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The CFAR Adaptive Subspace
Detector is a Scale-Invariant GLRT

Shawn Kraut and Louis L. Scharf

Abstract—The constant false alarm rate (CFAR) matched subspace
detector (CFAR MSD) is the uniformly most-powerful-invariant test and
the generalized likelihood ratio test (GLRT) for detecting a target signal
in noise whose covariance structure is known but whose level is unknown.
Recently, the CFAR adaptive subspace detector (CFAR ASD), or adaptive
coherence estimator (ACE), was proposed for detecting a target signal in
noise whose covariance structure and level are both unknown and whose
covariance structure is estimated with a sample covariance matrix based
on training data. We show here that the CFAR ASD is GLRT when the
test measurement is not constrained to have the same noise level as the
training data. As a consequence, this GLRT is invariant to a more general
scaling condition on the test and training data than the well-known GLRT
of Kelly.

Index Terms—Adaptive arrays, matched filters, maximum likelihood
detection, multidimensional signal detection, radar detection.

I. INTRODUCTION

Recently, we have suggested the constant false alarm rate (CFAR)
adaptive subspace detector (CFAR ASD) [3] for detecting a target
signal in a complex multivariate measurementy whose distribution
is complex normaly � CN [�ej� ; �2RRR]: The signal scaling�
determines the null hypothesisH0: � = 0 and alternate hypothesis
H1: �> 0:We factor out a noise scaling�2 from the noise covariance
structureRRR: a step to be clarified in the subsequent discussion.

When the noise covariance structure and scalingRRR and �2 are
both known, the appropriate noncoherent detection statistic is the
matched filter magnitude-squared or the matched subspace detector
(MSD). This uses the inner product of the whitened measurement
z = RRR�(1=2)y with the whitened signal template� = RRR�(1=2) 

�
2 =

j yRRR�1yj2

 yRRR�1 �2
=
zyPPP�z

�2
� (1)

wherePPP� = �(�y�)�1�y is the projection onto�: This statistic is
complex chi-squared (or gamma) distributed; the MSD compares it
with the threshold� to decide on hypothesisH0 or H1:

When the covariance matrixRRR is known but the scaling�2 is
unknown, the MSD may be normalized by the magnitude squared
of the measurement weighted byRRR�1: This measures the direction-
cosine squared of the angle thatz makes with�:

cos2 =
j yRRR�1yj2

( yRRR�1 ) (yyRRR�1y)
�: (2)

This statistic has a “beta” density underH0; underH1, it is most
clearly described as a monotone function of a statistic with a scaled
noncentral “F” distribution

cos2 =
F

F + 1
; F =

zyPPP�z

zyPPP?� z
(3)
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Fig. 1. Geometry and invariances of the CFAR MSD. It measures the
cosine-squared of the angle the whitened measurementz = RRR�(1=2)y makes
with the whitened signal� = RRR�(1=2) : It is invariant to scaling of the
measurement and to rotations ofz in the subspacesh�i and h�i?:

wherePPP?� = III�PPP� is the projection onto the subspace perpendicular

to �: In its F version, this detector has a similar form as�2 but is
normalized by a scaled estimate of�2, namely,(N�1)�2 = zyPPP?� z:

This makes it have a CFAR with respect to the unknown noise scaling
�2; thus, we term it the CFAR MSD.

The MSD and the CFAR MSD have interesting invariances with
respect to transformations of the whitened measurementz: The MSD
is invariant to translations ofz in the subspaceh�i? and to rotations
in the subspaceh�iThe CFAR MSD is invariant to rotations in
the subspacesh�i and h�i?; it is also invariant to scaling of the
measurement, as shown in Fig. 1. Both the MSD and CFAR MSD
have been shown to uniformly most powerful within the class of
detectors that share their respective invariances (UMP invariant) [1].
They are also generalized likelihood ratio tests (GLRT’s) [2], which
are obtained by inserting maximum-likelihood (ML) estimates for
unknown parameters into the likelihood ratio, which is the ratio
of the probability density function (pdf) ofy under H1 to that
underH0:

When the noise structure is not knowna priori but is estimated
from training data, then a reasonable, though seeminglyad hoc,
procedure for generalizing the CFAR MSD is to simply replace the
knownRRR with the sample covariance matrix estimateSSS = R̂RR based
on training data. This procedure produces the CFAR ASD statistic
cos2, which is often referred to as the adaptive coherence estimator
(ACE) [3], [5]:

cos2 =
j ySSS�1yj2

( ySSS�1 ) (yySSS�1y)
�: (4)

This adaptive version was independently proposed by Conteet al.
[6], [7] for use with the related scenario of compound-Gaussian
noise, multivariate Gaussian with random amplitude scaling. The
adaptive statistic retains the invariances of its nonadaptive counterpart
in (2).

