product of the whitened measurement
z =R~ /%y with the whitened signal template= R~"/*y

RSP P :
= L_r’;JfR_lﬂvoa = e ="n ( )

where P, = ¢(¢'¢)”'¢" is the projection onte. This statistic is
complex chi-squared (or gamma) distributed; the MSD compares it
with the threshold; to decide on hypothesif, or H;.

When the covariance matriR is known but the scaling? is
unknown, the MSD may be normalized by the magnitude squared
of the measurement weighted B *. This measures the direction-
cosine squared of the angle thaimakes withe:

[O'Ry* )
Cos” = —————————— =Z71.

(V'R™') (y'R™'y)
This statistic has a “beta” density undéf,; under H,, it is most
clearly described as a monotone function of a statistic with a scaled
noncentral “F” distribution
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known GLRT statistic of Kelly [4], which assumes the same noise
scaling in both test and training data® = 1). In the following
derivation of the scale-invariant GLRT, we will adhere closely to the
notation and procedure of Kelly's original paper, with the exception
that the likelihoods will be maximized over the additional unknown
parameters?.

Il. DERIVING THE SCALE-INVARIANT GLRT

We first consider what the unknown noise-scaling fastomeans
in the adaptive case, where the assumption of known covariance is
relaxed, and it is instead assumed that one has access to training
data vectors{z,} that share the same noise covariance as the test
datay. A consistent interpretation is thaf is arelative scaling of
the noise power in the test data, with respect to that in the training
data, that isy ~ CN[ue’*y, o R], wherease; ~ C'N[0, R]. We
allow for the possibility of additional scaling that the training data
does not account for, by leaving® as a free parameter. Thus, in
Fig. 1. Geometry and invariances of the CFAR MSD. It measures thge derivation of the GLRT, the unknown parameters are the noise
cosine-squared of the angle the whitened measuregnenR*(l/Z)g makes structure R, noise scalings2, and signal scaling and phamju.
with the whitened signap = R=(1/2)¢. It is invariant to scaling of the only the si,gnal template) is’ known. (Again, Kelly's problem [’4]
measurement and to rotations ofn the subspacef)) and (¢)". differs in that the scaling?2 is a known parameter, which is assumed

to be unity.)

Wherer = I—- P, is the projection onto the subspace perpendicular

to ¢. In its F version, this detector has a similar form @Shbutis A. Densities

. . ¥ AT Gy —i- J_ . _ .. .
normalized by a scaled estimatecd, namely,(N —1)o? = :"P;z. e assume that there afé training vectorsz , that are indepen-
This makes it have a CFAR with respect to the unknown noise Sca“agntly distributed, and we construct the data maﬁxcon’[aining
o?; thus, we term it the CFAR MSD. these vectors as its columis = [z, - - - z,.]. The GLRT is obtained

The MSD and the CFAR MSD have interesting invariances withy considering the joint pdf of the measuremgnand the training
respect to transformations of the whitened measuremefite MSD  qata X, which, under the alternate hypothedis, is
is invariant to translations of in the subspacés)® and to rotations
in the subspacd#)The CFAR MSD is invariant to rotations in £
the subspaceds) and ()" it is also invariant to scaling of the /' (X.y) = fily) Hf@i)
measurement, as shown in Fig. 1. Both the MSD and CFAR MSD =t
have been shown to uniformly most powerful within the class of
detectors that share their respective invariances (UMP invariant) [1].
They are also generalized likelihood ratio tests (GLRT's) [2], which P
are obtained by inserting maximum-likelihood (ML) estimates for H WOXP{_&R z} ®)
unknown parameters into the likelihood ratio, which is the ratio =t
of the probability density function (pdf) off under H: to that where|| || denotes determinant. The density undigris f, evaluated
under Hp. atp = 0, ie., fo(X,y) = fi(X,y)|u=0, which is a notation we

When the noise structure is not knowenpriori but is estimated will use throughout. The densities under the hypothd&gsH, may
from training data, then a reasonable, though seemirglyho¢ e rewritten as
procedure for generalizing the CFAR MSD is to simply replace the K41
known R with the sample covariance matrix estim#te= R based for = { 1 ——exp{—tr(R'T 1)}} ©)
on training data. This procedure produces the CFAR ASD statistic || R|o 2N/ (KD ’
cos?, which is often referred to as the adaptive coherence estim
(ACE) [3], [5) Ahere,

- i Lo ieyyipl ja
—mexp{—ﬁ(g—ue ) R™ (y—pe’ ")