We will show in this correspondence that when the measurementy

is distributedCN [�ej� ; �2RRR] while the training data is distributed
CN [0;RRR] (i.e., the noise of the test datay may be scaled by�2

relative to the training data), then the CFAR ASD is, in fact, a GLRT
detector statistic. As far as we know, this is the only formal derivation
of the ACE statistic. This claim lends credence to the heuristics
of [3] and [5]–[7]. This statistic may be contrasted with the well-

known GLRT statistic of Kelly [4], which assumes the same noise
scaling in both test and training data(�2 = 1): In the following
derivation of the scale-invariant GLRT, we will adhere closely to the
notation and procedure of Kelly’s original paper, with the exception
that the likelihoods will be maximized over the additional unknown
parameter�2:

II. DERIVING THE SCALE-INVARIANT GLRT

We first consider what the unknown noise-scaling factor�2 means
in the adaptive case, where the assumption of known covariance is
relaxed, and it is instead assumed that one has access to training
data vectorsfxig that share the same noise covariance as the test
datay: A consistent interpretation is that�2 is a relative scaling of
the noise power in the test data, with respect to that in the training
data, that is,y � CN [�ej� ; �2RRR], whereasx i � CN [0;RRR]: We
allow for the possibility of additional scaling that the training data
does not account for, by leaving�2 as a free parameter. Thus, in
the derivation of the GLRT, the unknown parameters are the noise
structureRRR, noise scaling�2, and signal scaling and phase�ej�;
only the signal template is known. (Again, Kelly’s problem [4]
differs in that the scaling�2 is a known parameter, which is assumed
to be unity.)

A. Densities

We assume that there areK training vectorsx i that are indepen-
dently distributed, and we construct the data matrixXXX containing
these vectors as its columnsXXX = [x1 � � � xK ]: The GLRT is obtained
by considering the joint pdf of the measurementy and the training
dataXXX, which, under the alternate hypothesisH1, is

f1(XXX; y) = f1(y)

K

i=1

f(x i)

=
1

�Nk�2RRRk
exp �

1

�2
(y��ej� )yRRR�1(y��ej� )

�

K

i=1

1

�NkRRRk
expf�xyiRRR

�1
x ig (5)

wherekk denotes determinant. The density underH0 is f1 evaluated
at � = 0; i.e., f0(XXX; y) = f1(XXX; y)j�=0, which is a notation we
will use throughout. The densities under the hypothesesH0; H1 may
be rewritten as

f0;1 =
1

�NkRRRk�2N=(K+1)
expf�tr(RRR�1TTT 0;1)g

K+1

(6)

whereTTT 1 andTTT 0 are the matrices

TTT 1 =
1

K + 1

1

�2
(y � �e

j�
 ) (y � �e

j�
 )y +

K

i=1

x i x
y
i

TTT 0 = TTT 1j�=0: (7)

B. Maximum-Likelihood Estimates

We now find maximum-likelihood (ML) estimates for the noise
structureRRR, noise scaling�2, and signal scaling and phase�ej�, and
we insert them into the densities to obtain the generalized likelihood
ratio (GLR). The ML estimates of the structureRRR under the two
hypotheses are given bŷRRR0 = TTT 0 and R̂RR1 = TTT 1: Inserting these
estimates into the densities yields

max
RRR

f0;1 =
1

(e�)NkTTT 0;1k�2N=(K+1)

K+1

: (8)
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Following the procedure of Kelly [4], the determinantskTTT 0;1k may
be written in terms ofkSSSk, whereSSS is the sample-covariance estimate
based solely on the training dataSSS = (1=K)�i x i x

y
i: That is

kTTT 1k =
K

K + 1

N

kSSSk

� 1 +
1

K�2
(y � �ej� )ySSS�1(y � �ej� )

kTTT 0k = kTTT 1kj�=0: (9)

To maximize the likelihood functions under�2, we minimize the
expressionf1+(1=K�2)(y��ej� )ySSS�1(y��ej� )g(�2)N=K+1

with respect to�2: This yields ML estimates for the noise scaling

�21 =
K �N + 1

KN
(y � �ej� )ySSS�1(y � �ej� )

�20 = �21j�=0: (10)

Inserting these estimates into the densities yields

max
RRR; �

f1 =
(K + 1)(N�1)(K+1)(K �N + 1)K�N+1(KN)N

(e�K)N(K+1)kSSSkK+1

�
1

[(y � �ej� )ySSS�1(y � �ej� )]N

max
RRR; �

f0 = max
RRR; �

f1j�=0: (11)

At this stage, we can write the intermediate GLR, after substituting
in the ML estimateŝRRR0;1 and�20;1, as

�̂(XXX; y) =

max
RRR;�

f1

max
RRR;�

f0

=
yySSS�1y

(y � �ej� )ySSS�1(y � �ej� )

N

: (12)

Finally, we need to evaluate the ML estimate of the signal scaling
and phase�ej�: As in Kelly’s paper, this can be found by completing
the square to minimize the quadratic form(y � �ej� )ySSS�1(y �

�ej� ):

(y � �ej� )ySSS�1(y � �ej� )

= yySSS�1y +  ySSS�1 �ej� �
 ySSS�1y

 ySSS�1 

2

�
j ySSS�1yj2

 ySSS�1 
: (13)

This yields the ML estimate of�ej�

�ej� =
 ySSS�1y

 ySSS�1 
: (14)

C. Generalized Likelihood Ratio and the CFAR ASD

With the substitution of the signal’s estimated scaling and phase
�ej�, the final GLR is given by

�̂(XXX; y) =

max
RRR; � ; �e

f1

max
RRR; �

f0
=

yySSS�1y

yySSS�1y �
j ySSS�1yj2

 ySSS�1 

N

=
1

1� cos2

N

= (1 + F̂ )N (15)

wherecos2 is the statistic defined in (4), and̂F is the “F ” version
of cos2, which is the adaptive version of theF statistic of (3) (see
also [1], [2], and [8]). Sincê� is a monotone function ofcos2, the
GLRT is the CFAR ASD test of (4). This is our key result.

This detector is CFAR with respect to the noise structureRRR, due
to the sample-covariance inverseSSS�1: It is also CFAR with respect
to the noise scaling�2, due to the normalization byyySSS�1y, which
is an observation that is more easily understood with the “F ” form:

cos2 =
F̂

F̂ + 1
; F̂ =

ẑyPPP �̂ẑ

ẑyPPP?
�̂
ẑ

(16)

where PPP �̂ = �̂(�̂y�̂)�1�̂y projects the approximately whitened

measurement̂z = SSS�(1=2)y onto the approximately whitened signal
�̂ = SSS�(1=2) , and PPP?� = III � PPP�: This F form is explicitly

normalized by the ML estimate of the noise scaling,�2 [obtained
by substituting the results of (13) and (14) into (10)]

�2 =
K �N + 1

KN
ẑyPPP?�̂ ẑ (17)

making it CFAR with respect to�2:

D. Related Detectors: The Coherent and Multirank CFAR ASD

There are two detectors related to the CFAR ASD, which can also
be shown to be GLRT with very little modification of the derivation
given in Section II-B.

The Coherent CFAR ASD:ThecoherentCFAR ASD is used when
the phaseej� of the signal is known:

max[0;Refcosg] �;

cos =
e�j� ySSS�1y

( ySSS�1 )1=2(yySSS�1y)1=2
: (18)

To show this is GLRT, the minimization of the the quadratic form
of (13) (y � �ej� )ySSS�1(y � �ej� ) is performed only over the
scaling parameter�, constrained to be real and positive:

� = max 0;Re
e�j� ySSS�1y

 ySSS�1 
: (19)

Inserting this ML estimate into the quadratic form yields the GLR

�̂(XXX; y) =

max
RRR; � ; �

f1

max
RRR; �

f0
=

1

1�max[0;Refcosg]2

N

(20)

with cos given by (18).
Multirank Noncoherent CFAR ASD:The second detector is a gen-

eralization of the noncoherent CFAR ASDcos2, where the signal
 = 			� is not completely specified but is only parametrized to be
a superposition of known modes (the columns of			 ) with weights
given by a vector of unknown coefficients� (the multidimensional
generalization of the phaseej�). The resulting detector, for multirank
signal subspaces, is given by a normalized projection

cos2 =
yySSS�1			(			ySSS�1			)�1			ySSS�1y

yySSS�1y
=
ẑyPPP �̂��ẑ

ẑyẑ
� (21)

where ẑ = SSS�(1=2)y is the approximately whitened measurement,
and �̂�� = SSS�(1=2)			 is the approximately whitened signal-mode
matrix.