K

andT, are the matrices

K
— [P S~y 7o L iy (r — pei ot
cos? = (’Lﬂ’-i_sjl’ll’) (yi'i‘Sfly) z . 4 TR ) o2 (y — ne’®) (y — pe’® )" + ;lz z;
et To =T |u=o- )

This adaptive version was independently proposed by Centd.
[6], [7] for use with the related scenario of compound-Gaussian
noise, multivariate Gaussian with random amplitude scaling. T Maximum-Likelihood Estimates
adaptive statistic retains the invariances of its nonadaptive counterpafiVe now find maximum-likelihood (ML) estimates for the noise
in (2). structureR, noise scaling'?, and signal scaling and phage’™, and

We will show in this correspondence that when the measuregnentve insert them into the densities to obtain the generalized likelihood
is distributedCN[;/,cf“Liv,JZR] while the training data is distributed ratio (GLR). The ML estimates of the structufé under the two
CNI[0, R] (i.e., the noise of the test datamay be scaled by®> hypotheses are given bizo = T and Ri = T'. Inserting these
relative to the training data), then the CFAR ASD is, in fact, a GLR&stimates into the densities yields
detector statistic. As far as we know, this is the only formal derivation K1
of the ACE statistic. This claim lends credence to the heuristics max fo1 = { i 1 ___ } . (8)
of [3] and [5][7]. This statistic may be contrasted with the well- ’ (em)N||To 1 [|o2N/ D)
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Following the procedure of Kelly [4], the determinaniEo || may whereESZi is the statistic defined in (4), ankl is the “F” version
be written in terms of| S||, whereS is the sample- covarlance estimatef cos?, which is the adaptive version of the statistic of (3) (see

based solely on the training dafa= (1/K)S; z, 2. That is also [1], [2], and [8]). Since\ is a monotone function ofos?, the
5 N GLRT is the CFAR ASD test of (4). This is our key result.
|T || = <ﬁ> IS] This detector is CFAR with respect to the noise structliyedue
4%

to the sample-covariance inver§e'. It is also CFAR With respect
' <1 n 1 (y— pe? ) 8" (y — ;m"“’d;)) to the noise scaling?, due to the normalization by S~ y, which
Ko? = - = - is an observation that is more easily understood with tfiéform:

IToll = 1T |l n=0- 9) X Sps
- F - gﬁ
To maximize the likelihood functions undef’, we minimize the o8t = E T F= TPl (16)
expression1+(1/Ko?) (y—pe’* ) S (y—pe’*¢) } (a2) N/ B+ =T e
. 2 . o - . T T N . . R N
with respect tar=. This yields ML estimates for the noise scaling where P, = 9(9*9)_197 projects the approximately whitened
o2 = w (y — pe?* ) S~ (y — pe’® ) measurement = S~'/?)y onto the approximately whitened signal
~ = RN - - - - o 6 = S/, and P} = I — P,. This F form is explicitly
%0 = 0% luso. (10) normalized by the ML estimate of the noise scaling, [obtained
Inserting these estimates into the densities yields by substituting the results of (13) and (14) into (10)]
(N—1)(K+1) 75 _ A K—N+1¢7- 3N —~ K-N+1_; .
max f1 _ (I\ + 1) _ (I& - N+ 1’? (I& N) o2 = TE‘pji (17)
R o2 (6’/TI&)‘N(A+1)||S||I\+1 ! kil
. 1 making it CFAR with respect to>.
[(y — per=y)tS™Hy — peio )N
Eax fo= ﬁax filu=o- (11) D. Related Detectors: The Coherent and Multirank CFAR ASD

There are two detectors related to the CFAR ASD, which can also
At this stage, we can write the intermediate GLR, after substitutige shown to be GLRT with very little modification of the derivation
in the ML estimatesi,; and o2y, as given in Section II-B.

The Coherent CFAR ASDThecoherentCFAR ASD is used when

max f o . .
X(X ) Rz the phase:’* of the signal is known:
Y=
ﬁlf; fo max|[0, Re{cos}] = 1,
; N eIyt S
_ y'S ¢os = — = . (18)
= ((y ) S (y—,uEJ“ )) . (12) (L_/,’rsflg)uz(ysfly)uz