To show that this is GLRT, we again reconsider the intermediate
GLR that contains only estimates of the noise structure and scaling
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R̂RR0;1; �20;1: This has the same form as (12), with			 replacing and
� replacingej�:

�̂(XXX; y) =

max
RRR; �

f1

max
RRR; �

f0
=

yySSS�1y

(y � �			�)ySSS�1(y � �			�)

N

: (22)

We then evaluate the ML estimate of the signal scaling and parameter
vector�� by completing the square to minimize the quadratic form
(y � �			�)ySSS�1(y � �			�), yielding

(y � �			�)ySSS�1(y � �			�)

= y
y
SSS
�1
y � ��

y
			
y
SSS
�1
y � �y

y
SSS
�1
			� + �

2
�
y
			
y
SSS
�1
			�

= k(			ySSS�1			)1=2[(			ySSS�1			)�1			ySSS�1y � ��]k2

+ y
y
SSS
�1
y � y

y
SSS
�1
			(			ySSS�1			)�1			ySSS�1y (23)

! �� = (			ySSS�1			)�1			ySSS�1y = �̂��
#
ẑ (24)

where �̂��# = (�̂��y�̂��)�1�̂��y is the pseudo-inverse of̂���: With the
substitution of��, the GLR finally becomes

�̂(XXX; y) =

max
RRR; � ; ��

f1

max
RRR; �

f0
=

1

1� cos2

N

(25)

wherecos2 is now given by (21).

III. RAPPROCHEMENT WITH THEKELLY AND AMF DETECTORS

A. Matched Subspace Detector, Adaptive
Matched Filter, and Kelly GLRT

A straightforward, althoughad hoc, procedure for adapting the
MSD of (1) is to simply replaceRRR with the sample covarianceSSS:
Assuming there is no scaling between test and training data(�2 = 1),
this approach yields the adaptive matched filter (AMF) of [9] and
[10]:

r2 =
j ySSS�1yj2

 ySSS�1 
�: (26)

However, the AMF isnotGLRT. Rather, the GLRT is the well-known
statistic obtained by Kelly [4]:

�2 =
j ySSS�1yj2

( ySSS�1 ) (K + yySSS�1y)
� (27)

whereK is the sample support, or number of training vectors. As in
[9] and [10], Kelly assumes that the training and test data share the
same noise structure and noise level�2 = 1: This detector does not
enjoy the scale invariances of the CFAR ASD to different scalings
of SSS and y:

IV. CONCLUSIONS

By characterizing a slightly different hypothesis testing problem
than that of Kelly, we have shown the CFAR adaptive subspace
detector to be a GLRT detector. Allowing for the possibility that
the noise of the measurement is scaled relative to the noise of the
training data, we introduce a scaling parameter�2: Maximizing the
likelihoods over this additional parameter results in the CFAR ASD
of (4), rather than the Kelly GLRT of (27).

In the CFAR ASD, the noise structure is estimated by the training
data, and the noise scaling�2 is compensated using the test data
(�2 is explicitly estimated with the test data in the “F ” version
of the CFAR ASD). The CFAR ASD also enjoys some attractive
invariances, such as invariance to arbitrary scaling of the training data

XXX and the measurementy, that is,(XXX; y)! (g1XXX; g2y): In contrast,
the Kelly GLRT and the AMF are invariant only touniform scaling
of XXX and y, that is,(XXX; y) ! (gXXX; gy): A complete taxonomy of
the the coherent, rank-1, and multirank versions of all these detectors,
and their statistical behavior and distributions, will be presented in
a companion paper [11].

It is interesting that the CFAR matched subspace detector remains
GLRT when the unknown covariance is simply replaced by its sample
estimateSSS: This is not true of the matched subspace detector [1], [2].
That is, substituting the sample covariance into the matched subspace
detector produces the adaptive matched filter (AMF) of [9] and [10]
and not the Kelly GLRT.
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