Finally, we need to evaluate the ML estimate of the signall scalln show this iszuG’LE{T,_lthe miniﬂ;ati_on offthe the qLIJadratic Lorm
and phasee’®. As in Kelly’s paper, this can be found by completlng (13) (y — pe’4)'S™ (y — pe’"w) is performed only over the

the square to minimize the quadratic form — e’ ) S~ (y — scaling parametes, constrained to be real and positive:
Hej“g) - - - J‘S
_ it = max [0, Re ﬁ . (19)
(g_'u/ejay) S~ (y_“e U;)) 0] S )
_ I o w1y Inserting this ML estimate into the quadratic form yields the GLR
=y'S T y+Y'S P|pe!” - T
- - PSP max fi ) N
~ 2
BTG—1y2 MX. y)= =200 _ 2
_ A . (13) (X.y) max fo <1 — max]0, Re{cos}]2> (20)
Vs LS
This yields the ML estimate ofie’“ with cos given by (18). .
; Multirank Noncoherent CFAR ASDThe sgg)nd detector is a gen-
l;;y _v 5 i (14) eralization of the noncoherent CFAR ASi»s?, where the signal
ois—Ty 1i i = ¥4 is not completely specified but is only parametrized to be
a superposition of known modes (the columns¥f with weights
C. Generalized Likelihood Ratio and the CFAR ASD given by a vector of unknown coefficiengs(the multidimensional

/With the substitution of the signal's estimated scaling and pha Snerlallzgtlon of the pha@é‘“g The resulltlngddetectotr for multirank
;o the final GLR is given by signal subspaces, is given by a normalized projection

Tg—1 fo—lg\—lgt o1 . .
, — Yy ST ST TSy TP,
v ot =L ( —) ) -z AT?Z =3 (21)
R max  fi t gt ytS™y zz
? o2 pedo Yy Yy - -
MX,y) = =7 = == ‘ 9 , :
(X, 9) wax fo . [pF S~ 1y[? wherez = §~(1/?)y is the approximately whitened measurement,
2 IS ly — = = . ¢ = . . .
’ y'sy w8y and® = S§~ (/2% is the approximately whitened signal-mode
N - - matrix.
= <%> =1+ )Y (15) To show that this is GLRT, we again reconsider the intermediate
1 — cos?

GLR that contains only estimates of the noise structure and scaling
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i%o,l, 5;50,1. This has the same form as (12), withreplacingy’ and X and the measurement that is,(X,y) — (91X, g2y). In contrast,

@ replacinge’™: the Kelly GLRT and the AMF are invariant only taniform scaling
max fi . N of X andy, thatis,(X,y) — (9X,gy). A complete taxonomy of
: N y'Sly the the coherent, rank-1, and multirank versions of all these detectors,
AMX,y) = Elax fo = <(y — W) S (y — l,gg)) (22) and their statistical behavior and distributions, will be presented in
o2 - = -

a companion paper [11].
We then evaluate the ML estimate of the signal scaling and parametelt is interesting that the CFAR matched subspace detector remains
vector ;6 by completing the square to minimize the quadratic forfPLRT when the unknown covariance is simply replaced by its sample

(y — pw6)tS~1(y — uwo), yielding estimateS. This is not true of the matched subspace detector [1], [2].
- R That is, substituting the sample covariance into the matched subspace
(y —pn¥8)'S™ (y — n¥o) detector produces the adaptive matched filter (AMF) of [9] and [10]

— y'i‘s—ly _ HQ"'W'i’S—ly _ ,uy"'S_lWQ—i— #QQ'i’W'i‘S—l!pQ and not the Kelly GLRT.
= ll@'s™'e) (@' sTIe) TSy — uf]|”
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However, the AMF isnot GLRT. Rather, the GLRT is the well-known
statistic obtained by Kelly [4]:
=5 [vTS8™ y?

2 — _ = E4 > 27
where K is the sample support, or number of training vectors. As in
[9] and [10], Kelly assumes that the training and test data share the
same noise structure and noise levél= 1. This detector does not
enjoy the scale invariances of the CFAR ASD to different scalings
of § andy.

IV. CONCLUSIONS

By characterizing a slightly different hypothesis testing problem
than that of Kelly, we have shown the CFAR adaptive subspace
detector to be a GLRT detector. Allowing for the possibility that
the noise of the measurement is scaled relative to the noise of the
training data, we introduce a scaling parametér Maximizing the
likelihoods over this additional parameter results in the CFAR ASD
of (4), rather than the Kelly GLRT of (27).

In the CFAR ASD, the noise structure is estimated by the training
data, and the noise scaling’ is compensated using the test data
(02 is explicitly estimated with the test data in thé™ version
of the CFAR ASD). The CFAR ASD also enjoys some attractive
invariances, such as invariance to arbitrary scaling of the training data



